Ulrike Schnoor

Introduction

Effective field theory

Experimental strategy

Triple gauge couplings

WW, WZ

ZZ

 $W\gamma, Z$

VBF Z

Quartic gauge couplings

 $_{W}^{VBS} \pm _{W} \pm$

 $W\gamma\gamma$

Conclusions

Backup

WW

Latest results on anomalous gauge couplings in ATLAS

Ulrike Schnoor On behalf of the ATLAS collaboration

ulrike.schnoor@cern.ch

Institut für Kern- und Teilchenphysik, TU Dresden

June 15, 2015 PHOTON2015, Novosibirsk

TECHNISCHE

UNIVERSITÄT

DRESDE

Ulrike Schnoor

Introduction

Effective field theory

Experimental strategy

Triple gauge couplings

WW, WZ

ZZ

 $W\gamma, Z\gamma$

VBF Z

Quartic gauge couplings

 $_{W}^{VBS} \pm W^{\pm}$

 $W\gamma\gamma$ Conclusion Backup

WW

At the LHC:

Probing the Standard Model by measuring processes containing the predicted interactions

Electroweak sector:

- Interaction of fermions through gauge bosons
- Non-Abelian nature of SU(2)_L × U(1)_Y allows for self-interactions of the gauge bosons

\Rightarrow Triple and quartic gauge interactions

Allowed are vertices with charged gauge couplings: WWZ, $WW\gamma$, WWWW, WWZZ, $WWZ\gamma$, $WW\gamma\gamma$

Probing the Standard Model at the Large Hadron Collider

Image: CERN

http://www.quantumdiaries.org

Ulrike Schnoor

LHC measurements:

open questions remain

 \rightarrow HIGGS PROPERTIES?

 \rightarrow DARK MATTER?

 \rightarrow HIFRARCHY

PROBLEM?

well described by

the SM

BUT:

Introduction

Effective field theory

Experimental strategy

Triple gauge coupling:

WW, WZ

ZZ

 $W\gamma$, Z

VBF Z

Quartic gauge couplings

 $_{W}^{VBS} \pm _{W} \pm$

 $W\gamma\gamma$

Conclusions

Backup

WW

The case for an effective field theory

Goal: Assess contributions of new physics

- · Quantify deviations from SM (for search or exclusion)
- ... in a model independent way
- ... interpret deviations in terms of models
- $ightarrow\,$ effective field theory

Ulrike Schnoor

Introduction

Effective field theory

Experimental strategy

Triple gauge couplings

WW, WZ

ZZ

 $W\gamma, Z\gamma$

VBF Z

Quartic gauge couplings

 $_{W}^{\text{VBS}} \pm _{W} \pm$

 $W\gamma\gamma$

Conclusion

Backup

WW

Effective field theory with anomalous gauge couplings

Introduce additional operators O of higher dimension (d) and add to SM-Lagrangian:

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{d} \sum_{i} rac{c_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

 Λ : scale of new physics

 \Rightarrow anomalous triple and quartic gauge couplings in the effective Lagrangian

 \Rightarrow lead to increase in total and differential cross sections

Resulting amplitudes need to be unitarized

Ulrike Schnoor

Introduction

Effective field theory

Experimental strategy

Triple gauge couplings

WW, WZ

ZZ

 $W\gamma, Z\gamma$

VBF Z

Quartic gauge couplings

vbs w±w±

 $W\gamma\gamma$

Conclusions

Backup

WW

Experimental strategy

Measurements provide the opportunity to assess compatibility of anomalous couplings models with data $% \left(\mathcal{A}_{i}^{A}\right) =\left(\mathcal{A}_{i}^{A}\right) \left(\mathcal{A}_{i}^{A$

Vector boson fusion q q' μ^{-}, e^{-} μ^{+}, e^{+} q' q'

triple gauge couplings (neutral and charged)

Vector boson scattering

triple and quartic gauge couplings (with or without photons)

Triple boson production

quartic gauge couplings (with or without photons)

