Two-photon physics @CLEO, retrospective

- CLEO overview
 - -The salad days, 10' recap
- Two photon physics; reminder of general science
- CLEO $\gamma\gamma \rightarrow X$ program results and reminiscence
 - -Thanks to everyone that I shamelessly pilfered slides from, esp. Dave Cassel, Sheldon Stone, Stan Brodsky

CESR Prehistory

- 1935 -- 1.5 MeV proton cyclotron
- 1949 -- 0.3 GeV electron synchrotron
- 1954 -- 1.2 GeV electron synchrotron
- 1962 -- 2.2 GeV electron synchrotron

CHRONOLOGY OF ACCELERATORS AT CORNELL

5

(CESR)

 $E_{beam} = 1.5 - 5.6 \text{ GeV}$

Added 12 superconducting wigglers to CESR for low energy running.

1967 – e⁻ synchrotron
 12 GeV in a 1/2 mile tunnel

1979 – CESR
 Cornell Electron
 Storage Ring
 8+8 GeV e⁺e⁻

CESR Luminosity Improvements

- Multibunch pretzel orbits
- Superconducting RF cavities
- "μβ" IR focusing
- Single IR (no CUSB)

ZD Inner Drift Chamber

Interaction Point

CLEO III
Y(4S)
Typical
Hadronic
Event

Average:

- 10 tracks
- 10 showers

Mass Levels, Schematically:

Upsilon and ψ provide sources of ggg and gg γ decays!


```
Energy Sample Size
Y(5S): 420 /pb
Y(4S): 15.5 /fb
Y(3S): 1.2 /fb 6M decays
                             Useful for yy-fusion studies
Y(2S): 1.2 /fb 9M decays
Y(1S): 1.1 /fb 22M decays
10.54 GeV: 2 /fb
below Y(3S): 10.33 GeV 0.2 /fb
below Y(2S): 10.00 GeV 0.4 /fb
below Y(1S): 9.43 GeV 0.2 /fb
Way below Y(1S): 6.9-8.4 GeV 17 /pb
3.97-4.26 GeV 60 /pb includes 13 /pb at 4.26GeV
4.17 GeV 586 /pb
                        Direct two-photon decays of \chi_c, e.g.
psi(3770) 818 /pb
psi(2S) about 27M decays
```

3.673 GeV 21 /pb

U.S Experimental Publications

Information compiled by Fermilab

CLEO author list: ~100 – 200 authors

CLEO, 1973-2013, in excelsio dei

Figure 1: ΔM distributions for $\Upsilon(2S)$ data events that pass the selection criteria applied. Points with error bars are the data, and the blue solid curve is the result of the fit for the signal-plus-background hypothesis, and the blue dashed curve is the background component. The three $\chi_{bJ}(1P)$ components indicated by the red dotted curves are considered here as part of the signal.

Two-photon physics (not ee $\rightarrow \gamma \gamma$!)

- Fundamental: probes directly EM couplings
 - Ratio of X production in $\gamma\gamma$ collisions=>high "stickiness"
- N.B., goes both ways $\gamma\gamma \rightarrow X$ OR $X \rightarrow \gamma\gamma$

$$\frac{\Gamma_{\gamma\gamma}(\chi_{c2})}{\Gamma_{gg}(\chi_{c2})} = \frac{8\alpha^2}{9\alpha_s^2} \times \left(\frac{1 - \frac{5.33}{\pi}\alpha_s}{1 - \frac{2.2}{\pi}\alpha_s}\right).$$

Photon-Photon Scattering in QED

Bjorken

Subthreshold Light-by-Light Scattering

$$(s_{\gamma\gamma}\ll 4m_\ell^2)$$
:

$$\sigma(\gamma\gamma \to \gamma\gamma) \sim \frac{\alpha^4 s^3}{m_\ell^8}$$
 from QED box graph.

