

Results and prospects on hadronic cross section and yy physics at KLOE/KLOE-2

Giuseppe Mandaglio (for the KLOE2 Collaboration)

Dipartimento di Fisica e di Scienze della Terra – University of Messina INFN- Group of Messina

Novosibirsk, June 17 (2015)

Outline

KLOE measurements of $\sigma(e^+e^- \rightarrow \pi^+\pi^-(\gamma))$ via ISR :

- Small (photon) angle measurements: KLOE08 and KLOE12
- Large (photon) angle measurements: KLOE10
- Evaluation of $a_{u}^{\pi\pi}$ and comparison with CMD-2/SND/BaBar
- Preliminary combination of KLOE08, KLOE10, KLOE12 for $a_{u}^{\pi\pi}$
- $\gamma\gamma$ physics at KLOE
 - γγ–>η
 - $\gamma\gamma \rightarrow \pi^0\pi^0$
- $\gamma\gamma$ Physics program at KLOE-2

Motivation

 $a_{\mu}^{Exp} - a_{\mu}^{Theo} = (27.6 \pm 8.7) \times 10^{-10} \sim 3.4 \sigma$

 $2.8 \times 10^{-10} (\delta a_{u}^{\text{Theor.}} \sim 5 \times 10^{-10})$

ISR: Initial State Radiation

Neglecting final state radiation (FSR):

Theoretical input: precise calculation of the radiation function H(s, M²_{hadr})

→ EVA + PHOKHARA MC Generator

Binner, Kühn, Melnikov; Phys. Lett. B 459, 1999 H. Czyż, A. Grzelińska, J.H. Kühn, G. Rodrigo, Eur. Phys. J. C 27, 2003 (exact next-to-leading order QED calculation of the radiator function)

IN 2005 KLOE has published the first precision measurement of $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ with ISR using 2001 data (140pb⁻¹) PLB606(2005)12 $\Rightarrow \sim 3\sigma$ discrepancy btw a_{μ}^{SM} and a_{μ}^{exp}

DAΦNE: A φ-Factory in Frascati (near Rome)

e^+e^- collider with $\sqrt{s} = m_{\phi} \approx 1.0195$ GeV

Peak Luminosity $L_{\text{peak}} = 1.5 \cdot 10^{32} \text{cm}^{-2} \text{s}^{-1}$

KLOE: 2.5 fb⁻¹ @ √s=M_∳

KLOE05 measurement (PLB606(2005)12) based on 140pb⁻¹ of 2001 data (Superseded by KLOE08)

KLOE08 measurement (PLB670(2009)285) was based on 240pb⁻¹ of 2002 data + 250 pb⁻¹off-peak @ √s=1000 MeV

KLOE10 measurement (PLB700 (2011)102) based on 233 pb⁻¹ of 2006 data (at 1 GeV, different event selection)

KLOE12 measurement (PLB720(2013)336) based on 240 pb⁻¹ of 2002 data (from ππγ/μμγ ratio)

KLOE Detector

KLOE08: Small Angle (\sqrt{s} = 1020 MeV)

Systematic errors on a $\pi\pi$:

Reconstruction Filter	negligible
Background	0.3%
Trackmass/Miss. Mass	0.2%
p/e-ID and TCA	negligible
Tracking	0.3%
Trigger	0.1%
Acceptance $(\theta_{\pi\pi})$	0.2%
Acceptance (θ_{π})	negligible
Unfolding	negligible
Software Trigger	0.1%
√s dep. Of H	0.2%
Luminosity $(0.1_{th} \oplus 0.3_{exp})\%$	0.3%

experimental fractional error on $a_{i} = 0.6$ %

FSR treatment	0.3%
Radiator H	0.5%
Vacuum polarization	0.1%

theoretical fractional error on $a_{\mu} = 0.6 \%$

 $\sigma_{\pi\pi}$, undressed from VP, inclusive of FSR as function of $(M^0_{\pi\pi})^2$

 $a_{\mu}^{\pi\pi} = \int_{x_1}^{x_2} \sigma_{ee \to \pi\pi}(s) K(s) ds \qquad a_{\mu}^{\pi\pi} (0.35 - 0.95 \text{GeV}^2) = (387.2 \pm 0.5_{\text{stat}} \pm 2.4_{\text{syst}} \pm 2.3_{\text{theo}}) \cdot 10^{-10} 7$

