Measuring a_{μ}^{HLO} in the spacelike region

C.M.C. Calame¹, M. Passera², L. Trentadue³, <u>G. Venanzoni⁴</u>

¹Universita' di Pavia, Pavia, Italy ²INFN, Sezione di Padova, Padova, Italy ³Universita' di Parma, Parma, Italy and Sezione INFN Milano Bicocca, Milano, Italy ⁴INFN, Laboratori Nazionali di Frascati, Frascati, Italy

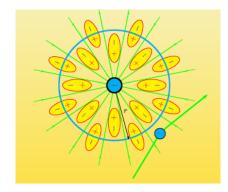
Novosibirsk, 17 June 2015

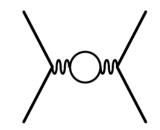
α_{em} running and the Vacuum Polarization

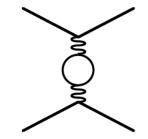
- Due to Vacuum Polarization effects $\alpha_{em}(q^2)$ is a running parameter from its value at vanishing momentum transfer to the effective q^2 .
- The "Vacuum Polarization" function $\Pi(q^2)$ can be "absorbed" in a redefinition of an effective charge:

$$e^{2} \rightarrow e^{2}(q^{2}) = \frac{e^{2}}{1 + (\Pi(q^{2}) - \Pi(0))} \qquad \alpha(q^{2}) = \frac{\alpha(0)}{1 - \Delta\alpha}; \quad \Delta\alpha = -\Re e \Big(\Pi(q^{2}) - \Pi(0) \Big)$$
$$\Delta\alpha = \Delta\alpha_{1} + \Delta\alpha_{1}^{(5)} + \Delta\alpha_{1$$

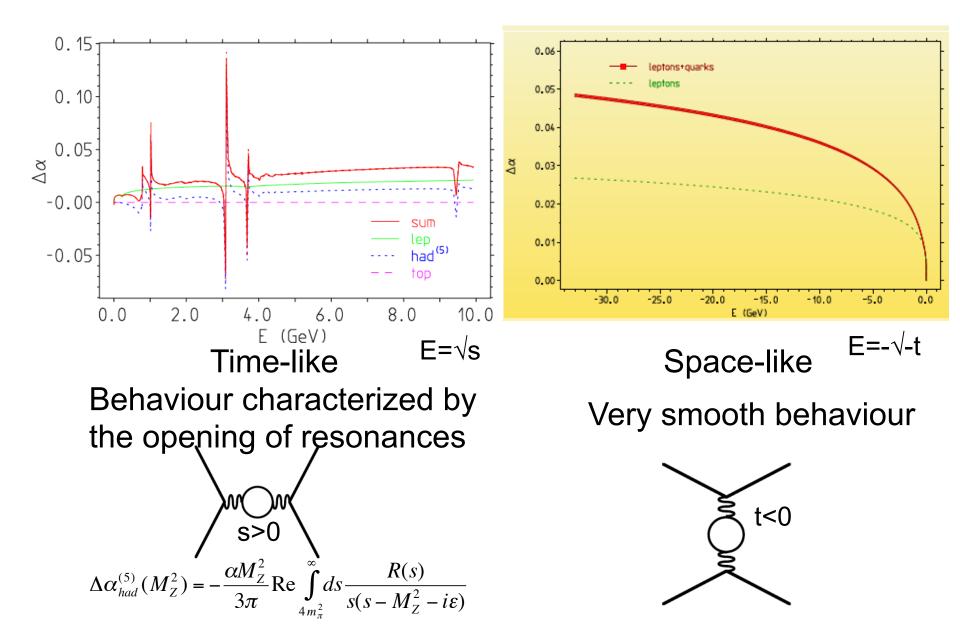
$$\Delta \alpha$$
 takes a contribution by non perturbative
hadronic effects ($\Delta \alpha^{(5)}_{had}$) which exibits a different
behaviour in time-like and spacelike region