Resonant Light-by-Light Scattering

$$(s_{\gamma\gamma} = 4m_{\ell}^2 - 4m\epsilon_n)$$

$$\sigma(\gamma\gamma \to [\ell^+\ell^-]_n \to \gamma\gamma) \sim \frac{\Gamma_n^2}{(s-M_n^2)^2+M_n^2\Gamma_n^2}$$

 $C=+$ states:
positronium $[e^+e^-]$, true muonium $[\mu^+\mu^-]$,
true tauonium $[\tau^+\tau^-]$

Threshold Domain Small relative velocity v

$$(s_{\gamma\gamma} \simeq 4m_\ell^2)$$
:

$$\sigma(\gamma\gamma \to \ell^+\ell^-) \sim \frac{\pi\alpha^2v}{m_e^2} \times [1 + \frac{\pi\alpha}{v}]$$

Sommerfeld-Schwinger domain – analytically connected to Bohr spectrum

Photon-Photon Scattering in QED

Single pair production $(s_{\gamma\gamma} \gg 4m_F^2)$:

$$\sigma(\gamma\gamma \to \ell^+\ell^-) \sim \frac{\pi\alpha^2}{s} \log \frac{s}{m_\ell^2}$$

 $spin-\frac{1}{2}$ exchange

First observed at Novosibirsk, Frascati

Double pair production $(s_{\gamma\gamma} \gg 16m_\ell^2)$:

$$\sigma(\gamma\gamma \to \ell^+\ell^-\ell^+\ell^-) \sim \frac{\alpha^4}{m_\ell^2}$$

spin-1 exchange

Contributions to to Total Two-Photon Cross Section

Physics accessed by CLEO in 2-photon collisions:

C=+ resonances
Photon-to-Meson Form Factors
Studies of glueball candidates

No tag Single tag Double tag

=> access different regions of phase space/different partial waves

Roglioni, Pennington

PHOTON-MESON TRANSITION FORM-FACTORS OF LIGHT PSEUDOSCALAR MESONS.

Bo-Wen Xiao

Bo-Qiang Ma

Phys.Rev.D71:014034,2005

Figure 3: CLEO results on $\gamma^*\gamma \to \pi^0$ production. See the text for more information.

Two-Photon Exclusive Amplitudes

$$F_{M}(s) = \frac{16\pi\alpha_{s}}{3s} \int_{0}^{1} dx \, dy \frac{\phi_{M}^{*}(x, \overline{Q}_{x})\phi_{M}^{*}(y, \overline{Q}_{y})}{x(1-x)y(1-y)}$$

when $\phi_M(x,Q) = \phi_M(1-x,Q)$ is assumed.⁷ Thus much of the dependence on $\phi(x,Q)$ can be removed from $\mathcal{M}_{\lambda\lambda'}$ by expressing it in terms of the meson form factor—i.e.,

$$\frac{\mathcal{M}_{++}}{\mathcal{M}_{--}} = 16\pi\alpha F_{M}(s) \left[\frac{((e_{1} - e_{2})^{2})}{1 - \cos^{2}\theta_{c.m.}} \right],$$

Lepage, SJB

$$\frac{\mathcal{M}_{+-}}{\mathcal{M}_{-+}} = 16\pi\alpha F_M(s) \left[\frac{\langle (e_1 - e_2)^2 \rangle}{1 - \cos^2 \theta_{c.m.}} + 2\langle e_1 e_2 \rangle g[\theta_{c.m.}; \phi_M] \right],$$

up to corrections of order α_s and m^2/s . Now the only dependence on ϕ_M , and indeed the only unknown quantity, is in the θ -dependent factor

$$g[\theta_{\text{c.m.}};\phi_{M}] = \frac{\int_{0}^{1} dx \, dy \frac{\phi_{M}^{*}(x, \tilde{Q})\phi_{M}^{*}(y, \tilde{Q})}{x(1-x)y(1-y)} \frac{a[y(1-y)+x(1-x)]}{a^{2}-b^{2}\cos^{2}\theta_{\text{c.m.}}}}{\int_{0}^{1} dx \, dy \frac{\phi_{M}^{*}(x, \tilde{Q})\phi_{M}^{*}(y, \tilde{Q})}{x(1-x)y(1-y)}}.$$

