Y fami

Z family

Conclusions

XYZ states as hadronic molecules

A.V. Nefediev

(LPI, Moscow)

Charm 2018, Novosibirsk, Russia, 21-25 May 2018

Y fami

Z family

Conclusions

Spectrum of charmonium

•০৭ে 2/21

Y fami

Z family

Conclusions

Spectrum of charmonium

Spectrum of bottomonium

クへで 3/21

Spectrum of bottomonium

Y fami

Z family

Conclusions

Meet *XYZ* states

• X's are new exotic states

 $X(3872) \quad X(3915) \quad X(4140) \quad \dots$

• Y's are exotic vector states (to tell from neat $ar{c}c$ quarkonia ψ 's)

 $Y(4230) Y(4260) Y(4360) Y(4660) \dots$

• Z's are charged exotic states

 $Z_c(3900) \ Z_c(4020) \ Z_c(4430) \ Z_b(10610) \ Z_b(10650) \ \dots$

Y famil

Z family

Conclusions

Meet *XYZ* states

• X's are new exotic states

 $X(3872) \quad X(3915) \quad X(4140) \quad \dots$

• \pmb{Y} 's are exotic vector states (to tell from neat $ar{c}c$ quarkonia ψ 's)

 $Y(4230) Y(4260) Y(4360) Y(4660) \dots$

• Z's are charged exotic states

 $Z_c(3900) \ Z_c(4020) \ Z_c(4430) \ Z_b(10610) \ Z_b(10650) \ \dots$

Naming scheme for XYZ states under review by PDG

- Good description of spectrum below open-flavour threshold
- Reasonable description of leptonic, radiative, hadronic widths Failure:
- Breakdown for higher quarkonia

What is missing?

- Constituent gluons
- Effects of light-quarks: loops, thresholds, pions

 Hadro-Quarkonium $(Q\bar{Q})_1$ surrounded by light quarks

If not $\bar{Q}Q$ then what? Proposals...

- Hybrid

• Tetraquark

Hadronic Molecule

Extended object made of $(Qq)_1$ and $(\bar{q}Q)_1$

6/21

э

What is hadronic molecule?

Molecule = large probability to observe resonance in a given hadron-hadron channel

- Proximity of open-flavour thresholds ⇒ large admixture of meson-meson component in the w.f. of the resonance
- Nature of the resonance can be different:
 bound versus virtual state ⇒ dynamical problem

Disclaimer: because of inelastic channels, poles in the complex *E*-plane are always on unphysical Riemann Sheets, away from the real axis \implies state = resonance

Binding forces can be different:
 s- versus t-channel exchanges ⇒ different models

Have we met hadronic molecules so far?

Yes, we have! We know them for years in few nucleon systems

• ${}^{3}S_{1}$ NN system with I = 0:

a = 5.4 fm $r_e = 1.7 \text{ fm}$

Pole on RS-I with $E_B = 2.23$ MeV \Longrightarrow deuteron

• ${}^{1}S_{0}$ NN system with I = 1:

a = -24 fm $r_e = 2.7$ fm

Pole on RS-II with $E_B = 0.067$ MeV \implies virtual state

Z family

Conclusions

Composite or elementary?

$$F(k) = \frac{1}{-\frac{1}{a} + \frac{1}{2}k^2 r_e - ik}$$

Define probability to observe compact state $0 \leqslant Z \leqslant 1$:

$$a = \frac{2(1-Z)}{(2-Z)} \frac{1}{\sqrt{2\mu E_B}} \qquad r_e = -\frac{Z}{(1-Z)} \frac{1}{\sqrt{2\mu E_B}} + O\left(\frac{1}{\beta}\right)$$

 $\beta \ (\gg k) - (inverse)$ range of force

Deuteron: $Z \rightarrow 0 \implies$ molecule (Weinberg'60's)

Elementary (confined) state

- Effective range is large
- Scattering length is small
- Two near-threshold poles

Composite (molecular) state

- Effective range is small
- Scattering length is large
- One near-threshold pole

 $\implies \text{pole counting rules (Morgan'1992)}$

What to expect from molecules?

