Measuring a_{μ}^{HLO} in the spacelike region

C.M.C. Calame1, M. Passera2, L. Trentadue3, G. Venanzoni4

1Universita' di Pavia, Pavia, Italy
2INFN, Sezione di Padova, Padova, Italy
3Universita' di Parma, Parma, Italy and Sezione INFN Milano Bicocca, Milano, Italy
4INFN, Laboratori Nazionali di Frascati, Frascati, Italy

Novosibirsk, 17 June 2015
\(\alpha_{\text{em}} \) running and the Vacuum Polarization

• Due to Vacuum Polarization effects \(\alpha_{\text{em}}(q^2) \) is a running parameter from its value at vanishing momentum transfer to the effective \(q^2 \).

➢ The “Vacuum Polarization” function \(\Pi(q^2) \) can be “absorbed” in a redefinition of an effective charge:

\[
e^2 \rightarrow e^2(q^2) = \frac{e^2}{1 + (\Pi(q^2) - \Pi(0))} \quad \quad \alpha(q^2) = \frac{\alpha(0)}{1 - \Delta \alpha}; \quad \Delta \alpha = -\Re\text{e} \left(\Pi(q^2) - \Pi(0) \right)
\]

\[
\Delta \alpha = \Delta \alpha_1 + \Delta \alpha_{\text{(5)had}} + \Delta \alpha_{\text{top}}
\]

➢ \(\Delta \alpha \) takes a contribution by non perturbative hadronic effects (\(\Delta \alpha_{\text{(5)had}} \)) which exhibits a different behaviour in time-like and spacelike region
Running of α_{em}

Time-like

$E = \sqrt{s}$

Behaviour characterized by the opening of resonances

$s > 0$

$$\Delta \alpha^{(5)}(M_Z^2) = -\frac{\alpha M_Z^2}{3\pi} \text{Re} \int_{-\frac{2M_Z^2}{1-m_c^2}}^\infty ds \frac{R(s)}{s(s - M_Z^2 - i\epsilon)}$$

Space-like

$E = -\sqrt{-t}$

Very smooth behaviour

$t < 0$
Measurement of α_{em} running

- A direct measurement of $\alpha_{\text{em}}(q^2)$ in space/time like region can prove the running of α_{em}

- It can provide a test of “duality” (far way from resonances)

- It has been done in past by few experiments at e^+e^- colliders by comparing a “well-known” QED process with some reference (obtained from data or MC)

$$\left(\frac{\alpha(q^2)}{\alpha(q_0^2)}\right)^2 \sim \frac{N_{\text{signal}}(q^2)}{N_{\text{norm}}(q_0^2)}$$

N_{signal} can be Bhabha process, muon pairs, etc…

N_{signal} can be Bhabha process, $\gamma\gamma$ pairs, Theory, etc…
Measurement of α_{em} running

e+e- collider TRISTAN at $\sqrt{s}=57.8$ GeV,

- $e^+e^- \rightarrow \mu^+\mu^-$
- $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$

Timelike

\[|Q^2|^{1/2} \text{ (GeV/c)} \]

Spacelike

\[\alpha^{-1}(Q^2) \]

e+e- collider LEP at $\sqrt{s}=189$ GeV, using Bhabha events

OPAL

- $1.3<\sqrt{-t}<2.5$ GeV
- $1.5<\sqrt{-t}<2.5$ GeV
- $3.5<\sqrt{-t}<58$ GeV

VENUS

- $10<\sqrt{-t}<54$ GeV

L3

- small angle
- large angle
Measurement of α_{em} running

e+e- collider TRISTAN at $\sqrt{s}=57.8$ GeV,

$e^+e^- \rightarrow \mu^+\mu^-$

$e^+e^- \rightarrow e^+e^-$

Spacelike $1.3<\sqrt{-t}<2.5$ GeV

Timelike $1.5<\sqrt{-t}<2.5$ GeV

$3.5<\sqrt{-t}<58$ GeV

10<\sqrt{-t}<54$ GeV

BIG CHANCES TO IMPROVE THESE MEASUREMENTS AT FUTURE HIGH ENERGY COLLIDER (ILC/TLEP)
\[a_\mu^{HLO} \] calculation, traditional way: time-like data

\[a_\mu^{HLO} = \frac{1}{4\pi^3} \int_{4m^2_\pi}^{\infty} \sigma_{e^+e^-\rightarrow hadr} (s) K(s) ds \]

Traditional way: based on precise experimental (time-like) data:

\[a_\mu^{HLO} = \frac{\alpha}{\pi^2} \int_0^{\infty} ds K(s) \text{Im} \Pi_{had}(s) \sigma_{e^+e^-\rightarrow hadr} (s) = \frac{4\pi}{s} \text{Im} \Pi_{had}(s) \]

\[K(s) = \int dx \frac{x^2 (1-x)}{x^2+(1-x)(s/m^2)} \sim \frac{1}{s} \]

Main contribution in the low energy region

\[\delta a_\mu^{\text{exp}} \rightarrow 1.5 \times 10^{-10} = 0.2\% \text{ on } a_\mu^{HLO} \text{ (from 0.7% now)} \]