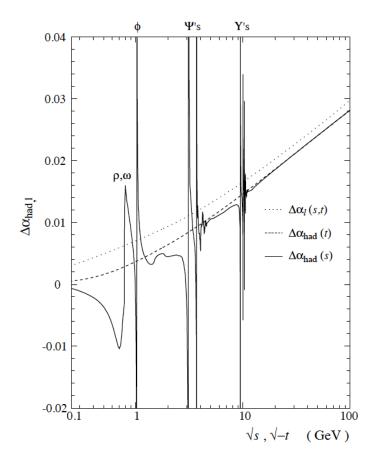
Running of α_{em}



Measurement of α_{em} running

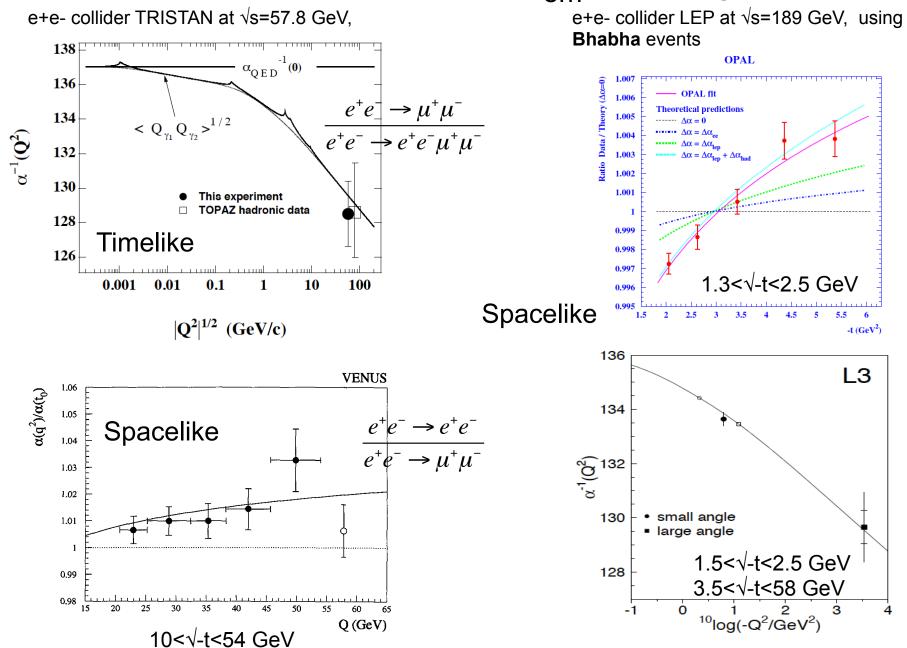
- A direct measurement of $\alpha_{\rm em}(q^2)$ in space/time like region can prove the running of $\alpha_{\rm em}$
- It can provide a test of "duality" (fare way from resonances)
- It has been done in past by few experiments at e⁺e⁻ colliders by comparing a "well-known" QED process with some reference (obtained from data or MC)

$$\left(\frac{\alpha(q^2)}{\alpha(q_0^2)}\right)^2 \sim \frac{N_{signal}(q^2)}{N_{norm}(q_0^2)}$$

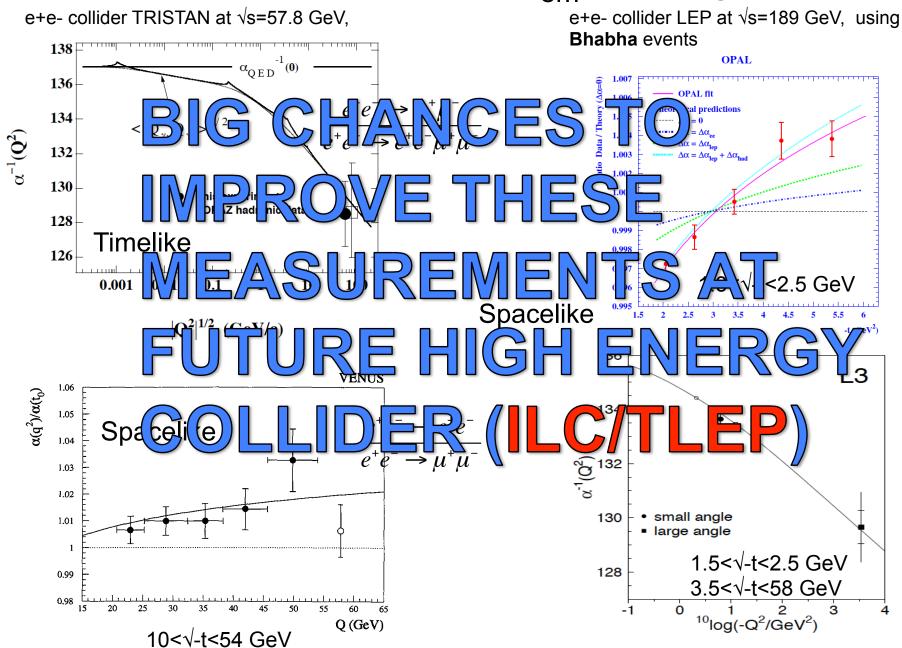


 N_{signal} can be Bhabha process, muon pairs, etc... N_{signal} can be Bhabha process, $\gamma\gamma$ pairs, Theory, etc...