- Predominantly S-wave bound or virtual state of $(\bar{Q}q)$ and $(\bar{q}Q)$ mesons
- Seen in elastic $((\bar{Q}q) + (\bar{q}Q))$ and inelastic (e.g. $(\bar{Q}Q) + (\bar{q}q))$ channels

- Bound state molecule:
 - below-threshold peak in inelastic channels
 - above-threshold hump in elastic channels
- Virtual state molecule:
 - threshold cusp in inelastic channels
 - above-threshold hump in elastic channels

What to expect from molecules?

- Predominantly S-wave bound or virtual state of $(\bar{Q}q)$ and $(\bar{q}Q)$ mesons
- Seen in elastic $((\bar{Q}q) + (\bar{q}Q))$ and inelastic (e.g. $(\bar{Q}Q) + (\bar{q}q))$ channels
- Bound state molecule:
 - below-threshold peak in inelastic channels
 - above-threshold hump in elastic channels
- Virtual state molecule:
 - threshold cusp in inelastic channels K
 - above-threshold hump in elastic channels

Hard to distinguish

Impossible to distinguish

イロト イポト イヨト イヨト

What to expect from molecules?

- Predominantly S-wave bound or virtual state of $(\bar{Q}q)$ and $(\bar{q}Q)$ mesons
- Seen in elastic $((\bar{Q}q) + (\bar{q}Q))$ and inelastic (e.g. $(\bar{Q}Q) + (\bar{q}q))$ channels
- Bound state molecule:
 - below-threshold peak in inelastic channels,
 - above-threshold hump in elastic channels
- Virtual state molecule:
 - threshold cusp in inelastic channels **k**
 - above-threshold hump in elastic channels

Combined analysis of all measured production and decay channels for a given resonance is necessary to reveal its nature

Hard to distinguish

Impossible to distinguish

ictior

Y fan

Conclusions

Heavy-quark spin symmetry

- Exotic XYZ states contain heavy quarks (HQ)
- In the limit $m_Q \to \infty$ $(m_Q \gg \Lambda_{QCD})$ spin of HQ decouples \implies Heavy Quark Spin Symmetry (HQSS)
- For realistic m_Q 's HQSS is approximate but rather accurate symmetry of QCD
- Predictions of HQSS depend crucially on the nature of states under study

(Cleven et al.'2015)

• Quarkonium component of the w.f. (if exists) may impact the predictions

(Cincioglu et al.'2016)

• HQSS is a tool to relate properties of states with different HQ spin orientation

\implies Spin partners

(Guo et al.'2009,Bondar et al.'2011,Voloshin et al.'2010,Mehen et al.'2011,Nieves et al.'2012,Guo et al.'2013,Albaladejo et al.'2015, Baru et al.'2016)

Introduction	Generalities	X family	Y family	Z family	Conclusions
		The X	family		

X(3872): Experimental status

- Quantum numbers: $J^{PC} = 1^{++}$, I = 0
- Mass and width:

 $M_X = 3871.68 \pm 0.17 \text{ MeV}$ $\Gamma_X < 1.2 \text{ MeV}$

 $M_{D^0} + M_{\bar{D}^{*0}} - M_X = (0.00 \pm 0.18) \text{ MeV}$

- Observation modes:
 - $X \rightarrow \pi^+ \pi^- J/\psi$ (Belle 2003, CDF, DØ, BABAR 2004-2006, LHCb 2013)
 - $X \rightarrow \pi^+ \pi^- \pi^0 J/\psi$ (Belle 2005, BABAR 2010)
 - $X \to D\bar{D}^* \subset \begin{array}{c} D\bar{D}\pi \\ D\bar{D}\gamma \end{array}$
 - (Belle 2006, BABAR 2007)
 - $X \rightarrow \gamma J/\psi$ $X \rightarrow \gamma \psi'(3686)$ (BABAR 2008, Belle 2010/2011, LHCb 2014)
 - $e^+e^- \rightarrow \gamma X(3872)$ (BESIII 2014)

Approach to X(3872)

- X(3872) is a shallow bound state ($E_B \ll 1 \text{ MeV}$) with a large admixture of the $D\bar{D}^*$ component in the w.f.
- The short-range component of the w.f. is responsible for the X(3872) production at high energies, for radiative decays and decays to light hadrons
- Hadronic (long-range) component is responsible for open-charm decays
- Three-body $(D\bar{D}\pi)$ dynamics is important in X(3872) because of a very specific ordering of thresholds