KLOE10: Large Angle (\sqrt{s} = 1000 MeV)

experimental fractional error on $a_{\mu} = 1.0 \%$ theoretical fractional error on $a_{\mu} = 0.9 \%$ Table of systematic errors on $a_{\mu}^{\pi\pi}$

Reconstruction Filter	negligible
Background	0.5%
f0+ρπ	0.4%
Ω cut	0.2%
Trackmass	0.5%
p/e-ID and TCA	negligible
Tracking	0.3%
Trigger	0.2%
Acceptance	0.5%
Unfolding	negligible
Software Trigger	0.1%
Luminosity $(0.1_{th} \oplus 0.3_{exp})\%$	0.3%
FSR treatment	0.8%
Radiator H	0.5%
Vacuum polarization	0.1%

 $a_{\mu}^{\pi\pi}$ (0.1-0.85 GeV²) = (478.5 ± 2.0_{stat}±5.0_{syst} ±4.5_{theo}) · 10⁻¹⁰

KLOE08 result compared to KLOE10:

Fractional difference:

Good agreement with KLOE08, especially above 0.5 GeV²

Combination of KLOE08 and KLOE10: $a_{\mu}^{\pi\pi}$ (0.1-0.95 GeV²) = (488.6±6.0) · 10⁻¹⁰

KLOE covers ~70% of total a_{μ}^{HLO} with a fractional total error of 1.2%

Comparison of results: KLOE10 vs CMD-2/SND

CMD and SND results compared to KLOE10: Fractional difference

SND: M.N. Achasov et al., J. Exp. Theor. Phys. 103, 480 (2006) CMD-2: R.R. Akhmetshin et al., PLB648, 28 (2007) $(|\mathbf{F}_{\pi}|^{2}_{\text{CMD,SND}} - |\mathbf{F}_{\pi}|^{2}_{\text{K10}}) / |\mathbf{F}_{\pi}|^{2}_{\text{K10}}$ 0.2 0 CMD-2 -0.2 $({\bf M}_{\pi\pi}^0)^2 \, [{\bf GeV}^2]$ 0.1 0.2 0.3 0.6 0.7 0.8 band: KLOE10 error

Below the ρ peak good agreement with CMD-2/SND. Above the ρ peak KLOE10 slightly lower

Comparison of results: KLOE10 vs BaBar

BaBar results compared to KLOE10: Fractional difference

KLOE12: $\sigma_{\pi\pi}$ measurement from $\pi\pi\gamma/\mu\mu\gamma$

CON KLOS

Phys. Lett. B 720 (2013) 336–343

An alternative way to obtain $|F_{\pi}|^2$ is the bin-by-bin ratio of pion

over muon yields (instead of using absolute normalization with Bhabhas).

Many systematic effects drop out:

- radiator function
- int. luminosity from Bhabhas
- Vacuum polarization

Data Sample:

- 239.2 pb⁻¹ of 2002 data (the same used in KLOE08 analysis)
- photon at small angle
- 0.87 Million μμγ events
- 3.4 Million $\pi\pi\gamma$ events

Comparison of results: KLOE12 vs KLOE10

-0.1

0.3

Fractional difference: 0.1 • $(|\mathbf{F}_{\pi}|_{K12}^2 - |\mathbf{F}_{\pi}|_{K10}^2) / |\mathbf{F}_{\pi}|_{K10}^2$ 0.05 <u>↓ ↓↓ ↓↓↓↓</u> 0 -0.05 $(M^0_{\pi\pi})^2 [GeV^2]$

0.5

0.4

band: KLOE10 error

(stat. + syst. err.)

0.6

0.7

0.8

0.9

Excellent agreement between these two independent measurements!

Analysis	$a^{\pi\pi}_{\mu}(0.35 - 0.85 \text{ GeV}^2) \times 10^{10}$
KLOE12	$377.4 \pm 1.1_{\mathrm{stat}} \pm 2.7_{\mathrm{sys+theo}}$
KLOE10	$376.6 \pm 0.9_{\rm stat} \pm 3.3_{\rm sys+theo}$

Preliminary combination of KLOE08,10,12

by Stefan E. Müller

Combination of KLOE08,KLOE10, and KLOE12 using the Best Linear Unbiased Estimate (BLUE) based on: A. Valassi, NIM A500 (2003) 391 G. D'Agostini, NIM A346 (1994) 306

10 3

500

1000

Wy (MeV)