Ulrike Schnoor

Introduction

Effective field theory

Experimenta strategy

Triple gauge couplings

WW, WZ

L

ZZ

 $W\gamma, Z\gamma$

VBF Z

Quartic gauge couplings

 $_{W}^{\text{VBS}} \pm _{W} \pm$

 $W\gamma\gamma$

Conclusion

Backup

WW

Triple gauge couplings

SM charged TGC; no neutral TGC

BSM modelled by **effective Lagrangian** with anomalous TGC parameters imposed constraints: *C* and *P* conservation, electromagnetic gauge invariance 5 charged couplings (cTGC):

$$\begin{aligned} \mathcal{L}_{WWV}/g_{WWV} &= ig_1^V (W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu}^{\dagger} V_{\nu} W^{\mu\nu}) \\ &+ i\kappa_V W_{\mu}^{\dagger} V^{\mu\nu} + \frac{i\lambda_V}{m_W^2} W_{\lambda\mu}^{\dagger} W_{\nu}^{\mu} V^{\nu\lambda} \end{aligned}$$

$$g_1^Z, \kappa_Z, \kappa_\gamma, \lambda_Z, \text{ and } \lambda_\gamma$$

SM case:
$$g_1^Z = \kappa_Z = \kappa_\gamma = 1;$$

$$\lambda_Z = \lambda_\gamma = 0$$

8 neutral couplings (nTGC):

$$\mathcal{L}_{ZZV} = -rac{e}{m_Z^2} [f_4^V(\partial_\mu V^{\mu\beta}) Z_\alpha(\partial^lpha Z_\beta) + f_5^V(\partial^\sigma V_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_\beta]$$

 $\begin{bmatrix} h_3^V, h_4^V, f_4^V, f_5^V \text{ with } V = Z, \gamma \\ \text{all } h_i^V = 0 \text{ in SM} \end{bmatrix}$

Several scenarios constrain the dependencies to reduce the number of free parameters e.g. LEP scenario: $\Delta \kappa_{\gamma} = (\cos^2 \theta_W / \sin^2 \theta_W) (\Delta g_1^Z - \Delta \kappa_Z)$ and $\lambda_Z = \lambda_{\gamma}$

Ulrike Schnoor

Introduction

Effective field theory

Experimental strategy

Triple gauge couplings

WW, WZ

ZZ

 $W\gamma, Z\gamma$

VBF Z

Quartic gauge couplings

 $_{W}^{VBS} \pm _{W} \pm$

 $W\gamma\gamma$

Conclusions

Backup

WW

TGC in diboson production	Р
W, Z J	
q γ, Z, W ā	
p W, Z V	

Parameters' accessibility by channel:						
aTGC vertex	parameters	channel				
WWγ	$\lambda_{\gamma}, \Delta \kappa_{\gamma}$	WW, W γ				
WWZ	$\lambda_Z, \Delta \kappa_Z, \Delta g_1^Z$	WW, WZ				
$ZZ\gamma$	h_3^Z, h_4^Z	ZZ				
$Z\gamma\gamma$	$h_3^{\tilde{\gamma}}, h_4^{\tilde{\gamma}}$	${\sf Z}\gamma$				
$Z\gamma Z$	f_4^Z, f_5^Z	${\sf Z}\gamma$				
ZZZ	$f_4^{\gamma}, f_5^{\gamma}$	ZZ				

Triple gauge couplings in WW, WZ production

- WW, WZ channels: sensitive to cTGC parameters $\lambda_Z, \Delta \kappa_Z, \Delta g_1^Z$
- · 3 measurements:
 - $\cdot \ WW \to \ell \nu \ell \nu$
 - $\cdot \ W\!Z \to \ell\ell\nu$
 - $WV \rightarrow \ell \nu j j$

Ulrike Schnoor

Introduction

Effective field theory

Experimenta strategy

Triple gauge couplings

WW, WZ

ZZ

 $W\gamma$, Z

VBF Z

Quartic gauge couplings

 $_{W}^{VBS} \pm W^{\pm}$

 $W\gamma\gamma$

Conclusion

Backup

WW

WW, WZ: Leptonic channels

Measurement of $W^{\pm}Z \rightarrow \ell^{\pm}\nu\ell^{\pm}\ell^{\mp}$ production