Measurement of α_{em} running



Measurement of α_{em} running



a, HLO calculation, traditional way: time-like data $a_{\mu} = (g-2)/2$ $a_{\mu}^{HLO} = \frac{1}{\Delta \pi^3} \int_{4m_{\pi}^2}^{\infty} \sigma_{e^+e^- \to hadr}(s) K(s) ds$ $a_{\mu}^{HLO.} = \frac{\alpha}{\pi^2} \int_{0}^{\infty} \frac{ds}{s} K(s) \operatorname{Im} \Pi_{had}(s) \sigma_{e^+e^- \to hadr}(s) = \frac{4\pi}{s} \operatorname{Im} \Pi_{had}(s) 2 \operatorname{Im} \cdots = \left| \cdots \right|^2$ $K(s) = \int_{-\infty}^{1} dx \frac{x^2(1-x)}{x^2 + (1-x)(s/m^2)} \sim \frac{1}{s}$ J/ψ's Traditional way: based on precise experimental (time-like) data: Rhad 3 $a_{\mu}^{had} = (689.7 \pm 4.4) \cdot 10^{-10}$ D BESH CMD2.SND PLUTO Main contribution in the low energy region H MEA Crystal Ball 2 - $\gamma\gamma^2$ $\delta a_{\mu}^{exp} \rightarrow 1.5 \ 10^{-10} = 0.2\%$ on a_{μ}^{HLO} (from 0.7% now) × MD - 1

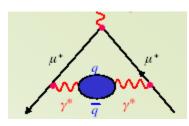
(GeV)

NEW G-2 at FNAL and JPARC

 a_{μ}^{HLO} evaluation in spacelike region: alternative approach

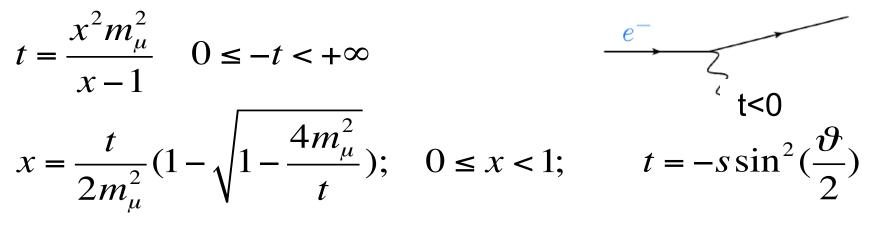
$$a_{\mu} = (g-2)/2$$

$$a_{\mu}^{HLO} = -\frac{\alpha}{\pi} \int_{0}^{1} (1-x) \Pi_{had} \left(-\frac{x^{2}}{1-x}m_{\mu}^{2}\right) dx$$



x =Feynman parameter

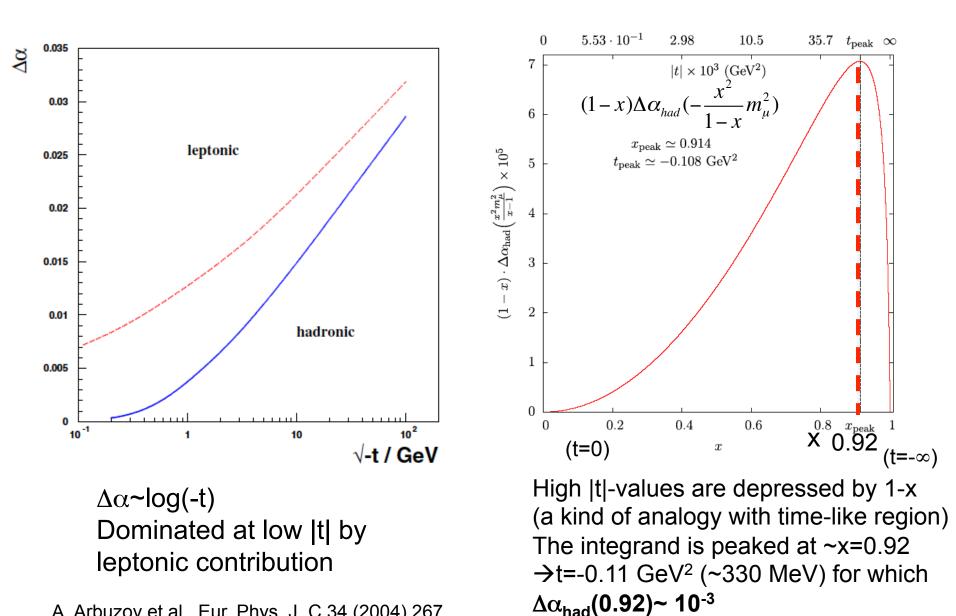
See also G.Fedotovich, proceedings of PHIPSI08



$$\Delta \alpha_{had}(t) = -\Pi_{had}(t) \quad for \ t < 0$$

$$\left|a_{\mu}^{HLO} = -\frac{\alpha}{\pi} \int_{0}^{1} (1-x) \Delta \alpha_{had} (-\frac{x^2}{1-x} m_{\mu}^2) dx\right| \quad \text{For t<0}$$

Behaviors



A. Arbuzov et al., Eur. Phys. J. C 34 (2004) 267

Experimental considerations

Using Bhabha at small angle (to emphasize t-channel contribution) to extract $\Delta \alpha$:

$$\left(\frac{\alpha(t)}{\alpha(0)}\right)^2 \sim \frac{d\sigma_{ee \to ee}(t)}{d\sigma_{MC}^0(t)}$$