NEW G-2 at FNAL and JPARC
a_{μ}^{HLO} evaluation in spacelike region: alternative approach

$$a_{\mu}^{HLO} = -\frac{\alpha}{\pi} \int_{0}^{1} (1 - x)\Pi_{had}(-\frac{x^2}{1 - x} m_{\mu}^2) dx$$

$x =$Feynman parameter

$$t = \frac{x^2 m_{\mu}^2}{x - 1} \quad 0 \leq -t < +\infty$$

$$x = \frac{t}{2 m_{\mu}^2} (1 - \sqrt{1 - \frac{4 m_{\mu}^2}{t}}) \quad 0 \leq x < 1$$

$$\Delta \alpha_{had}(t) = -\Pi_{had}(t) \quad \text{for } t < 0$$

$$a_{\mu}^{HLO} = -\frac{\alpha}{\pi} \int_{0}^{1} (1 - x)\Delta \alpha_{had}(-\frac{x^2}{1 - x} m_{\mu}^2) dx$$

For $t < 0$

$a_{\mu} = (g-2)/2$

See also G. Fedotovich, proceedings of PHIPSI08
\[\Delta \alpha \sim \log(-t) \]

Dominated at low \(|t|\) by leptonic contribution

\[\frac{(1-x) \Delta \alpha_{\text{had}}}{1-x} \left(\frac{x^2 m_{\mu}^2}{1-x} \right) \]

\[|t| \times 10^3 \text{ (GeV}^2) \]

\[x_{\text{peak}} \approx 0.914 \]

\[t_{\text{peak}} \approx -0.108 \text{ GeV}^2 \]

High \(|t|\)-values are depressed by \(1-x\) (a kind of analogy with time-like region)

The integrand is peaked at \(~x=0.92\)

\[t=-0.11 \text{ GeV}^2 (~330 \text{ MeV}) \] for which

\[\Delta \alpha_{\text{had}}(0.92) \sim 10^{-3} \]
Experimental considerations

Using Bhabha at small angle (to emphasize t-channel contribution) to extract $\Delta \alpha$:

$$\left(\frac{\alpha(t)}{\alpha(0)} \right)^2 \sim \frac{d\sigma_{ee\rightarrow ee}(t)}{d\sigma^0_{MC}(t)}$$

Where $d\sigma^0_{MC}$ is the MC prediction for Bhabha process with $\alpha(t)=\alpha(0)$, and there are corrections due to RC...

$$\Delta \alpha_{had}(t) = 1 - \left(\frac{\alpha(t)}{\alpha(0)} \right)^{-1} - \Delta \alpha_{lep}(t)$$

$\Delta \alpha_{lep}(t)$ theoretically well known!

Which experimental accuracy we are aiming at?

$\delta \Delta \alpha_{had} \sim 1/2$ fractional accuracy on $d\sigma(t)/d\sigma^0_{MC}(t)$.

If we assume to measure $\delta \Delta \alpha_{had}$ at 5% at the peak of the integrand ($\Delta \alpha_{had} \sim 10^{-3}$ at $x=0.92$) \rightarrow fractional accuracy on $d\sigma(t)/d\sigma^0_{MC}(t) \sim 10^{-4}$!

Very challenging measurement (one order of magnitude improvement respect to date) for systematic error
Experimental considerations - II

Most of the region (up to $x \sim 0.98$) can be covered with a low energy machine (like Dafne/VEPP-2000 or tau/charm-B-factories)

Example:
Covering up to 60° at $\sqrt{s}=1$ GeV can arrive at $x=0.95(!)$

A different situation can be obtained at tau/charm/B-factories (and at future ILC/TLEP machines) where smaller angles (below 20°) are needed
10^{-4} accuracy on Bhabha cross section requires at least 10^8 events which at 20\(^\circ\) mean at least:

- $O(1) \text{ fb}^{-1} @ 1 \text{ GeV}$
- $O(10) \text{ fb}^{-1} @ 3 \text{ GeV}$
- $O(100) \text{ fb}^{-1} @ 10 \text{ GeV}$

These luminosities are within reach at flavour factories!
Additional considerations: s-channel

At low energy (<10 GeV) above 10^0 there is still a sizeable contribution from s-channel. At LO no difficulty to deconvolute the cross section for the s-channel.

Test with Babayaga:

$s=1$ GeV
$10^o<\theta<170^o$

$d\sigma_{\text{born}}/dt=1.52$ mb/GeV2

However this picture changes with Rad. Corr.
A Monte Carlo procedure has been developed to check if $\Delta\alpha_{\text{had}}(t)$ can be obtained by a minimization procedure with a different $\Delta\alpha_{\text{had}}(t)'$ inside

\[\frac{d\sigma}{dt} \bigg|_{\text{data}} = \frac{d\sigma}{dt} \left(\alpha(t), \alpha(s) \right) \bigg|_{\text{MC}}', \]

\rightarrow

\[\frac{d\sigma}{dt} \bigg|_{j,\text{data}} = \frac{d\sigma}{dt} \left(\bar{\alpha}(t) + \frac{i_j}{N} \delta(t), \alpha(s) \right) \bigg|_{j,\text{MC}}', \]

$\Delta\alpha_{\text{had}}(t)$ is obtained with $<10^{-4}$ error!
Additional consideration: Normalization

To compare Bhabha absolute cross section from data with MC we need Luminosity of the machine. Two possibilities:

1) Use Bhabha at very small angle where the uncertainty on $\Delta \alpha_{\text{had}}$ can be neglected (for example at $E_{\text{beam}} = 1$ GeV and $\theta = 5^\circ$, $\Delta \alpha_{\text{had}} \sim 10^{-5}$).