Event selection: 3 high- p_{T} isolated leptons, large E_{T}^{miss} and m_{T}^{W}

Backgrounds Z+jets, top (fake leptons): data-driven estimate ZZ, W/Z + γ : estimate from simulation

(ATLAS-CONF-2013-021)

Ulrike Schnoor

Introduction

Effective field theory

Experimental strategy

Triple gauge couplings

WW, WZ

ZZ

 $W\gamma, Z$

VBF Z

Quartic gauge couplings

 $_{W^{\pm}W^{\pm}}^{VBS}$

 $W\gamma\gamma$

Conclusion

Backup

WW

WW, WZ: Leptonic channels

Measurement of $W^+W^- ightarrow \ell^+ u \ell^- ar u$ production

Event selection:

- 2 high-p_T isolated leptons, opposite charge
- · Z-mass veto
- large E^{miss}_T, E^{miss}_{T,Rel}
- jet veto

Backgrounds

top (b-tagged): data driven estimate W+jets (fake leptons): data driven Z+jets:

transfer factor from control region

(ATLAS-CONF-2014-033)

Ulrike Schnoor

160 Events / bin

140

120

100

80

60

40

0 lk 30

ATLAS

Ldt = 4.6 fb⁻¹

60 90

 $\sqrt{s} = 7 \text{ TeV}$

120 150 180

 $p_{\rm T}({\rm Z})$ spectrum

WW.WZ

Limits on aTGC from $WZ \rightarrow \ell \ell \ell \nu$

aTGC limits based on $\sqrt{s} = 7$ TeVmeasurement Eur. Phys. J. C (2012) 72:2173

Ulrike Schnoor

Introduction

Effective field theory

Experimental strategy

Triple gauge couplings

WW, WZ

ZZ

 $W\gamma, Z\gamma$

VBF Z

Quartic gauge couplings

 $_{W^{\pm}W^{\pm}}^{\rm VBS}$

 $W\gamma\gamma$

Conclusions

Backup

WW

Limits on aTGC from $W^+W^- \rightarrow \ell^+ \nu \ell^- \bar{\nu}$

aTGC limits extracted from the p_T distribution of the highest- p_T charged lepton

Limits based on $\sqrt{s} = 7 \text{ TeV}, \mathcal{L} = 4.6 \text{ fb}^{-1}$: Phys.Rev. D87, 112001 (2013)

Limits on charged aTGC for WWZ and WW γ (LEP scenario)

Ulrike Schnoor

Introduction

Effective field theory

Experimental strategy

Triple gauge couplings

WW, WZ

ZZ

 $W\gamma$, $Z\gamma$

VBF Z

Quartic gauge couplings

 $_{W^{\pm}W^{\pm}}^{VBS}$

 $W\gamma\,\gamma$

Conclusions

Backup

WW

WW/WZ in the single lepton final state

 $\sqrt{s} = 7 \text{ TeV}, \mathcal{L} = 4.7 \text{ fb}^{-1}$: JHEP01(2015)049

Semi-leptonic WW/WZ $\rightarrow \ell \nu qq'$

+larger branching ratio -large background from W/Z+jets

Event selection: one high- p_T isolated lepton, E_T^{miss} , $m_T(\ell, E_T^{\text{miss}})$ 2 jets, well separated

Dominating background W/Z+jets: Estimated from data

Ulrike Schnoor

Introduction

Effective field theory

Experimenta strategy

Triple gauge couplings

WW, WZ

ZZ

Quartic gauge couplings

VBS W±W±

 $W\gamma\gamma$

Conclusions

Backup

WW

WW/WZ in the single lepton final state

 $\sqrt{s} = 7 \text{ TeV}, \mathcal{L} = 4.7 \text{ fb}^{-1}$: JHEP01(2015)049

binned maximum-likelihood fit to the p_{Tjj} spectrum to extract aTGC limits

Limits on aTGC parameters in the LEP scenario

Ulrike Schnoor

Introduction

Effective field theory

Experimental strategy

Triple gauge couplings

WW, WZ

ZZ

 $W\gamma, Z\gamma$

VBF Z

Quartic gauge couplings

 $_{W^{\pm}W^{\pm}}^{VBS}$

 $W\gamma\gamma$

Conclusions

Backup

WW

Signal yields:

Dominant background: $W^{\pm}/Z + X$ (X = γ or jets - misidentified) data-driven estimate

Data events: 305 Signal expectation: 292.5 \pm 10.6 Background expectation: 20.4 \pm 5.8

"golden channel"

 $ZZ \rightarrow 4\ell$

 $\sqrt{s} = 8 \text{ TeV}, \mathcal{L} = 20 \text{ fb}^{-1}$: ATLAS-CONF-2013-020

Ulrike Schnoor

77

σ_{ZZ}^{total} [pb] NLO QCD (MCFM, CT10.0) ATLAS Preliminary ----- ZZ (pp) (66<m_<116 GeV) ZZ (pp) (66<m <116 GeV) 10 LHC Data 2012 (Va=8 TeV) ATLAS ZZ→ III (66<m_<116 GeV) L=20 fb⁻¹ ∇ CMS ZZ→ III (60<m <120 GeV) L=5.3 fb⁻¹ LHC Data 2011 ((s=7 TeV) ATLAS ZZ→ II(II/vv) (66<m,<116 GeV) L=4.6 fb⁻¹ ▼ CMS ZZ→ III (60<m <120 GeV) L=5.0 fb⁻¹ Tevatron (s=1.96 TeV) ■ D0 ZZ→ II(II/vv) (60<m_<120 GeV) L=8.6 fb⁻¹ 2 10 12 14 4 s [TeV]

 $77 \rightarrow 4\ell$ $\sqrt{s} = 8 \text{ TeV}, \mathcal{L} = 20 \text{ fb}^{-1}$: ATLAS-CONF-2013-020

> aTGC based on $\sqrt{s} = 7 \text{ TeV}, \mathcal{L} = 1.02 \text{ fb}^{-1}$ (Phys. Rev. Lett. 108 (2012) 041804): using total number of observed events

Limits on neutral aTGC

Ulrike Schnoor

Introduction

Effective field theory

Experimental strategy

Triple gauge couplings

WW, WZ

ZZ

 $W\gamma, Z\gamma$

VBF Z

Quartic gauge couplings

 $_W^{\rm VBS}\pm_W\pm$

 $W\gamma\gamma$

Conclusion

Backup

 $\mathbb{W}\mathbb{W}$

$$\sqrt{s} = 7 \text{ TeV}, \mathcal{L} = 4.6 \text{,fb}^{-1}$$
: Phys. Rev. D 87, 112003 (2013)

Three decay channels: $W\gamma \rightarrow \ell \nu \gamma$, $Z\gamma \rightarrow \ell^+ \ell^- \gamma$, $Z\gamma \rightarrow \nu \bar{\nu} \gamma$

 $W\gamma \to \ell \nu \gamma$

1 high- p_T lepton, 1 high- E_T photon, high E_T^{miss} , high $m_T(\ell, E_T^{miss})$

$$Z\gamma \to \ell^+ \ell^- \gamma$$

2 opp. charge, same flavor leptons, high *M*_{ll}, 1 high-*E*_T photon $Z\gamma \to \nu \bar{\nu} \gamma$

 $W\gamma, Z\gamma$

1 very high- $E_{\rm T}$ photon ($E_T^{\gamma} > 100 \, {\rm GeV}$), high $E_{\rm T}^{\rm miss}$ large $\Delta \Phi(E_{\rm T}^{\rm miss}, \gamma)$

Limits on aTGC parameters set by fitting to the E_T^{γ} distributions

Ulrike Schnoor

Introduction

Effective field theory

Experimenta strategy

Triple gauge couplings

WW, V

ZZ

 $W\gamma, Z\gamma$

Quartic gauge couplings

 $_{W^{\pm}W^{\pm}}^{VBS}$

 $W\gamma\gamma$

Conclusion

Backup

 $\mathbb{W}\mathbb{W}$

$$\sqrt{s} = 7 \text{ TeV}, \mathcal{L} = 4.6, \text{fb}^{-1}$$
: Phys. Rev. D 87, 112003 (2013)