The spin-averaged cross section follows immediately from these expressions

$$\begin{split} \frac{d\sigma}{dt} &= \frac{2}{s} \frac{d\sigma}{d\cos\theta_{c,m.}} = \frac{1}{16\pi s^2} \frac{1}{4} \sum_{\lambda\lambda'} |\mathcal{M}_{\lambda\lambda'}|^2 \\ &= 16\pi \alpha^2 \left| \frac{F_M(s)}{s} \right|^2 \left\{ \frac{((e_1 - e_2)^2)^2}{(1 - \cos^2\theta_{c,m.})^2} + \frac{2(e_1 e_2)((e_1 - e_2)^2)}{1 - \cos^2\theta_{c,m.}} g[\theta_{c,m.}; \phi_M] \right\} \\ &+ 2(e_1 e_2)^2 g^2 [\theta_{c,m.}; \phi_M] \right\}. \end{split}$$

η_c meson in $\gamma\gamma$ collisions (2nd definitive)

Measurements of the Mass, Total Width and Two-photon Partial Width of the η_c Meson

Mass, total width and Two-photon width

Using 13.4 fb⁻¹ of data collected with the CLEO detector at the Cornell Electron Storage Ring, we have observed 300 events for the two-photon production of ground-state pseudo-scalar charmonium in the decay $\eta_c \to K_S^0 K^{\mp} \pi^{\pm}$. We have measured the η_c mass to be (2980.4 \pm 2.3 (stat) \pm 0.6 (sys)) MeV and its full width as (27.0 \pm 5.8 (stat) \pm 1.4 (sys)) MeV. We have determined the two-photon partial width of the η_c meson to be (7.6 \pm 0.8 (stat) \pm 0.4 (sys) \pm 2.3 (br)) keV, with the last uncertainty associated with the decay branching

Observation of η'_c Production in $\gamma\gamma$ Fusion at CLEO

Abstract

We report on the observation of the $\eta'_c(2^1S_0)$, the radial excitation of $\eta_c(1^1S_0)$ ground state of charmonium, in the two-photon fusion reaction $\gamma\gamma \rightarrow \eta'_c \rightarrow K_S^0K^{\pm}\pi^{\mp}$ in 13.6 fb⁻¹ of CLEO II/II.V data and 13.1 fb⁻¹ of CLEO III data. We obtain $M(\eta'_c)=3642.9\pm3.1(\text{stat})\pm1.5(\text{syst})$ MeV, and $M(\eta_c)=2981.8\pm1.3(\text{stat})\pm1.5(\text{syst})$ MeV. The corresponding values of hyperfine splittings between 1S_0 and 3S_1 states are $\Delta M_{hf}(1S)=115.1\pm2.0$ MeV, $\Delta M_{hf}(2S)=43.1\pm3.4$ MeV. Assuming that the η_c and η'_c have equal branching fractions to $K_SK\pi$, we obtain $\Gamma_{\gamma\gamma}(\eta'_c)=1.3\pm0.6$ keV.

In 1982 the Crystal Ball collaboration reported the observation of a small enhancement at $E_{\gamma}\approx 91$ MeV in the inclusive photon spectrum from the reaction $e^+e^- \to \psi' \to \gamma X$, and interpreted it as due to η'_c with $M(\eta'_c)=3594\pm 5$ MeV, $\Gamma(\eta'_c)<8$ MeV [1,2]. This observation, which corresponds to a 2S hyperfine splitting $\Delta M_{hf}(2\mathrm{S})=M(\psi')-M(\eta'_c)=92\pm 5$ MeV, was in qualitative accord with the well established 1S hyperfine splitting, $\Delta M_{hf}(1\mathrm{S})=M(J/\psi)-M(\eta_c)=117\pm 2$ MeV [2]. However, it was not confirmed, and the listing of the η'_c was dropped by the PDG [2] from the meson summary list. The Fermilab experiments E760/E835 [4] failed to identify η'_c in the reaction $\bar{p}p\to\eta'_c\to\gamma\gamma$, for η'_c mass in the range $M(\eta'_c)=3575-3660$ MeV. Similarly, in e^+e^- collisions at $\sqrt{s}\approx 91$ GeV DELPHI [5], and later L3 [6], found no evidence for η'_c in the reaction $\gamma\gamma\to hadrons$, in the mass range, 3500–3800 MeV, and concluded that its population in this reaction was less than a third of that of the η_c . A recent preliminary CLEO measurement [7] of the inclusive photon spectrum from $\psi'\to\gamma X$ has also not found any evidence for the excitation of η'_c .

