Latest results on Higgs final-states with photons in ATLAS

Yohei Yamaguchi Osaka University

on behalf of the ATLAS collaboration

Photon 2015@Novosibirsk, Russia 15/6/2015

Outline

- Introduction
- Photon reconstruction with ATLAS detector
- Higgs boson property measurements with $H \rightarrow \gamma \gamma$ channel
 - mass: Phys. Rev. D. 90, 052004 (2014)
 - arXiv:1503.07589
 - coupling: Phys. Rev. D. 90, 112015 (2014)

Physics Letters B 740 (2015) 222-242

- spin: ATLAS-CONF-2015-008
- total and differential cross section: arXiv:1504.05833
- BSM search using $H \rightarrow \gamma \gamma$
 - -hh → $\gamma\gamma b\overline{b}$: Phys. Rev. Lett. 114, 081802 (2015)
 - $H \rightarrow \gamma \gamma + E_{\rm T}^{\rm miss}$: arXiv:1506.01081
 - SUSY + $h \rightarrow \gamma \gamma$: Eur. Phys. J. C (2015) 75:208
 - FCNC: JHEP06(2014)008
 - Higgs boson to SUSY: ATLAS-CONF-2015-001

$H \to \gamma \gamma$

- Significant contribution to discovery of the Standard Model (SM) like Higgs boson
- has great advantages of Higgs boson property measurements
 - coupling, mass, spin, ...
- Higgs boson decays to di-photon through top/W loop

- Sensitive to relative sign of top-Higgs Yukawa coupling with respect to HWW gauge coupling because of interference between loop terms
- $H \rightarrow \gamma \gamma$ + X: Direct search of Beyond the SM (BSM)
 - di-higgs
 - SUSY
 - dark matter
 - .

$H \rightarrow \gamma \gamma$ analysis

- Challenge: small branching ratio BR($H \rightarrow \gamma \gamma$) = 2.28 x 10⁻³
- $m_{\gamma\gamma}$ distribution has peak at Higgs boson mass
- Peak is narrow owing to excellent mass resolution
 - natural width: 4 MeV

Requirements

- Good photon-jet separation
- High photon reconstruction efficiency
- Good photon energy resolution

Photon energy calibration

Eur. Phys. J. C (2014) 74: 3071

5

0.3 % energy scale uncertainty for photons from Higgs boson

Photon-jet separation

- $\pi^0 (\rightarrow \gamma \gamma)$ in jets: fake photon
- Isolation
 - Signal photon is isolated
 - π⁰ which fakes photon has jet constituents around

Identification with EM shower shape

- High efficiency (> 90 %) for photons from Higgs boson
- Good jet rejection
 - $γ-γ: γ-jet: jet-jet = 1: ~10^4: ~10^7$

-Higgs boson property measurements with $H \rightarrow \gamma \gamma$ channel-

Data sample / $H \rightarrow \gamma \gamma$ candidates

- Data sample: 4.5 fb⁻¹ at \sqrt{s} = 7 TeV, 20.3 fb⁻¹ at \sqrt{s} = 8 TeV
- Selection: isolated 2 photons $p_T/m_{yy} > 0.35, 0.25$
- Total selected events in $m_{\gamma\gamma}$ [105 : 160] GeV: 1.1 x 10⁵ evt
- Total expected signal events: 468 evt for m_H = 125.4 GeV
- Vector Boson Fusion (VBF) $H \rightarrow \gamma \gamma$ candidate
- di-photon + forwards 2 jets

Mass measurement

Phys. Rev. D. 90, 052004 (2014) arXiv:1503.07589

- Higgs boson mass: input parameter of SM
 - determined by experiments to complete SM
- $H \rightarrow \gamma \gamma$: most precise measurement
 - mass resolution: 1.65 GeV