 $W\gamma, Z\gamma$

Three decay channels: $W\gamma \to \ell \nu \gamma, Z\gamma \to \ell^+ \ell^- \gamma, Z\gamma \to \nu \bar{\nu} \gamma$

Ulrike Schnoor

Introduction

Effective field theory

Experimenta strategy

Triple gauge couplings

WW, W

ZZ

 $W\gamma\,,\,Z\gamma$

VBF Z

Quartic gauge couplings

 $_{W^{\pm}W^{\pm}}^{\text{VBS}}$

 $W\gamma\,\gamma$

Conclusions

Backup

WW

 $W\gamma, Z\gamma$ $\sqrt{s}=$ 7 TeV, $\mathcal{L}=$ 4.6,fb $^{-1}$: Phys. Rev. D 87, 112003 (2013)

Three decay channels: $W\gamma \rightarrow \ell \nu \gamma, Z\gamma \rightarrow \ell^+ \ell^- \gamma, Z\gamma \rightarrow \nu \bar{\nu} \gamma$

Ulrike Schnoor

Introduction

Effective field theory

Experimental strategy

Triple gauge couplings

WW, W

ZZ

 $W\gamma$, Z

VBF Z

Quartic gauge couplings

 $_{W^{\pm}W^{\pm}}^{VBS}$

 $W\gamma\gamma$

Conclusion

Backup

WW

Vector boson fusion to Z boson

 $\sqrt{s} = 8 \text{ TeV}, \mathcal{L} = 20 \text{ fb}^{-1}$: JHEP04(2014)031

Extract electroweak component by a fit to the dijet invariant mass distribution

Ulrike Schnoor

Introduction

Effective field theory

Experimenta strategy

Triple gauge couplings

WW, W

ZZ

VBF 7

Quartic gauge couplings

 $_{W^{\pm}W^{\pm}}^{VBS}$

 $W\gamma\gamma$

Conclusion

Backup

WW

Vector boson fusion to Z boson

 $\sqrt{s} = 8 \, \text{TeV}, \, \mathcal{L} = 20 \, \text{fb}^{-1}$: JHEP04(2014)031

Limits on charged aTGC in the search region

aTGC	$\Lambda = 6$ TeV (obs)	$\Lambda = 6 \ {\rm TeV} \ ({\rm exp})$	$\Lambda = \infty \text{ (obs)}$	$\Lambda = \infty \ (\exp)$
$\Delta g_{1,Z}$	[-0.65, 0.33]	[-0.58, 0.27]	[-0.50, 0.26]	[-0.45, 0.22]
λ_Z	[-0.22, 0.19]	[-0.19, 0.16]	[-0.15, 0.13]	[-0.14, 0.11]

A: scale of new physics in form-factor used for unitarization

Ulrike Schnoor

Introduction

Effective field theory

Experimenta strategy

Triple gauge couplings

WW, WZ

ZZ

 $W\gamma, Z\gamma$

VBF Z

Quartic gauge couplings

 $_{W}^{VBS} \pm _{W} \pm$

 $W\gamma\gamma$ Conclusion

Dackup

 $\mathbb{W}\mathbb{W}$

Quartic gauge vertex

Quartic gauge couplings

Quartic vertices with photons $(WW\gamma\gamma, WWZ\gamma)$

- Charged vertices with photons predicted by electroweak theory \rightarrow no Higgs contributions \rightarrow study gauge structure
- · Neutral vertices: not allowed by the SM

Quartic vertices with massive electroweak gauge bosons (wwww, wwzz)

- Longitudinal degrees of freedom of electroweak gauge bosons are generated through the Higgs mechanism → study the electroweak symmetry breaking mechanism in addition to the electroweak gauge structure
- · Neutral vertices: not allowed by the SM