- X = π^{0} , η , $(\eta') \Rightarrow \Gamma(X \rightarrow \gamma \gamma)$;
- •Transition form factors $F_{\chi_{\gamma^*\gamma^*}}(q_1^2,q_2^2)$

Tagger is essential to reduce the background from the φ and to close the kinematics--> KLOE2 In KLOE we didn't have the taggers-->off-peak data

$\Gamma(\eta - \gamma\gamma)$ measurement in $\gamma\gamma$ interaction at KLOE

JHEP01 (2013) 119

KLOE published in 2013 the $\Gamma(\eta ->\gamma\gamma)$ measurement based on an integrated luminosity of 242.5 pb⁻¹ collected at e+eenergy of 1 GeV.

Final state leptons were undetected (high probability out of detector acceptance)

$$\begin{array}{c} \eta \rightarrow \pi^{+}\pi^{-}\pi^{0} \\ \sigma(e^{+}e^{-} \rightarrow e^{+}e^{-}\eta) = (34.5 \pm 2.5_{\rm stat} \pm 1.0_{\rm syst} \pm 0.7_{\rm FF} \pm 0.4_{\rm BR}) ~{\rm pb} \,. \end{array}$$

$$\sigma(e^+e^- \to e^+e^-\eta) = (32.0 \pm 1.5_{\text{stat}} \pm 0.9_{\text{syst}} \pm 0.2_{\text{FF}} \pm 0.2_{\text{BR}}) \text{ pb}$$

$$\sigma(e^+e^- \to e^+e^-\eta) = (32.7 \pm 1.3_{\text{stat}} \pm 0.7_{\text{syst}}) \text{ pb}$$

$$\Gamma(\eta \to \gamma \gamma) = (520 \pm 20_{\text{stat}} \pm 13_{\text{syst}}) \text{ eV}.$$

Best single measurement result driving the new world average.

$\gamma\gamma \rightarrow \pi^{\nu}\pi^{\nu}$

- $e^+e^- \rightarrow e^+e^- \pi^0\pi^0$
- 240 pb⁻¹ off-peak ($\sqrt{s} = 1$ GeV)
- Selected sample: 4 prompt photons
- Excess of events with respect to background in the low mass region
- $\gamma\gamma \rightarrow \pi^0\pi^0$ cross-section evaluation \forall in progress

4y invariant mass distribution

KLOE-2: $O(10 \text{ fb}^{-1})$ at $\sqrt{s} = M_{\phi}$ with e^{\pm} tagging \Rightarrow 2% statistical accuracy using the same energy bin as Crystal Ball (~20% error)

$\gamma\gamma$ physics at KLOE2

to taggers (HET or LET) in KLOE

LET (Low Energy Tagger)

calorimeters, LYSO + SiPM Inside KLOE det. (1m from IP) Energy acceptance 160-400 MeV.

HET (High Energy Tagger)

position sensitive detectors (strong energy-position correlation \Rightarrow use the DA Φ NE magnets as e^{\pm} spectrometer) After bending dipole (11m from IP) Energy acceptance 420-495 MeV.

KLOE-2 contribution to a^{LbL}

- Measurement of $\Gamma(P \rightarrow \gamma \gamma)$
- Transition form factors $F_{P\gamma^*\gamma^*}(q_1^2,q_2^2)$:
 - input for the calculation of the Light-by-Light contribution to g-2 of the muon

Feasibility of the $\gamma * \gamma \pi^0$ transition form factor measurement

By including KLOE-2 \rightarrow a reduction of a factor 2 in the error of $a_{\mu}^{\pi 0}$! In addition the measurement of $\Gamma(\pi^{0}\rightarrow\gamma\gamma)$ will constrain $F_{\pi 0}(q^{2}=0)$ (which is now obtained by WZW model 1/($4\pi^{2}f_{\pi}$) w/o error). ~1% st. accuracy with 5 fb⁻¹ int. lum..