- Dominant systematic uncertainty: energy scale uncertainty due to material amount uncertainty in front of EM calorimeter
- combining ATLAS and CMS: $m_H = 125.09 \pm 0.21 \,(\text{stat.}) \pm 0.11 \,(\text{syst.}) \,\text{GeV}$

Coupling measurement

• To measure gauge coupling and Yukawa coupling individually, events are categorized based on event signature of production process

Coupling measurement

tH cross section is sensitive to relative sign between Y_t and g_{HWW} as well as BR($H \rightarrow \gamma \gamma$) because of interference

Dependence of ttH and tH cross sections and BR($H \rightarrow \gamma \gamma$) on κ_t

$$\kappa_t = Y_t / Y_t^{SM}$$

 $\kappa_t = 0$ means

- turn off ttH process
- remove top quark contribution to tH and to $H \rightarrow \gamma \gamma$

 $\kappa_t < 0$ enhances tH cross section and BR($H \rightarrow \gamma \gamma$)

Phys. Rev. D. 90, 112015 (2014) Physics Letters B 740 (2015) 222-242

Coupling measurement

• One of dominant systematic uncertainties is photon energy resolution

 $\frac{\mu_{ggF}}{1.32 \pm 0.38} \frac{\mu_{VBF}}{0.8 \pm 0.7} \frac{\mu_{WH}}{1.0 \pm 1.6} \frac{\mu_{ZH}}{0.1 + 3.7} \frac{\mu_{ttH}}{1.6 + 2.7}$

- Combined measurement of coupling ATLAS-CONF-2015-007
- ttH search in other channels ATLAS-CONF-2015-006 arXiv:1503.05066

Other property measurements ATLAS-CONF-2015-008 arXiv:1504.05833

- Spin measurement
 - spin 0 and 2 can be distinguished by angular distribution of 2 photons

- Total and differential cross section measurement
 - $\sigma_{pp \to H} = 33.0 \pm 5.3$ (stat) ± 1.6 (sys) pb

BSM search using $H \rightarrow \gamma \gamma$ –

- In search of BSM with Higgs boson, Higgs can be tagged with some final states (γγ, WW, ZZ, bb, ττ, ...)
- $H \rightarrow \gamma \gamma$ is excellent final state because of good diphoton mass resolution, and low backgrounds

Phys. Rev. Lett. 114, 081802 (2015)

 $hh \rightarrow \gamma \gamma bb$

- Predicted cross section for di-higgs production in SM
 - ~ 10 fb at $\sqrt{s} = 8$ TeV (NNLO)
- various BSM models (i.e. 2HDM) predict large di-higgs production
- Selection:
 - 2 photons + 2 b-jets
 - 95 < m_{bb} < 135 GeV
- Dominant BG: QCD $\gamma\gamma bb$, ttH and (Z \rightarrow bb)H in SM

$hh \rightarrow \gamma \gamma b \overline{b}$

- Non-resonant di-higgs production
 - Upper limit on anomalous non-resonant di-higgs production
 - 2.2 pb (observed)1.0 pb (expected)
 - 2.4 σ deviations from BG only hypothesis

di-higgs search for $hh \rightarrow bbbb$: arXiv:1506.00285

$H \rightarrow \gamma \gamma + E_{\rm T}^{\rm miss}$

- Motivated by dark matter (DM)
- Higgs boson is unlikely to be radiated with initial state radiation
 - sensitive to structure of effective DM-SM coupling
- Selection:
 - 2 photons + $p_T^{\gamma\gamma}$ > 90 GeV + E_T^{miss} > 90 GeV

- SM Higgs boson BG
 - $(Z \rightarrow vv)H$
 - $(W \rightarrow \ell v)H$
- non-resonant BG
 - QCD
 - Wγγ, γ + jet
 - Ζγγ, γ + jet

$H \to \gamma \gamma + E_{\rm T}^{\rm miss}$

- Likelihood ratio as a function of fiducial cross section of BSM Higgs boson + DM production
- Highly model independent
- Small deviations from BG only hypothesis
- Observed upper limit: 0.70 fb
- Expected upper limit: 0.43 fb