Ulrike Schnoor

Introduction

Effective field theory

Experimental strategy

Triple gauge couplings

WW, WZ

ZZ

 $W\gamma, Z\gamma$

VBF Z

Quartic gauge couplings

VBS $w^{\pm}w^{\pm}$

 $W\gamma\gamma$ Conclusio

Backup

WW

Scattering of two like-charge W bosons

 \sqrt{s} = 8 TeV, \mathcal{L} = 20 fb⁻¹:Phys. Rev. Lett. 113, 141803

Electroweak production of $\ell^{\pm} \nu \ell^{\pm} \nu j j$

Selection:

$$\begin{split} M_{jj} &> 500 \text{ GeV (inclusive region)} \\ + \Delta Y(jj) &> 2.4 \text{ (VBS region)} \\ \text{Extract electroweak production of} \\ W^{\pm} W^{\pm} jj \end{split}$$

 \Rightarrow First evidence of $W^{\pm}W^{\pm}$ scattering and $W^{\pm}W^{\pm}jj$ production

Ulrike Schnoor

Introduction

Effective field theory

Experimental strategy

Triple gauge couplings

WW, WZ

ZZ

 $W\gamma, Z\gamma$

VBF Z

Quartic gauge couplings

```
_{W^{\pm}W^{\pm}}^{VBS}
```

 $W\gamma\gamma$ Conclusio Backup

WW

Scattering of two like-charge W bosons

Limits on anomalous quartic gauge coupling (*WWWW* vertex)

derived from fiducial cross sections Electroweak chiral Lagrangian with the

operators

$$\mathcal{L}_4 = \alpha_4 (\mathrm{tr}[\mathbf{V}_{\mu}\mathbf{V}_{\nu}])^2$$

and

 $\mathcal{L}_5 = \alpha_5 (\mathrm{tr}[\mathbf{V}_{\mu}\mathbf{V}^{\mu}])^2$

with parameters α_4 and α_5 , unitarized using K-Matrix unitarization

One-dimensional limits at 95 % C.L. :

 $\alpha_4 \in [-0.14, 0.16]$ $\alpha_5 \in [-0.23, 0.24]$

 \Rightarrow First limits on aQGC with massive electroweak vector bosons

• Scale of new physics [hep-ph:1307.8170]:

$$\Lambda \sim v / \sqrt{\alpha_i}$$

 $\Rightarrow \Lambda > 500...650 \, \text{GeV}$

Ulrike Schnoor

Introduction

Effective field theory

Experimental strategy

Triple gauge couplings

WW, WZ

ZZ

 $W\gamma, Z\gamma$

VBF Z

Quartic gauge couplings

vbs w±w±

Wγγ

ww

$$W\gamma\gamma$$
 production
 $\tilde{s} = 8 \text{ TeV}, \mathcal{L} = 20 \text{ fb}^{-1}$: CERN-PH-EP-2015-009

Triple boson production with $W\gamma\gamma$ final state

 $\begin{array}{l} \textbf{Selection} \\ \text{lepton and } E_{\mathrm{T}}^{\mathrm{miss}} \mathrm{from } \ W \ \mathrm{decay} \\ \mathrm{two \ isolated \ photons} \\ \Delta R(\ell,\gamma) > 0.7 \\ m_T^W > 40 \ \mathrm{GeV} \ (\mathrm{Inclusive \ region}) \end{array}$

Exclusive region: veto on additional jets with $p_{\rm T}>30\,{\rm GeV}$

Invariant mass of the two photons in electron/muon channel

Ulrike Schnoor

Introduction

Effective field theory

Experimenta strategy

Triple gauge couplings

WW, WZ

ZZ

 $W\gamma, Z\gamma$

VBF Z

Quartic gauge couplings

 $_{W^{\pm}W^{\pm}}^{\text{VBS}}$

 $W\gamma\gamma$

Conclusions

Backup

WW

$W\gamma\gamma \ \text{production} \\ \sqrt{s} = \text{8 TeV}, \ \mathcal{L} = \text{20 fb}^{-1}\text{: CERN-PH-EP-2015-009}$