The theoretical situation was equally uncertain. The perturbative prediction for the hyperfine splitting of the S states of charmonia is, in the lowest order

$$\Delta M_{hf}(S) = [32\pi \alpha_s/(9m_c^2)]|\Psi(0)|^2$$
. (2)

Thus, assuming that the strong coupling constant $\alpha_s(2S) = \alpha_s(1S)$,

$$\frac{\Delta M_{hf}(2S)}{\Delta M_{hf}(1S)} = \frac{|\Psi(0)/m_c|_{2S}^2}{|\Psi(0)/m_c|_{1S}^2} = \frac{\Gamma(\psi' \to e^+e^-)}{\Gamma(J/\psi \to e^+e^-)} \frac{M^2(\psi')}{M^2(J/\psi)}$$

since $\Gamma(^3S_1 \rightarrow e^+e^-)$ is proportional to $|\Psi(0)|^2/M^2(^3S_1)$. Substituting experimental values [2] yields, $\Delta M_{hf}(2S)$ =68±7 MeV. Buchmüller and Tye [8] have pointed out that in order to take approximate account of binding energy, m_e in Eq. (2) can be replaced by $M(^3S_1)/2$, which leads to $\Delta M_{hf}(2S)$ =48±5 MeV.

Observation of n

The Discovery of $\eta'_c(2^1S_0)$

The breakthrough came, of all the places, from the observation of η'_c in B decays by Belle. It was followed by its observation in $\gamma\gamma$ fusion at CLEO and BaBar.

(in MeV)	$M(\eta_c'(2S))$	$\Gamma(\eta_e'(2S))$	events (reaction)
Belle(2002) [8]	3654 ± 10	< 55	$39 \pm 11 \ (B \rightarrow K(K_SK\pi))$
CLEO(2004) [9]	3642.9 ± 3.4	6.3 ± 14.1	$61\pm15~(\gamma\gamma ightarrow K_SK\pi)$
BaBar(2004) [10]	3630.8 ± 3.5	17.0 ± 8.7	$112 \pm 24 \ (\gamma \gamma \rightarrow K_S K \pi)$
BaBar(2005) [11]	3645.0 ± 5.5	22 ± 14	$121 \pm 27~(e^+e^- \rightarrow J/\psi(c\bar{c}))$
Belle(2005)* [12]	3636 ± 9		$311 \pm 42 \ (e^+e^- \to J/\psi(c\bar{c}))$

^{*}Both η_c and χ_{c0} masses in this measurement were obtained ~ 10 MeV lower than their known values. With apological I have therefore arbitrarily increased the η'_c mass reported by Belle by 10 MeV in the above table.

- New measurements are being made, but M(η'_c) is still not firmly anchored. The present weights average is M(η'_c) = 3638.7 ± 2.0 MeV.
- This leads to the hyperfine splitting

$$\Delta M_{hf}(2S) = 3686.1 - 3638.7 = 47.4 \pm 2.0 \text{ MeV}.$$

Recall that, $\Delta M_{hf}(1S) = 3097 - 2980 = 117 \pm 1$ MeV.

Explaining this large difference is a challenge for theorists.

Two-Photon Widths of the χ_{cJ} States of Charmonium

TABLE IV: Compilation of experimental results for two-photon partial widths of χ_{c0} and χ_{c2} .