Where $d\sigma^0_{MC}$ is the MC prediction for Bhabha process with $\alpha(t)=\alpha(0)$, and there are corrections due to RC...

$$\Delta \alpha_{had}(t) = 1 - \left(\frac{\alpha(t)}{\alpha(0)}\right)^{-1} - \Delta \alpha_{lept}(t) \qquad \Delta \alpha_{lep}(t) \text{ theoretically well known!}$$

Which experimental accuracy we are aiming at? $\delta\Delta\alpha_{had}$ ~1/2 fractional accuracy on d σ (t)/d σ^{0}_{MC} (t).

If we assume to measure $\delta \Delta \alpha_{had}$ at 5% at the peak of the integrand ($\Delta \alpha_{had} \sim 10^{-3}$ at x=0.92) \rightarrow fractional accuracy on d $\sigma(t)/d\sigma_{MC}^{0}(t) \sim 10^{-4}$!

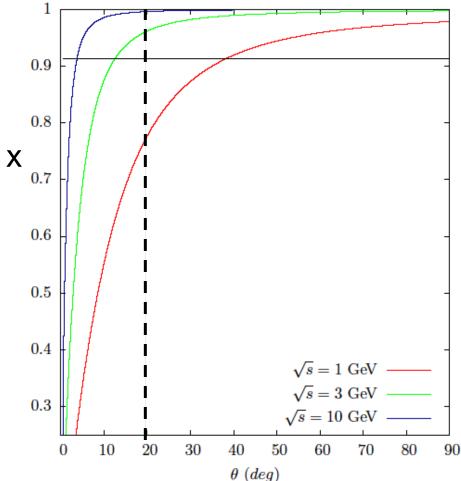
Very challenging measurement (one order of magnitude improvement respect to date) for systematic error

Experimental considerations - II

Most of the region (up to $x\sim0.98$) can be covered with a low energy machine (like Dafne/VEPP-2000 or tau/charm-B-factories)

Example: Covering up to 60° at $\sqrt{s=1}$ GeV can arrive at x= 0.95(!)

A different situation can be obtained at tau/charm/ B-factories (and at future ILC/TLEP machines) where smaller angles (below 20°) are needed



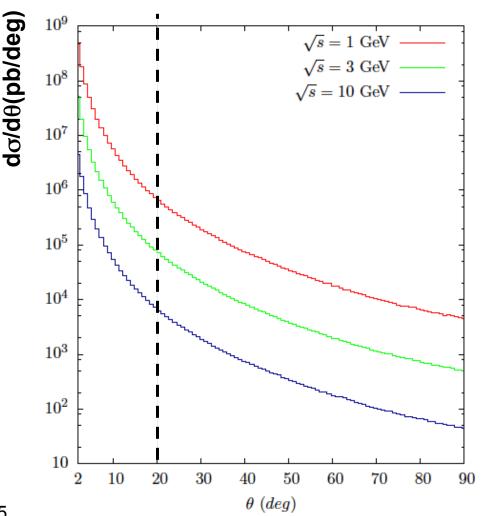
$$t = -s\sin^2(\frac{\vartheta}{2})$$

Statistical consideration

10⁻⁴ accuracy on Bhabha cross section requires at least 10⁸ events which at 20° mean at least:

- O(1) fb⁻¹ @ 1 GeV
- O(10) fb⁻¹ @ 3 GeV
- O(100) fb⁻¹ @ 10 GeV

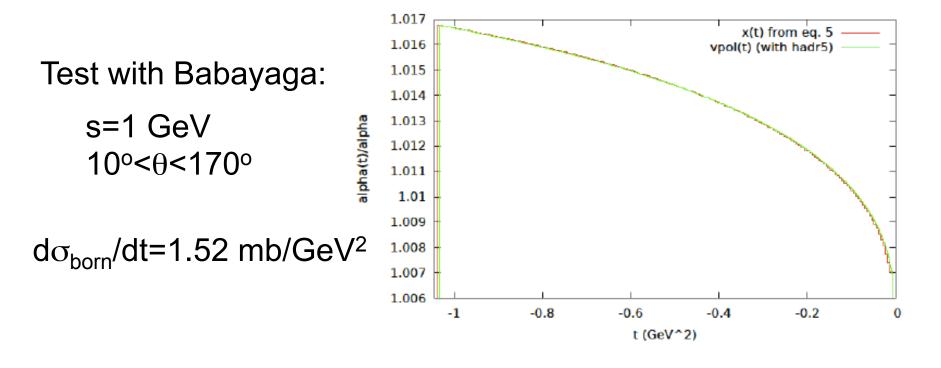
These luminosities are within reach at flavour factories!