Measurement

	σ^{fid} [fb]	σ^{MCFM} [fb]
Inclusive $(N_{jet} \ge 0)$		
$\mu\nu\gamma\gamma$	7.1 $^{+1.3}_{-1.2}$ (stat.) ± 1.5 (syst.) ± 0.2 (lumi.)	
$e\nu\gamma\gamma$	4.3 $^{+1.6}_{-1.6}$ (stat.) $^{+1.6}_{-1.8}$ (syst.) ± 0.2 (lumi.)	2.90 ± 0.16
$\ell \nu \gamma \gamma$	6.1 $^{+1.1}_{-1.0}$ (stat.) ± 1.2 (syst.) ± 0.2 (lumi.)	
Exclusive $(N_{jet} = 0)$		
$\mu\nu\gamma\gamma$	3.5 ± 0.9 (stat.) $^{+1.1}_{-1.0}$ (syst.) ± 0.1 (lumi.)	
$e\nu\gamma\gamma$	$1.9^{+1.4}_{-1.1}$ (stat.) $^{+1.1}_{-1.2}$ (syst.) ± 0.1 (lumi.)	1.88 ± 0.20
$\ell \nu \gamma \gamma$	2.9 $^{+0.8}_{-0.7}$ (stat.) $^{+1.0}_{-0.9}$ (syst.) ± 0.1 (lumi.)	

aQGC limits

Parameters a_c^W , a_0^W , and f_{T0}^E , unitarized by a form-factor

Limits on aQGC with photons derived from the number of events in the exclusive selection with additional requirement of $M_{\gamma\gamma} > 300$ GeV

Conclusions

Latest results on anomalous gauge couplings in ATLAS

Ulrike Schnoor

Introduction

Effective field theory

Experimental strategy

Triple gauge couplings

WW, WZ

ZZ

 $W\gamma, Z\gamma$

VBF Z

Quartic gauge couplings

 $_{W^{\pm}W^{\pm}}^{VBS}$

 $W\gamma\gamma$

Conclusions

Backup

WW

- Anomalous gauge couplings describe new physics contributions in the frame of an effective field theory
- Various di-boson, VBF, VBS, and tri-boson measurements at ATLAS have set limits on anomalous TGC and QGC
- Neutral and charge triple gauge couplings are accessible in di-boson production and vector boson fusion; improvement of limits compared to LEP and Tevatron in many cases
- Since recently, **quartic gauge couplings** with and without photons are accessible in vector boson scattering and triple gauge boson production at the LHC

Ulrike Schnoor

Introduction

Effective field theory

Experimental strategy

Triple gauge couplings

WW, W

ZZ

 $W\gamma$, Z

VBF Z

Quartic gauge couplings

vbs w±w±

 $W\gamma\gamma$

Conclusions

Backup

WW

BACKUP SLIDES

Ulrike Schnoor

Introduction

Effective field theory

Experimental strategy

Triple gauge coupling:

WW, WZ

ZZ

 $W\gamma$, Z

VBF Z

Quartic gauge couplings

 $_{W^{\pm}W^{\pm}}^{VBS}$

 $W\gamma\gamma$

Conclusions

Backup

WW

ATLAS detector

Ulrike Schnoor

Introduction

Effective field theory

Experimental strategy

Triple gauge couplings

WW, WZ

ZZ

 $W\gamma, Z\gamma$

VBF Z

Quartic gauge couplings

 $_{W^{\pm}W^{\pm}}^{\text{VBS}}$

 $W\gamma\gamma$

Conclusions

Backup

WW

Need for Unitarization

Amplitudes with additional operators can **violate unitarity** \Rightarrow unitarize in order to retain physical events

Form factor unitarization

• apply **form factor** to coupling *f* as $f_i^V = f_{i,0}^V / (1 + \hat{s} / \Lambda^2)^n$

Unitarization with k-matrix method

- unitarization using к-маткіх метнор: projecting the amplitude on the Argand circle
- implemented in WHIZARD
- on a low-energy theorem amplitude, it acts as infinitely heavy resonance