TABLE IV. Compustion of experimental results for two-photon partial widths of χ_{20} and χ_{22} .						
Experiment [Ref.]	Measured	$\Gamma_{\gamma\gamma}(\chi_{c0}) \text{ keV}^*$	$\Gamma_{\gamma\gamma}(\chi_{c2}) \text{ keV}^*$	\mathcal{R}		
E760(1993) [12]	$\mathcal{B}(\bar{p}p \rightarrow \chi_{c2}) \times \mathcal{B}_{\gamma\gamma}$	-	$0.47\pm0.12\pm0.07$	-		
E835(2000) [13]	$\mathcal{B}(\bar{p}p \rightarrow \chi_{cJ}) \times \mathcal{B}_{\gamma\gamma}$	$2.01\pm1.03\pm0.24$	$0.39 \pm 0.07 \pm 0.03$	$0.20\pm0.11\pm0.03$		
E835(2004) [14]	$\mathcal{B}(\bar{p}p \rightarrow \chi_{c0}) \times \mathcal{B}_{\gamma\gamma}$	$3.3\pm0.6\pm0.5$	-	-		
OPAL(1998) [24]	$\Gamma_{\gamma\gamma} \times \mathcal{B}(\chi_{c2} \rightarrow \gamma J/\psi)$	_	$1.19 \pm 0.32 \pm 0.26$	-		
L3(1999) [25]	$\Gamma_{\gamma\gamma} \times \mathcal{B}(\chi_{c2} \rightarrow \gamma J/\psi)$	_	$0.69\pm0.27\pm0.11$	-		
. , . ,						
CLEO(1994) [26]	$\Gamma_{\gamma\gamma} \times \mathcal{B}(\chi_{c2} \rightarrow \gamma J/\psi)$	_	$0.74\pm0.21\pm0.18$	-		
CLEO(2001) [27]	$\Gamma_{\gamma\gamma} \times \mathcal{B}(\chi_{cJ} \rightarrow \gamma J/\psi)$			$0.17\pm0.06\pm0.04$		
CLEO(2006) [28]	$\Gamma_{\gamma\gamma} \times \mathcal{B}(\chi_{c2} \rightarrow \gamma J/\psi)$		$0.55\pm0.06\pm0.05$	_		
()()	// //					
Belle(2002) [29]	$\Gamma_{\gamma\gamma} \times \mathcal{B}(\chi_{c2} \rightarrow \gamma J/\psi)$	_	$0.56\pm0.05\pm0.05$	_		
Belle(2007) [30]	$\Gamma_{\gamma\gamma} \times \mathcal{B}(\chi_{cJ} \to K_S^0 K_S^0)$		$0.46\pm0.08\pm0.09$			
Belle(2007) [31]**	$\Gamma_{\gamma\gamma} \times \mathcal{B}(\chi_{cJ} \rightarrow 4\pi)$		$0.40\pm0.04\pm0.07$			
. , , ,	$\Gamma_{\gamma\gamma} \times \mathcal{B}(\chi_{cJ} \rightarrow 2\pi 2K)$	$2.07\pm0.20\pm0.40$	$0.44\pm0.04\pm0.16$	$0.21\pm0.03\pm0.09$		
	$\Gamma_{\gamma\gamma} \times \mathcal{B}(\chi_{eJ} \rightarrow 4K)$	$2.88\pm0.47\pm0.53$	$0.62\pm0.12\pm0.12$	$0.21\pm0.05\pm0.06$		
	11 (10)					
This management	B(ab/95)	9 5940 9540 96	n en±n ne±n ne	0.04±0.04±0.09		

This measurement $B(\psi(2S) \rightarrow \gamma \chi_{cJ}) \times B_{\gamma \gamma} 2.53\pm0.37\pm0.26 \ 0.60\pm0.06\pm0.06 \ 0.24\pm0.04\pm0.03$

Averages (weighted by total errors)

 $2.31\pm0.10\pm0.12$ $0.51\pm0.02\pm0.02$ $0.20\pm0.01\pm0.02$

Or, from direct $\gamma\gamma$ production (CLEOc):