2) Use a process with $\Delta \alpha_{\text{had}} = 0$, like $e^+e^- \rightarrow \gamma\gamma$. However very difficult to determine it at 10^{-4} accuracy.

Option 1) looks better to us as some of the common systematics cancel in the measurement!
Measurement of DAFNE Luminosity with KLOE/KLOE-2 at 10^{-4}?

F. Ambrosino et al [KLOE]

Table 2. Summary of the corrections and systematic errors in the measurement of the luminosity

<table>
<thead>
<tr>
<th></th>
<th>correction (%)</th>
<th>systematic error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>angular acceptance</td>
<td>+0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>tracking</td>
<td>–</td>
<td>0.06</td>
</tr>
<tr>
<td>clustering</td>
<td>+0.14</td>
<td>0.11</td>
</tr>
<tr>
<td>background</td>
<td>−0.62</td>
<td>0.13</td>
</tr>
<tr>
<td>cosmic veto</td>
<td>+0.40</td>
<td>−</td>
</tr>
<tr>
<td>energy calibration</td>
<td>–</td>
<td>0.10</td>
</tr>
<tr>
<td>center of mass energy</td>
<td>+0.10</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>+0.34</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Adding in quadrature: 0.3 %

(can be improved by a factor 10?)

G. Venanzoni, Seminar at LNF, Frascati, 20 May 2015
Polar angle systematics

- global agreement is very good

but the cut occurs in a steep region of the distributions ⇒ estimate of border mismatches

- after normalizing MC to make it coincide with data in the region $65^\circ < \theta < 115^\circ$, we estimate as a systematic error:

$$\frac{N_{\text{dat}}^{[55:65]} + [115:125]}{N_{\text{TOT}}^{\text{dat}}} - \frac{N_{MC}^{[55:65]} + [115:125]}{N_{\text{TOT}}^{MC}} \approx 0.25\%$$

Can be improved at 10^{-4}?

G. Venanzoni, Seminar at LNF, Frascati, 20 May 2015

From F. Nguyen 2006
Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP

The OPAL Collaboration

Small-angle Bhabha scattering in OPAL

\[e^+ e^- \rightarrow e^+ e^- \quad \sqrt{s} \approx 91.2 \text{ GeV} \]

2 cylindrical calorimeters encircling the beam pipe at ± 2.5 m from the Interaction Point

19 Silicon layers \quad \text{Total Depth 22 } X_0
18 Tungsten layers \quad \text{(14 cm)}

Each detector layer divided into 16 overlapping wedges

Sensitive radius: 6.2 – 14.2 cm, corresponding to scattering angle of 25 – 58 mrad from the beam line
Final Error on Luminosity

After all the effort on Radial reconstruction the dominant systematic error is related to Energy (mostly tail in the E response and nonlinearity).

<table>
<thead>
<tr>
<th></th>
<th>Systematic Error ((\times 10^{-4}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>1.8</td>
</tr>
<tr>
<td>Inner Anchor</td>
<td>1.4</td>
</tr>
<tr>
<td>Radial Metrology</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Total Experimental Systematic Error : \(3.4 \times 10^{-4}\)

Theoretical Error on Bhabha cross section: \(5.4 \times 10^{-4}\)
Conclusions

• Measuring α_{em} running in time-like and space like region appears to be very interesting. (Relatively) high q^2-values can be explored at ILC/TLEP
• An alternative formula for a_{μ}^{HLO} in spacelike region has been studied in details. It emphasizes low values of t (<1 GeV2) and can be explored at low energy e+e- machines (VEPP2000/DAFNE, τ/charm, B-factories)
• It requires to measure the Bhabha cross section at relatively small angles at (better than) 10^{-4} accuracy!
• Reaching such an accuracy demands a dedicated experimental and theoretical work for the next few years
• Can this method apply also at other (e-e; fixed target) machines?

Thanks!
END
\(\Delta \alpha_{em}^{HAD}(s) \) dependence
Which is the best energy/angle configuration?

\[x = \frac{t}{2m^2} \left(1 - \sqrt{1 - \frac{4m^2}{t}}\right) \]

\[-t = 9(1 - \cos \theta)/2\]

\[\sqrt{s} = 3 \text{ GeV} \]

\[\theta = 12^\circ \]

\[\sqrt{s} = 1 \text{ GeV} \]

\[\theta = 40^\circ \]
x vs t behaviour

$x \to 1$
$t \to \infty$

$x \to 0$
$t \to 0$

30 MeV 100 MeV 320 MeV 1 GeV