Interpretation to limits on DM production in Effective Field Theory (EFT)

Eur. Phys. J. C (2015) 75:208

$SUSY + h \rightarrow \gamma\gamma$

- Direct pair production of chargino $\tilde{\chi}_1^\pm$ and neutralino $\tilde{\chi}_2^0$
- Scenario:
 - masses of pseudo-scalar Higgs boson and sleptons > $m_{\widetilde{\chi}^\pm_1}$ and $m_{\widetilde{\chi}^0_2}$
 - $m_{\widetilde{\chi}^0_2} m_{\widetilde{\chi}^0_1} > m_{\mathrm{H}}$
 - $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ wino-like and degenerate
- $\tilde{\chi}_1^{\pm} \to (W \to \ell \nu) \tilde{\chi}_1^0, \tilde{\chi}_2^0 \to h \tilde{\chi}_1^0$
- SM Higgs boson BG: WH, ZH, ttH
- Continuous BG: Wγ, Zγ

p

19

Other BSM searches

- Flavor-changing neutral current
 - top quark decays to up-type (c, u) quark and Higgs boson
 - much suppressed in SM
 - BR $(t \to cH) \sim 3 \times 10^{-15}$
 - $pp \rightarrow t\bar{t} \rightarrow bW + qH(\rightarrow \gamma\gamma)$

Other BSM searches

- Higgs boson to BSM
 - Higgs boson decays to neutralinos and/or gravitinos
 - $h \rightarrow \gamma(\text{or } 2\gamma) + E_{\text{T}}^{\text{miss}} + 2$ forward jets
 - predicted GMSB and NMSSM models in SUSY
 - GMSB: $h \to \tilde{G}\tilde{\chi}^0 \to \tilde{G}\tilde{G}\gamma$ or $h \to \tilde{\chi}^0\tilde{\chi}^0 \to \tilde{G}\gamma\tilde{G}\gamma$
 - NMSSM: $h \to \tilde{\chi}_2^0 \tilde{\chi}_1^0 \to \tilde{\chi}_1^0 \tilde{\chi}_1^0 \gamma \text{ or } h \to \tilde{\chi}_2^0 \tilde{\chi}_2^0 \to \tilde{\chi}_1^0 \gamma \tilde{\chi}_1^0 \gamma$
 - not using $h \rightarrow \gamma \gamma$ but using Higgs boson final-states with photons

Conclusions

- $H \rightarrow \gamma \gamma$ analysis has great advantages of Higgs boson property measurements
 - one of the most accurate Higgs boson mass measurement
 - sensitive to Y_t and g_{HWW} as well as their relative sign
- $H \rightarrow \gamma \gamma + X$ is a tool for BSM discovery
 - di-higgs
 - SUSY
 - dark matter
- LHC started physics at 13 TeV in 3rd June
 - The discovery of Higgs boson was a great achievement in 7 TeV and 8 TeV run
 - We are excited for 13 TeV Higgs boson analysis

 $H \rightarrow Z\gamma$

- $H \rightarrow Z\gamma$
 - rare process in SM
 - corss section $(pp \rightarrow H \rightarrow Z\gamma \rightarrow \ell \ell \gamma) = 2.3$ fb at 8 TeV
 - sensitive to new heavy particles in loops
 - Ratio $BF(H \rightarrow Z\gamma)/BF(H \rightarrow \gamma\gamma)$ permits assessment

ATLAS detector

- Solenoid magnet
 - supply 2T magnetic field to inner detector
 - very thin (0.66 X_0)
- Toroid magnet
 - bend charged particle for $\boldsymbol{\eta}$
- Inner tracker
- Calorimeter
 - EM calorimeter
 - Hadron calorimeter
- Muon spectrometer
- Luminosity detector