Additional considerations: s-channel

At low energy (<10 GeV) above 10⁰ there is still a sizeable contribution from s-channel.

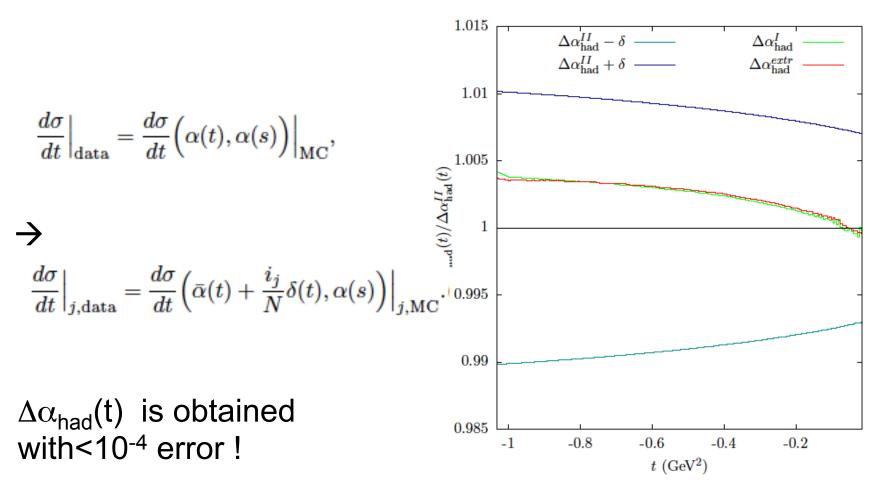
At LO no difficulty to deconvolute the cross section for the schannel



However this picture changes with Rad. Corr.

Additional considerations: Rad. Corr.

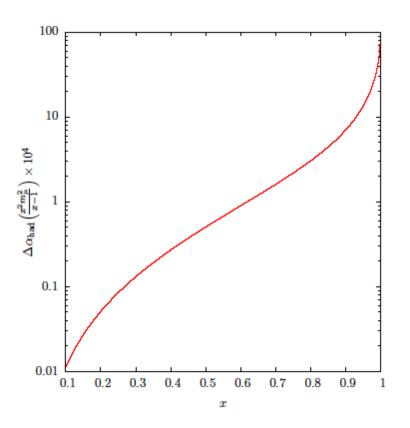
A Monte Carlo procedure has been developed to check if $\Delta \alpha_{had}(t)$ can be obtained by a minimization procedure with a different $\Delta \alpha_{had}(t)$ ' inside



Additional consideration: Normalization

To compare Bhabha absolute cross section from data with MC we need Luminosity of the machine. Two possibilities:

- 1) Use Bhabha at very small angle where the uncertainty on $\Delta \alpha_{had}$ can be neglected (for example at E_{beam}=1 GeV and θ =5°, $\Delta \alpha_{had} \sim 10^{-5}$).
- 2) Use a process with $\Delta \alpha_{had} = 0$, like e+e- $\rightarrow \gamma \gamma$. However very difficult to determine it at 10⁻⁴ accuracy.



Option 1) looks better to us as some of the common systematics cancel in the measurement !

Measurement of DAFNE Luminosity with KLOE/KLOE-2 at 10⁻⁴?

F. Ambrosino et al [KLOE] Eur. Phys. J. C 47, 589-596 (2006)

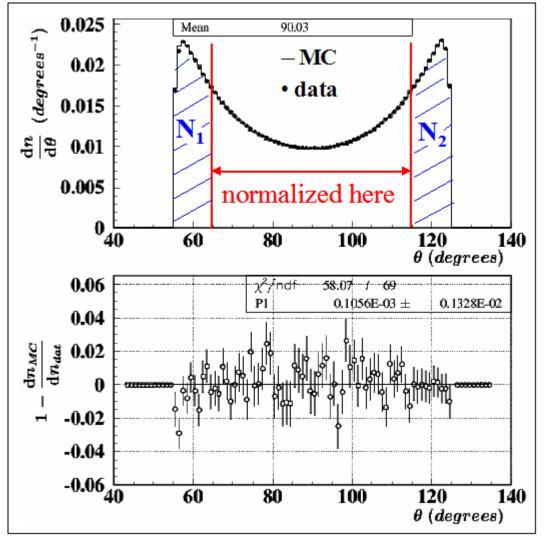
Table 2. Summary of the corrections and systematic errors in the measurement of the luminosity

correction $(\%)$	systematic error $(\%)$
+0.25	0.25
—	0.06
+0.14	0.11
-0.62	0.13
+0.40	_
_	0.10
+0.10	0.10
+0.34	0.32
	+0.25 +0.14 -0.62 +0.40 +0.10

Adding in quadrature: 0.3 %

(can be improved by a factor 10?)