Two-Photon Width of χ_{c2}

S. Dobbs, Z. Metreveli, K. K. Seth, A. Tomaradze, P. Zweber, J. Ernst, K. Arms, H. Severini, A. S. A. Dytman, W. Love, S. Mehrabyan, J. A. Mueller, V. Savinov, Z. Li, A. Lopez, H. Mendez, G. J. Ramirez, G. S. Huang, D. H. Miller, V. Pavlunin, B. Sanghi, I. P. J. Shipsey, G. S. Adams, M. Anderson, Anderson, A. S. Sanghi, L. P. J. Shipsey, G. S. Adams, M. Anderson, S. Sanghi, J. P. J. Shipsey, G. S. Adams, M. Anderson, S. Sanghi, J. P. J. Shipsey, G. S. Adams, M. Anderson, S. Sanghi, J. P. J. Shipsey, J J. P. Cummings, I. Danko, J. Napolitano, Q. He, H. Muramatsu, C. S. Park, E. H. Thorndike, T. E. Coan, 10 Y. S. Gao, ¹⁰ F. Liu, ¹⁰ M. Artuso, ¹¹ C. Boulahouache, ¹¹ S. Blusk, ¹¹ J. Butt, ¹¹ O. Dorjkhaidav, ¹¹ J. Li, ¹¹ N. Menaa, ¹¹ R. Mountain, ¹¹ K. Randrianarivony, ¹¹ R. Redjimi, ¹¹ R. Sia, ¹¹ T. Skwarnicki, ¹¹ S. Stone, ¹¹ J. C. Wang, 11 K. Zhang, 11 S. E. Csorna, 12 G. Bonvicini, 13 D. Cinabro, 13 M. Dubrovin, 13 A. Lincoln, 13 A. Bornheim, ¹⁴ S. P. Pappas, ¹⁴ A. J. Weinstein, ¹⁴ R. A. Briere, ¹⁵ G. P. Chen, ¹⁵ J. Chen, ¹⁵ T. Ferguson, ¹⁵ G. Tatishvili, ¹⁵ H. Vogel, ¹⁵ M. E. Watkins, ¹⁵ J. L. Rosner, ¹⁶ N. E. Adam, ¹⁷ J. P. Alexander, ¹⁷ K. Berkelman, ¹⁷ D. G. Cassel, ¹⁷ J. E. Duboscq, ¹⁷ K. M. Ecklund, ¹⁷ R. Ehrlich, ¹⁷ L. Fields, ¹⁷ R. S. Galik, ¹⁷ L. Gibbons, ¹⁷ R. Gray, ¹⁷ S. W. Gray, ¹⁷ D. L. Hartill, ¹⁷ B. K. Heltsley, ¹⁷ D. Hertz, ¹⁷ C. D. Jones, ¹⁷ J. Kandaswamy, ¹⁷ D. L. Kreinick, ¹⁷ V. E. Kuznetsov, ¹⁷ H. Mahlke-Krüger, ¹⁷ T. O. Meyer, ¹⁷ P. U. E. Onyisi, ¹⁷ J. R. Patterson, ¹⁷ D. Peterson, ¹⁷ E. A. Phillips, ¹⁷ J. Pivarski, ¹⁷ D. Riley, ¹⁷ A. Ryd, ¹⁷ A. J. Sadoff, ¹⁷ H. Schwarthoff, ¹⁷ X. Shi, ¹⁷ M. R. Shepherd, 7 S. Stroiney, 7 W. M. Sun, 7 T. Wilksen, 7 M. Weinberger, 7 S. B. Athar, 8 P. Avery, 18 L. Breva-Newell, ¹⁸ R. Patel, ¹⁸ V. Potlia, ¹⁸ H. Stoeck, ¹⁸ J. Yelton, ¹⁸ P. Rubin, ¹⁹ C. Cawlfield, ²⁰ B. I. Eisenstein, ²⁰ I. Karliner,²⁰ D. Kim,²⁰ N. Lowrey,²⁰ P. Naik,²⁰ C. Sedlack,²⁰ M. Selen,²⁰ E. J. White,²⁰ J. Williams,²⁰ J. Wiss,²⁰ D. M. Asner, 21 K. W. Edwards, 21 D. Besson, 22 T. K. Pedlar, 23 D. Cronin-Hennessy, 24 K. Y. Gao, 24 D. T. Gong, 24 J. Hietala,²⁴ Y. Kubota,²⁴ T. Klein,²⁴ B. W. Lang,²⁴ S. Z. Li,²⁴ R. Poling,²⁴ A. W. Scott,²⁴ and A. Smith²⁴