(Suzuki'2005,Fleming et al.'2007,Baru et al.'2011,Guo et al.'2014)

ntroduction	Generalities	X family	Y family	Z family	Conclusions
		X(3915))		

Experimental background (Belle & BaBar)

- Seen in $B \to KX \to K(\omega J/\psi)$ and $\gamma\gamma \to X \to \omega J/\psi$
- Not seen in $D\bar{D}$
- Belle: 0^{++} or 2^{++} ($\chi_{c0}(2P)$ or $\chi_{c2}(2P)$ charmonium?)
- BaBar: 2^{++} ruled out by angular analysis in $\omega J/\psi$ ($\chi_{c0}(2P)$?)
- Good candidate for $\chi_{c0}(2P)$ exists: $X^*(3860)$ (Belle'2017)

Theoretical insights

• $\chi_{c0}(2P)$ assignement for X(3915) is questionable

(Guo&Meißner'2012,Olsen'2014,Zhou et al.'2015)

• 2^{++} ruled out for $\bar{c}c$ charmonium, not for exotics

(Liu et al.'2010)

• Current data not compatible with $2^{++} D^* \bar{D}^*$ molecule

(Baru et al.'2017)

• $0^{++} D_s \overline{D}_s$ molecule assignement is plausible \Leftarrow To be verified (Li&Voloshin'2015)

Introduction	Generalities	X family	Y family	Z family	Conclusions
		The Y	family		1

Introduction	Generalities	X family	Y family

Conclusions

Y(4260)

- Small e^+e^- width, dip in *R*-ratio \implies hybrid?
 - Quantum numbers OK (vector hybrid)
 - Mass OK (compatible with lattice and models)
 - Decay modes unclear yet

Specific pattern of open-flavour decays to be verified in experiment

- Resides near S-wave $D_1 \overline{D}$ threshold \implies molecule?
 - Good description of data in $J/\psi\pi\pi$, $h_c\pi\pi$ and $D\bar{D}^*\pi$ final states
 - Natural explanation of $Z_c(3900)$ appearance in Y(4260) decays

(Wang et al.'2013)

(Guo et_al.'2013)

• Confirmed prediction of $e^+e^- \to \gamma X(3872)$ in energy region near Y(4260)

Introduction	Generalities	X family	Y family	Z family	Conclusions
		The Z	family		1
			-		

< □ > < □ > < ≧ > < ≧ > < ≧ > ≧ の Q (~ 15/21

Conclusions

 $Z_c(3900)$

Experimental status:

- Quantum numbers: $J^{PC} = 1^{+-}$, I = 1
- Mass and width:

 $M = 3886.6 \pm 2.4 \text{ MeV}$ $\Gamma = 28.1 \pm 2.6 \text{ MeV}$

• Observation modes: $J/\psi\pi$, $D\bar{D}^*$

Theoretical insights:

- Cannot be $\bar{c}c$ state minimal quark contents four-quark
- Resides close to the $D\bar{D}^*$ threshold \implies molecule?
- Isovector cousin of X(3872)? (opposite C-parity)
- If confirmed to reside above threshold

 \implies Nontrivial interplay of different dynamics needed!

$Z_b(10610)$ & $Z_b(10650)$: Experimental status

- Quantum numbers: $J^{PC} = 1^{+-}$, I = 1
- Masses and widths:

 $M = 10607.2 \pm 2.0 \text{ MeV}$ $\Gamma = 18.4 \pm 2.4 \text{ MeV}$

 $M = 10652.2 \pm 1.5 \,\, {\rm MeV} \qquad \Gamma = 11.5 \pm 2.2 \,\, {\rm MeV}$

• Production and decay modes:

$$\begin{split} \Upsilon(10860) &\to \pi Z_b^{(\prime)} \to \pi B^{(*)} \bar{B}^* \\ \Upsilon(10860) &\to \pi Z_b^{(\prime)} \to \pi \pi \Upsilon(nS) \quad n = 1, 2, 3 \\ \Upsilon(10860) &\to \pi Z_b^{(\prime)} \to \pi \pi h_b(mP) \quad m = 1, 2 \end{split}$$

• No suppression from heavy quark spin flip $BF(\Upsilon(10860) \to h_b(mP)\pi\pi) \simeq BF(\Upsilon(10860) \to \Upsilon(nS)\pi\pi)$