From F. Nguyen 2006 Polar angle systematics



✓ global agreement is very good

but the cut occurs in a steep region of the distributions ⇒ estimate of border mismatches

✓ after normalizing MC to make it coincide with data in the region $65^\circ < \theta < 115^\circ$, we estimate as a systematic error:

$$\frac{N^{dat}_{[55:65]+[115:125]} - N^{MC}_{[55:65]+[115:125]}}{N^{dat}_{TOT}} ~\sim 0.25\%$$

Can be improved at 10⁻⁴?

A measurement of the Luminosity at 10⁻⁴ at LEP

Giovanni Abbiendi INFN - Bologna Eur. Phys. J. C 45, 1–21 (2006) Digital Object Identifier (DOI) 10.1140/epjc/s2005-02389-3

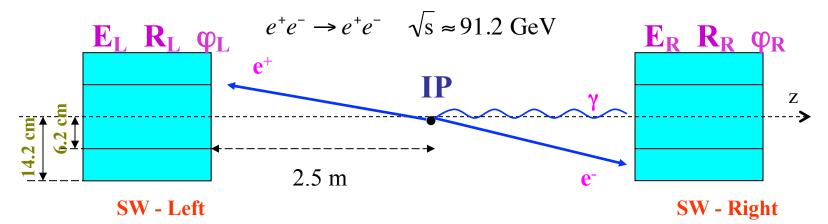
THE EUROPEAN PHYSICAL JOURNAL C

Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP

The OPAL Collaboration

G. Abbiendi², C. Ainsley⁵, P.F. Åkesson^{3,y}, G. Alexander²², G. Anagnostou¹, K.J. Anderson⁹, S. Asai²³, D. Axen²⁷, I. Bailey²⁶, E. Barberio^{8,p}, T. Barillari³², R.J. Barlow¹⁶, R.J. Batley⁵, P. Bechtle²⁵, T. Behnke²⁵, K.W. Bell²⁰, P.J. Bell¹, G. Bella²², A. Bellerive⁶, G. Benelli⁴, S. Bethke³², O. Biebel³¹, O. Boeriu¹⁰, P. Bock¹¹, M. Boutemeur³¹, S. Braibant², R.M. Brown²⁰, H.J. Burckhart⁸, S. Campana⁴, P. Capiluppi², R.K. Carnegie⁶, A.A. Carter¹³, J.R. Carter⁵, C.Y. Chang¹⁷, D.G. Charlton¹, C. Ciocca², A. Csilling²⁹, M. Cuffiani², S. Dado²¹, G.M. Dallavalle², A. De Roeck⁸ E.A. De Wolf^{8,s}, K. Desch²⁵, B. Dienes³⁰, J. Dubbert³¹, E. Duchovni²⁴, G. Duckeck³¹, I.P. Duerdoth¹⁶, E. Etzion²² F. Fabbri², P. Ferrari⁸, F. Fiedler³¹, I. Fleck¹⁰, M. Ford¹⁶, A. Frey⁸, P. Gagnon¹², J.W. Gary⁴, C. Geich-Gimbel³, G. Giacomelli², P. Giacomelli², R. Giacomelli², M. Giunta⁴, J. Goldberg²¹, E. Gross²⁴, J. Grunhaus²², M. Gruwé⁸, P.O. Günther³, A. Gupta⁹, C. Hajdu²⁹, M. Hamann²⁵, G.G. Hanson⁴, A. Harel²¹, M. Hauschild⁸, C.M. Hawkes¹, R. Hawkings⁸, R.J. Hemingway⁶, G. Herten¹⁰, R.D. Heuer²⁵, J.C. Hill⁵, D. Horváth^{29,c}, P. Igo-Kemenes¹¹, K. Ishii²³ H. Jeremie¹⁸, P. Jovanovic¹, T.R. Junk^{6,i}, J. Kanzaki^{23,u}, D. Karlen²⁶, K. Kawagoe²³, T. Kawamoto²³, R.K. Keeler²⁶ R.G. Kellogg¹⁷, B.W. Kennedy²⁰, S. Kluth³², T. Kobayashi²³, M. Kobel³, S. Komamiya²³, T. Krämer²⁵, P. Krieger^{6,1}, J. von Krogh¹¹, T. Kuhl²⁵, M. Kupper²⁴, G.D. Lafferty¹⁶, H. Landsman²¹, D. Lanske¹⁴, D. Lellouch²⁴, J. Letts^o, L. Levinson²⁴, J. Lillich¹⁰, S.L. Lloyd¹³, F.K. Loebinger¹⁶, J. Lu^{27,w}, A. Ludwig³, J. Ludwig¹⁰, W. Mader^{3,b}, S. Marcellini², A.J. Martin¹³, T. Mashimo²³, P. Mättig^m, J. McKenna²⁷, R.A. McPherson²⁶, F. Meijers⁸, W. Menges²⁵, F.S. Merritt⁹, H. Mes^{6,a}, N. Meyer²⁵, A. Michelini², S. Mihara²³, G. Mikenberg²⁴, D.J. Miller¹⁵, W. Mohr¹⁰, T. Mori²³, A. Mutter¹⁰, K. Nagai¹³, I. Nakamura^{23,v}, H. Nanjo²³, H.A. Neal³³, R. Nisius³², S.W. O'Neale^{1,*}, A. Oh⁸, M.J. Oreglia⁹, S. Orito^{23,*}, C. Pahl³², G. Pásztor^{4,g}, J.R. Pater¹⁶, J.E. Pilcher⁹, J. Pinfold²⁸, D.E. Plane⁸, O. Pooth¹⁴, M. Przybycień^{8,n}, A. Quadt³, K. Rabbertz^{8,r}, C. Rembser⁸, P. Renkel²⁴, J.M. Roney²⁶, A.M. Rossi², Y. Rozen²¹, K. Runge¹⁰, K. Sachs⁶, T. Saeki²³, E.K.G. Sarkisyan^{8,j}, A.D. Schaile³¹, O. Schaile³¹, P. Scharff-Hansen⁸, J. Schieck³², T. Schörner-Sadenius^{8,z}, M. Schröder⁸, M. Schumacher³, R. Seuster^{14,f}, T.G. Shears^{8,h}, B.C. Shen⁴, P. Sherwood¹⁵, A. Skuja¹⁷, A.M. Smith⁸, R. Sobie²⁶, S. Söldner-Rembold¹⁶, F. Spano⁹, A. Stahl^{3,x}, D. Strom¹⁹, R. Ströhmer³¹, S. Tarem²¹, M. Tasevsky^{8,s}, R. Teuscher⁹, M.A. Thomson⁵, E. Torrence¹⁹, D. Toya²³, P. Tran⁴, I. Trigger⁸, Z. Trócsányi^{30,e}, E. Tsur²², M.F. Turner-Watson¹, I. Ueda²³, B. Ujvári^{30,e}, C.F. Vollmer³¹, P. Vannerem¹⁰ R. Vértesi^{30,e}, M. Verzocchi¹⁷, H. Voss^{8,q}, J. Vossebeld^{8,h}, C.P. Ward⁵, D.R. Ward⁵, P.M. Watkins¹, A.T. Watson¹, N.K. Watson¹, P.S. Wells⁸, T. Wengler⁸, N. Wermes³, G.W. Wilson^{16,k}, J.A. Wilson¹, G. Wolf²⁴, T.R. Wyatt¹⁶, S. Yamashita²³, D. Zer-Zion⁴, L. Zivkovic²⁴