(CLEO Collaboration)

¹Northwestern University, Evanston, Illinois 60208 ²State University of New York at Albany, Albany, New York 12222 Solio State University, Columbus, Ohio 43210 ⁴University of Oklahoma, Norman, Oklahoma 73019 ⁵University of Pittsburgh, Pittsburgh, Pennsylvania 15260 ⁶University of Puerto Rico, Mayaguez, Puerto Rico 00681 Purdue University, West Lafayette, Indiana 47907 ⁸Rensselaer Polytechnic Institute, Troy, New York 12180 ⁹University of Rochester, Rochester, New York 14627 ¹⁰Southern Methodist University, Dallas, Texas 75275 ¹¹Syracuse University, Syracuse, New York 13244 ¹² Vanderbilt University, Nashville, Tennessee 37235 ¹³Wayne State University, Detroit, Michigan 48202 ¹⁴California Institute of Technology, Pasadena, California 91125 ¹⁵Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 ¹⁶Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637 ¹⁷Cornell University, Ithaca, New York 14853 ¹⁸University of Florida, Gainesville, Florida 32611 ¹⁹George Mason University, Fairfax, Virginia 22030 ²⁰University of Illinois, Urbana-Champaign, Illinois 61801 ²¹Carleton University, Ottawa, Ontario, Canada K1S 5B6 and the Institute of Particle Physics, Canada ²²University of Kansas, Lawrence, Kansas 66045 ²³Luther College, Decorah, Iowa 52101 ²⁴ University of Minnesota, Minneapolis, Minnesota 55455

The two-photon width of χ_{c2} (3P_2) state of charmonium has been measured using 14.4 fb⁻¹ of e^+e^- data taken at $\sqrt{s} = 9.46 - 11.30$ GeV with the CLEO III detector. The $\gamma\gamma$ -fusion reaction studied is $e^+e^- \to e^+e^-\gamma\gamma$, $\gamma\gamma \to \chi_{c2} \to \gamma J/\psi \to \gamma e^+e^-(\mu^+\mu^-)$. We measure $\Gamma_{\gamma\gamma}(\chi_{c2})\mathcal{B}(\chi_{c2} \to \gamma J/\psi)\mathcal{B}(J/\psi \to e^+e^- + \mu^+\mu^-) = 13.2 \pm 1.4 \text{(stat)} \pm 1.1 \text{(syst)}$ eV, and obtain $\Gamma_{\gamma\gamma}(\chi_{c2}) = 559 \pm 57 \text{(stat)} \pm 48 \text{(syst)} \pm 36 \text{(br)}$ eV. This result is in excellent agreement with the result of $\gamma\gamma$ -fusion measurement by Belle and is consistent with that of the $\bar{p}p \to \chi_{c2} \to \gamma\gamma$ measurement, when they are both reevaluated using the recent CLEO result for the radiative decay $\chi_{c2} \to \gamma J/\psi$.

Experimental Investigation of the Two-photon Widths of the χ_{c0}

and the χ_{c2} Mesons

CLEO Collaboration

(June 11, 2015)

Abstract

300 3400 M (4π) (MeV) 3800 3800

FIG. 1. The $\pi^+\pi^-\pi^+\pi^-$ invariant mass (data point with errors). The solid line is the fit with a χ^2 /d.o.f. = 44/54.