Z family $Z_b(10610)$ & $Z_b(10650)$ as molecules $m_b \gg \Lambda_{\rm QCD} \implies$ Heavy Quark Spin Symmetry Molecule Z_b and Z'_b spin w.f.'s are $(B = 0^-_{\bar{b}a}, \bar{B} = 0^-_{\bar{a}b}, B^* = 1^-_{\bar{b}a}, \bar{B}^* = 1^-_{\bar{a}b})$ $|Z_b\rangle = \frac{1}{\sqrt{2}} \left[(1_{\bar{b}b}^- \otimes 0_{\bar{q}q}^-)_{S=1} + (0_{\bar{b}b}^- \otimes 1_{\bar{q}q}^-)_{S=1} \right]$ $|Z_b'\rangle = \frac{1}{\sqrt{2}} \Big[(1_{\bar{b}b}^- \otimes 0_{\bar{q}q}^-)_{S=1} - (0_{\bar{b}b}^- \otimes 1_{\bar{q}q}^-)_{S=1} \Big]$ (Bondar et al.'2011)

Line shapes of the Z_b 's can be described well in the molecule picture

Z family $Z_{b}(10610)$ & $Z_{b}(10650)$ as molecules $m_b \gg \Lambda_{\rm QCD} \implies$ Heavy Quark Spin Symmetry Molecule Z_b and Z'_b spin w.f.'s are $(B = 0^-_{\bar{b}a}, \bar{B} = 0^-_{\bar{a}b}, B^* = 1^-_{\bar{b}a}, \bar{B}^* = 1^-_{\bar{a}b})$ $|Z_b\rangle = \frac{1}{\sqrt{2}} \left[(1_{\bar{b}b}^- \otimes 0_{\bar{q}q}^-)_{S=1} + (0_{\bar{b}b}^- \otimes 1_{\bar{q}q}^-)_{S=1} \right]$ $|Z_b'\rangle = \frac{1}{\sqrt{2}} \Big[(1_{\bar{b}b}^- \otimes 0_{\bar{q}q}^-)_{S=1} - (0_{\bar{b}b}^- \otimes 1_{\bar{q}q}^-)_{S=1} \Big]$ (Bondar et al.'2011)

Line shapes of the Z_b 's can be described well in the molecule picture

Z family Spin partners (*c*-sector) $Y(4260) = D_1 \overline{D}$ molecule $\implies Y(4360) = D_1 \overline{D}^* / D_2 \overline{D}^*$ molecule (Wang et al.'2013) $Z_c(3900) = D\bar{D}^*$ molecule $\implies Z_c(4020) = D^*\bar{D}^*$ molecule (Voloshin'2013) $X(3872) = D\bar{D}^*$ molecule $\implies X_{c2} = D^*\bar{D}^*$ molecule (Nieves&Valderrama'2012,Guo et al.'2013,Baru et al.'2016) To be verified by... Investigating decay modes $Y(4260) \rightarrow D\bar{D}^*\pi, \pi\pi J/\psi$ $Y(4360) \rightarrow D^* \bar{D}^* \pi$

- $Z_c(3900) \rightarrow D\bar{D}^*, \pi J/\psi, \pi \psi', \pi h_c, \rho \eta_c$
- Building systematic theoretical approach to $D^{(*)}D_J$ molecules
- Investigating HQSS breaking effects in c-sector
- Investigating role of pions

Y fami

Z family

Conclusions

Spin partners (*b*-sector)

Prediction of Heavy Quark Spin Symmetry: J^{++} spin partner molecular states W_{bJ} (J = 0, 1, 2) should exist

Y family

Z family

Conclusions

Conclusions

Molecule model is a commonly accepted and phenomenologically successful description of exotic states:

- Describes specific line shapes
- Predicts spin partners
- Explains mass splittings:

 $M_{Y(4260)} - M_{X(3872)} \approx M_{D_1(2420)} - M_{D^*}$

 $M_{Z_b(10650)} - M_{Z_b(10610)} \approx M_{B^*} - M_B$

Further developments:

- Relation between different heavy-quark sectors
- Proper inclusion of pions and compact components
- Generalisation to SU(3) flavour group for light quarks
- Tests of accuracy of HQSS, especially in the charm sector