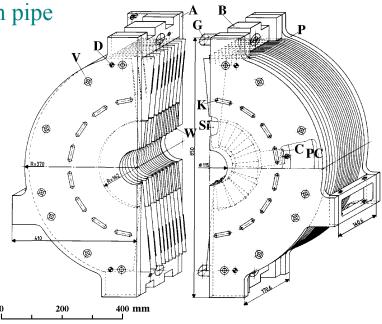
Small-angle Bhabha scattering in OPAL



19 Silicon layersTotal Depth 22 X0**18 Tungsten layers**(14 cm)

Each detector layer divided into 16 overlapping wedges

Sensitive radius: 6.2 – 14.2 cm, corresponding to scattering angle of 25 – 58 mrad from the beam line



Frascati, 7 June 2006

G.Abbiendi

Final Error on Luminosity

After all the effort on Radial reconstruction the dominant systematic error is related to Energy (mostly tail in the E response and nonlinearity) Quantitatively: (OPAL Collaboration, Eur.Phys.J. C14 (2000) 373)

	Systematic Error (×10 ⁻⁴)
Energy	1.8
Inner Anchor	1.4
Radial Metrology	1.4

Total Experimental Systematic Error : 3.4 × 10⁻⁴

Theoretical Error on Bhabha cross section: 5.4×10^{-4}

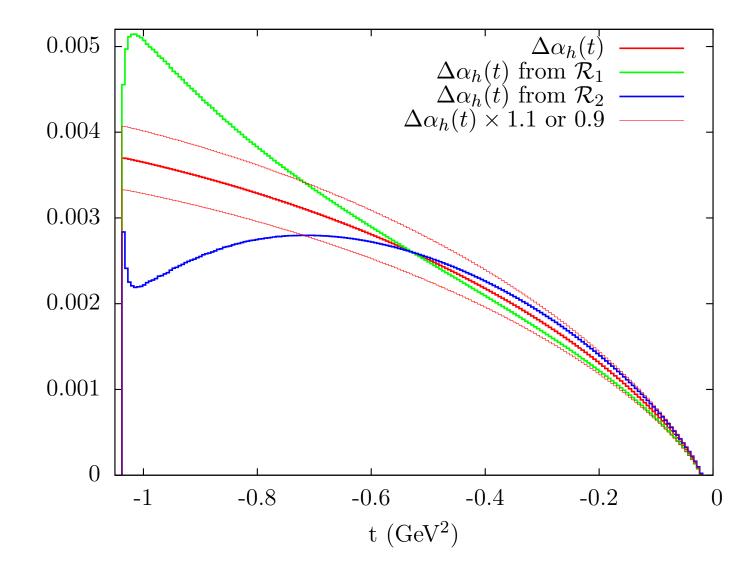
Conclusions

- Measuring α_{em} running in time-like and space like region appears to be very interesting. (Relatively) high q²-values can be explored at ILC/TLEP
- An alternative formula for a_{μ}^{HLO} in spacelike region has been studied in details. It emphasizes low values of t (<1 GeV²) and can be explored at low energy e+e- machines (VEPP2000/DAFNE, τ /charm, B-factories)
- It requires to measure the Bhabha cross section at relatively small angles at (better than) 10⁻⁴ accuracy!
- Reaching such an accuracy demands a dedicated experimental and theoretical work for the next few years
- Can this method apply also at other (e⁻e⁻; fixed target) machines?

Thanks!

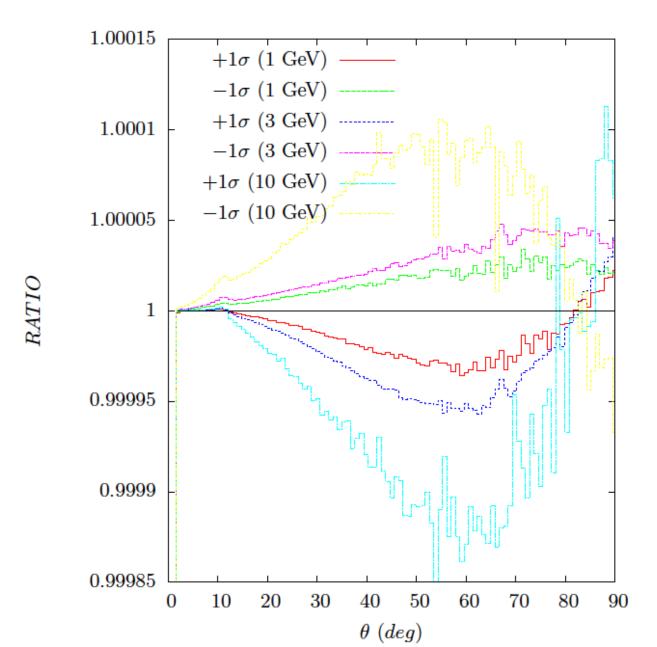
END

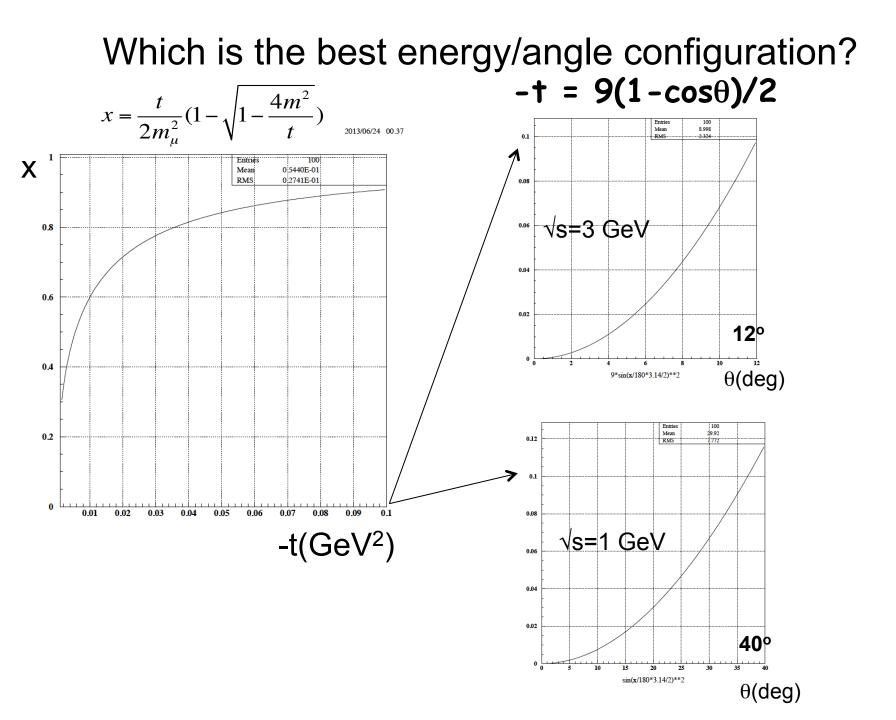
test



 $[\Delta \alpha_h]_i$

 $\Delta \alpha_{em}^{HAD}(s)$ dependence





x vs t behaviour