ATLAS EM calorimeter

- Accordion structure Pb absorber
 - develop EM shower
 - cover full φ region + great φ uniformity
- Ionization in Liquid Ar
- 4 layers → 3D shower reconstruction
 - photon direction reconstruction
 - energy calibration with shower shape

pre-sampler: no absorber, correction for energy loss in inner detector 1^{st} layer: high granularity along $\eta \rightarrow$ separation of incoming particles 2^{nd} layer: deposit most of energy 3^{rd} layer: correction for high energy

Photon reconstruction

- Energy clustering in EM calorimeter with fixed size window
- Photon-electron separation with track matching
 - Conversion vertex reconstruction
 - Unconverted photon / Converted photon / Electron separation

SM Higgs production

Vertex of photon pairs

- High peak luminosity of LHC \rightarrow many inelastic proton-proton interactions
- Many pileup vertices in addition to primary vertex where Higgs is produced
- Photons don't have tracks \rightarrow a bit difficult to select primary vertex in $H \rightarrow \gamma \gamma$ analysis

A. calo-pointing

extrapolate from barycenters of energy deposits in EM calorimeter layers

B. Σp²_T

Primary vertex tends to have high p_{τ} tracks from underlying events

 \rightarrow primary vertex has higher Σp_{T}^{2} of tracks

C. conversion vertex

Converted photons have e⁺e⁻ tracks

ightarrow extrapolate tracks to beam line

Vertex selection efficiency is 85 % with combining A, B and C,

primary vertex selection efficiency

Number of primary vertices

Photon energy scale uncertainty

Compatibility of mass measurements

compatibility of mass measurements from $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ$ $\Delta m_{\rm H} = 1.47 \pm 0.72 \text{ GeV}$ compatibility of 11 % (1.6 σ)

Signal strength vs Higgs mass

Differential cross section

Spin

 $p_{T}^{\gamma\gamma}$ < 125 GeV 0.5 signal fraction Φ **ATLAS Preliminary** data SM Higgs $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ 0.4 spin2 $\kappa_q = \kappa_g$ spin2 $\kappa_q=0$ spin2 $\kappa_q=2\kappa_g$ 0.3 0.2 0.1 0 C2 C6 C1 СЗ C4 C5 C7 C8 C9 C10

Spin 2 model with low gluon fraction and $p_{\rm T}$ cut-off at 125 GeV

$SUSY + h \rightarrow \gamma\gamma$

- Direct pair production of chargino $\tilde{\chi}_1^{\pm}$ and neutralino $\tilde{\chi}_2^0$
- Scenario:
 - masses of pseudo-scalar Higgs and sleptons > $m_{\widetilde{\chi}_1^\pm}$ and $m_{\widetilde{\chi}_2^0}$
 - $m_{\widetilde{\chi}^0_2} m_{\widetilde{\chi}^0_1} > m_{\rm H}$
 - $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ degenerate
- $\tilde{\chi}_1^{\pm} \to (W \to \ell \nu) \tilde{\chi}_1^0, \tilde{\chi}_2^0 \to h \tilde{\chi}_1^0$
- Selection
 - 2 photons + 1 electron/muon + $E_{\rm T}^{\rm miss}$ > 40 GeV
 - W and Higgs are back-to-back on transverse plane
 - high $m_{\mathrm{T}}^{W\gamma}$

•
$$m_{\mathrm{T}}^{W\gamma} = \sqrt{(m_{\mathrm{T}}^W)^2 + 2E_{\mathrm{T}}^W E_{\mathrm{T}}^\gamma - 2\boldsymbol{p}_{\mathrm{T}}^W \cdot \boldsymbol{p}_{\mathrm{T}}^\gamma}$$

- BG
 - SM $h \rightarrow \gamma \gamma$ (WH, ZH, ttH)
 - Wγ
 - Zγ

$SUSY + h \rightarrow \gamma\gamma$

- Combined with $h \rightarrow b\overline{b}$ and $h \rightarrow WW$
- No excess found