Using 12.7 fb⁻¹ of data collected with the CLEO detector at CESR, we observed two-photon production of the $c\bar{c}$ states χ_{c0} and χ_{c2} in their decay to $\pi^+\pi^-\pi^+\pi^-$. We measured $\Gamma_{\gamma\gamma}(\chi_c) \times \mathcal{B}(\chi_c \to \pi^+\pi^-\pi^+\pi^-)$ to be 75 ± 13 (stat) ± 8 (syst) eV for the χ_{c0} and 6.4 ± 1.8 (stat) ± 0.8 (syst) eV for the χ_{c2} , implying $\Gamma_{\gamma\gamma}(\chi_{c0}) = 3.76 \pm 0.65 (\text{stat}) \pm 0.41 (\text{syst}) \pm 1.69 (\text{br})$ keV and $\Gamma_{\gamma\gamma}(\chi_{c2}) = 0.53 \pm 0.15 (\text{stat}) \pm 0.06 (\text{syst}) \pm 0.22 (\text{br})$ keV. Also, cancelation of dominant experimental and theoretical uncertainties permits a precise comparison of $\Gamma_{\gamma\gamma}(\chi_{c0})/\Gamma_{\gamma\gamma}(\chi_{c2})$, evaluated to be 7.4 ± 2.4(stat) ± 0.5(syst) ± 0.9(br), with QCD-based predictions.

The two-photon width of a χ_c meson can be determined from a measurement of its twophoton cross section. The ratio of the two-photon width to the two-gluon width of a χ_c meson can be calculated in PQCD with reduced uncertainties due to cancelation of charmed quark mass factors, non-perturbative factors, and wave function dependence. In next-to-leading order (NLO) PQCD one obtains the following relationships [1]:

$$\frac{\Gamma_{\gamma\gamma}(\chi_{c0})}{\Gamma_{gg}(\chi_{c0})} = \frac{8\alpha^2}{9\alpha_s^2} \frac{(1 + 0.18\alpha_s/\pi)}{(1 + 9.5\alpha_s/\pi)},$$
(1)

$$\frac{\Gamma_{\gamma\gamma}(\chi_{c2})}{\Gamma_{gg}(\chi_{c2})} = \frac{8\alpha^2}{9\alpha_s^2} \frac{(1 - 5.3\alpha_s/\pi)}{(1 - 2.2\alpha_s/\pi)}.$$
(2)

The width of the χ_{c0} meson can be assumed to be dominated by its two-gluon component, so $\Gamma_{gg}(\chi_{c0}) \approx \Gamma_{\text{tot}}(\chi_{c0}) = 14.9^{+2.6}_{-2.3} \text{ MeV } [2]$. Using a value of the strong coupling constant $\alpha_s = 0.28$ [1], one obtains the NLO PQCD prediction $\Gamma_{\gamma\gamma}(\chi_{c0}) = 5.0 \pm 0.8$ keV. Due to the uncertainty in the charm mass scale, we also calculate the NLO PQCD prediction at $\alpha_s = 0.35$ and find $\Gamma_{\gamma\gamma}(\chi_{c0}) = 2.9 \pm 0.5$ keV. A measurement reported in a thesis gave $\Gamma_{\gamma\gamma}(\chi_{c0}) = 4.0 \pm 2.8$ keV [3]. The E835 collaboration reported an upper limit of $\Gamma_{\gamma\gamma}(\chi_{c0}) \leq 3.47$ keV (95% C.L.) [4].

Things we didn't find (glueball candidates)

- LEP's $\eta_c(1440)$ (KK π)
- $f_J(2220) \to MM$
 - $-(BES J/\psi \rightarrow \gamma f_J(2220))$

Summary

- Despite the richness of the basic physics accessed, γγ-physics has a Hennie Youngman complex (or Groucho Marx complex [or Rodney Dangerfield complex]) at B-factories.
- Nevertheless, two-photon couplings formed the basis of roughly one CLEO publication per year during the salad days.
- Still huge data samples waiting to be mined (esp. Belle-II!!)