A1 : CELLO, CLEO, PrimEx;

- A2 : CELLO, CLEO, PrimEx, KLOE-2;
- B1 : CELLO, CLEO, BaBar, PrimEx;

B2 : CELLO, CLEO, BaBar, PrimEx, KLOE-2;

Model	Data	χ^2 /d.o.f.		Parameters		$a_{\mu}^{ m LbyL;\pi^0} imes 10^{11}$
VMD	A0	6.6/19	$M_V = 0.778(18) \text{ GeV}$	$F_{\pi} = 0.0924(28) \text{ GeV}$		(57.2±4.0), w
VMD	A1	6.6/19	$M_V = 0.776(13) \text{ GeV}$	$F_{\pi} = 0.0919(13) \text{ GeV}$		$(57.7 \pm 2.1)_{JN}$
VMD	A2	7.5/27	$M_V = 0.778(11) \text{ GeV}$	$F_{\pi} = 0.0923(4) \text{ GeV}$		$(57.3 \pm 1.1)_{JN}$
LMD+V, $h_1 \neq 0$ LMD+V, $h_1 \neq 0$	B1 B2	18/35 19/43	$\bar{h}_5 = 6.44(22) \text{ GeV}^4$ $\bar{h}_5 = 6.47(21) \text{ GeV}^4$	$\bar{h}_7 = -14.92(21) \text{ GeV}^6$ $\bar{h}_7 = -14.84(7) \text{ GeV}^6$	$h_1 = -0.17(2) \text{ GeV}^2$ $h_1 = -0.17(2) \text{ GeV}^2$	$(72.4 \pm 1.6)^*_{JN}$ $(71.8 \pm 0.7)^*_{JN}$

Estimate of KLOE-2 impact on the accuracy of $a_{\mu}^{\text{LbyL};\pi^0}$

Conclusion

• KLOE has performed a series of precision measurements with ISR KLOE08, and KLOE10, normalized to Bhabha events, and KLOE12 normalized to muons allowing to measure $a_{\mu}^{\pi\pi}$ in the region below 1 GeV with ~1% total error. $|F_{\pi}|^2$ KLOE12 measurement (0.7% systematic error), it doesn't rely on specific theoretical input allowing a stringent cross check of the published measurements with comparable systematic error.

KLOE published $\Gamma(\eta ->\gamma\gamma)$ usign $\gamma\gamma$ events off-peak; measurement of $\gamma\gamma \rightarrow \pi^0\pi^0$ cross section in progress.

 KLOE2 can give an important contribution to γγ physics. using γγ taggers for example:

- $\Gamma(\pi_0 \rightarrow \gamma \gamma)$ at 1%

- $-F_{\pi 0}(Q^2)$ in the region Q² < 0.1 GeV² with 6% stat. uncertainty for each point.
- KLOE2 data taking is currently running and data analysis of new data are in progress. It is expected to take 5-10 fb⁻¹ in the next 3 years.

SPARE SLIDES

Luminosity:

KLOE measures L with Bhabha scattering $55^{\circ} < \theta < 125^{\circ}$; acollinearity $< 9^{\circ}$; $p \ge 400$ MeV

$$\int \mathcal{L} \, \mathrm{d}t = \frac{N_{obs} - N_{bkg}}{\sigma_{eff}}$$

Generator used for σ_{eff} : BABAYAGA (Pavia) NPB758 (2006) 22

New version (BABAYAGA@NLO) gives 0.7% decrease in cros. sect., and better accuracy:0.1% Systematics on Luminosity:

TOTAL 0.1 % th \oplus 0.3% exp = 0.3%

Eur.Phys.J.C47:589-596,2006

Luminosity:

ISR: KLOE vs BaBar 2π

KLOE:

- The photon is "soft" (detected or not)
- No Kinematic fit
- Bin of 0.01 GeV2 (~8 MeV at ρ peak)
 > δMππ2~2 10-3 GeV2

\Rightarrow Unfolding only relevant at low M $\pi\pi^2$ (up to 4%) and at ρ - ω cusp,

- Negligible contribution of LO FSR, and <2% contribution of NLO FSR(1γ ISR+ 1γ FSR) only at low M $\pi\pi$ 2
- Normalize to Luminosity (=Bhabha), but also to μμγ (K12)
- Use **Phokhara** for acceptance, radiator and additional-photon effects

BaBar:

- The photon is "hard" and detected
- Kinematic fit to improve resolution
- Bin of 2 MeV in the region 0.5-1 GeV
- \Rightarrow Larger effects on the unfolding
- Negligible contribution of LO FSR, % contribution of NLO FSR(1γISR+1γFSR)
- Normalize to $\mu\mu\gamma$
- Interplay btw **Phokhara** and **AfkQED** to estimate additional-photon effects

Different selections and use of theoretical ingredients (R.C., Luminosity, Radiator). Additional cross checks are possible (and needed)