Argand circle

TGC: LEP scenario

In order to reduce the number of free TGC parameters, different scenarios can be used:

Equal couplings scenario: WWZ and WW γ couplings are equal

LEP scenario: $\Delta \kappa_{\gamma} = (\cos^2 \theta_W / \sin^2 \theta_W) (\Delta g_1^Z - \Delta \kappa_Z)$ and $\lambda_Z = \lambda_{\gamma}$ (motivated by $SU(2) \times U(1)$ gauge invariance)

HISZ scenario
$$\Delta g^Z = \Delta \kappa_Z / (\cos^2 \theta_w - \sin^2 \theta_W)$$
,
 $\Delta \kappa_\gamma = 2\Delta \kappa_Z \cos^2 \theta_W / (\cos^2 \theta_w - \sin^2 \theta_W)$, and $\lambda_Z = \lambda_\gamma$

Number of free parameters:

2 for "equal couplings" and HISZ scenarios, 3 for LEP' scenario

Latest results on anomalous gauge couplings in ATLAS

Ulrike Schnoor

Introduction

Effective field theory

Experimenta strategy

Triple gauge couplings

WW, WZ

ZZ

 $W\gamma, Z'$

VBF Z

Quartic gauge couplings

 $_{W}^{\mathrm{VBS}}\pm_{W}\pm$

 $W\gamma\gamma$

Conclusions

Backup

WW

Ulrike Schnoor

Introduction

Effective field theory

Experimental strategy

Triple gauge couplings

WW, WZ

ZZ

 $W\gamma, Z\gamma$

VBF Z

Quartic gauge couplings

vbs w±w±

 $W\gamma\gamma$

Conclusion

Backup

WW

Event selection: 3 high- p_{T} isolated leptons, large E_{T}^{miss} and m_{T}^{W}

Backgrounds

Z+jets, top: data-driven (fake leptons) ZZ, W/Z + γ : from simulation

 $\begin{array}{l} \textbf{Measured total cross section:} \\ \sigma \texttt{=} \\ 20.3 \substack{+0.8 \\ -0.7} (\text{stat}) \substack{+1.2 \\ -1.1} (\text{syst}) \substack{+0.7 \\ 0.6} (\text{lumi}) \, \text{pb} \\ \textbf{Theory:} \ \sigma \texttt{=} 20.3 \pm 0.8 \, \text{pb} \\ \textbf{Dominated by systematics} \end{array}$

Ulrike Schnoor

Introduction

Effective field theory

Experimenta strategy

Triple gauge coupling

WW, W

ZZ

VV 7, Z

VBF Z

Quartic gauge couplings

∨bs W±W±

 $W\gamma\gamma$

Conclusion

Backup

WW

 $\sqrt{s} = 8$ TeV, $\mathcal{L} = 20.3$ fb⁻¹: ATLAS-CONF-2014-033

Selection:

- 2 high-p_T isolated leptons (opposite charge)
- Z-veto to suppress Drell-Yan: $|m_{II} - m_{Z}| > 15, 10 \text{ GeV}(ee, \mu\mu)$

$$\begin{array}{l} \mathcal{E}_{\mathrm{T,Rel}}^{\mathrm{miss}} > 45,\!45,\!25\,\mathrm{GeV}(ee,\,e\mu,\,\mu\mu) \\ \mathcal{E}_{\mathrm{T,Rel}}^{\mathrm{miss}} = \begin{cases} \mathcal{E}_{\mathrm{T}}^{\mathrm{miss}} \cdot \sin \Delta\Phi, & \mathrm{if}\,\Delta\Phi < \pi/2 \\ \mathcal{E}_{\mathrm{T}}^{\mathrm{miss}}, & \mathrm{if}\,\Delta\Phi \geq \pi/2 \end{cases} \end{array}$$

· jet veto to suppress top background

 $m_{\rm T}({\rm II}E_{\rm T}^{\rm miss})$ in signal region

Background estimates

top data-driven (b-tagged) W+jets data-driven (fakes) Drell-Yan transfer-factor Drell-Yan control region

30/24