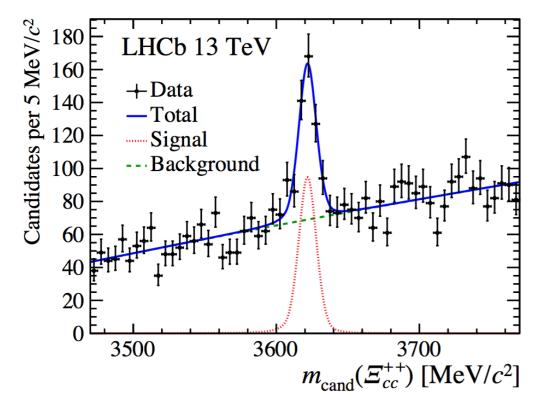

Weak Decays of Ξ_{cc} — discovery potentials

Fu-Sheng Yu

Lanzhou University

CHARM18 @ BINP, 2018.05.23

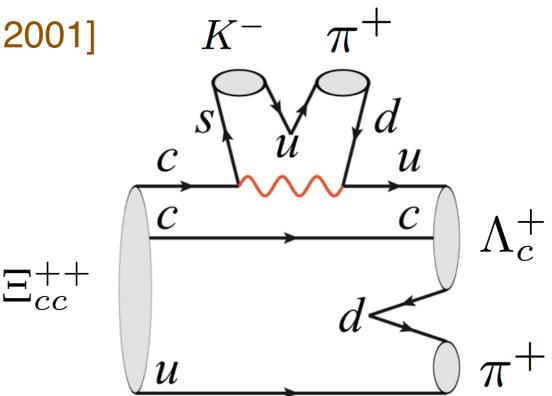

In collaboration with Hua-Yu Jiang, Run-Hui Li, Ying Li, Cai-Dian Lü, Wei Wang, Zhen-Xing Zhao, Zhi-Tian Zou

Outline

- 1. Introduction
- 2. Theoretical Framework and results
- 3. Outlook
- 4. Summary

LHCb observed E_{cc}^{++}

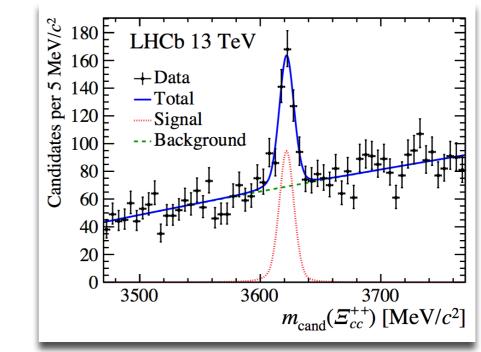
[LHCb, PRL119,112001]



via
$$\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$$

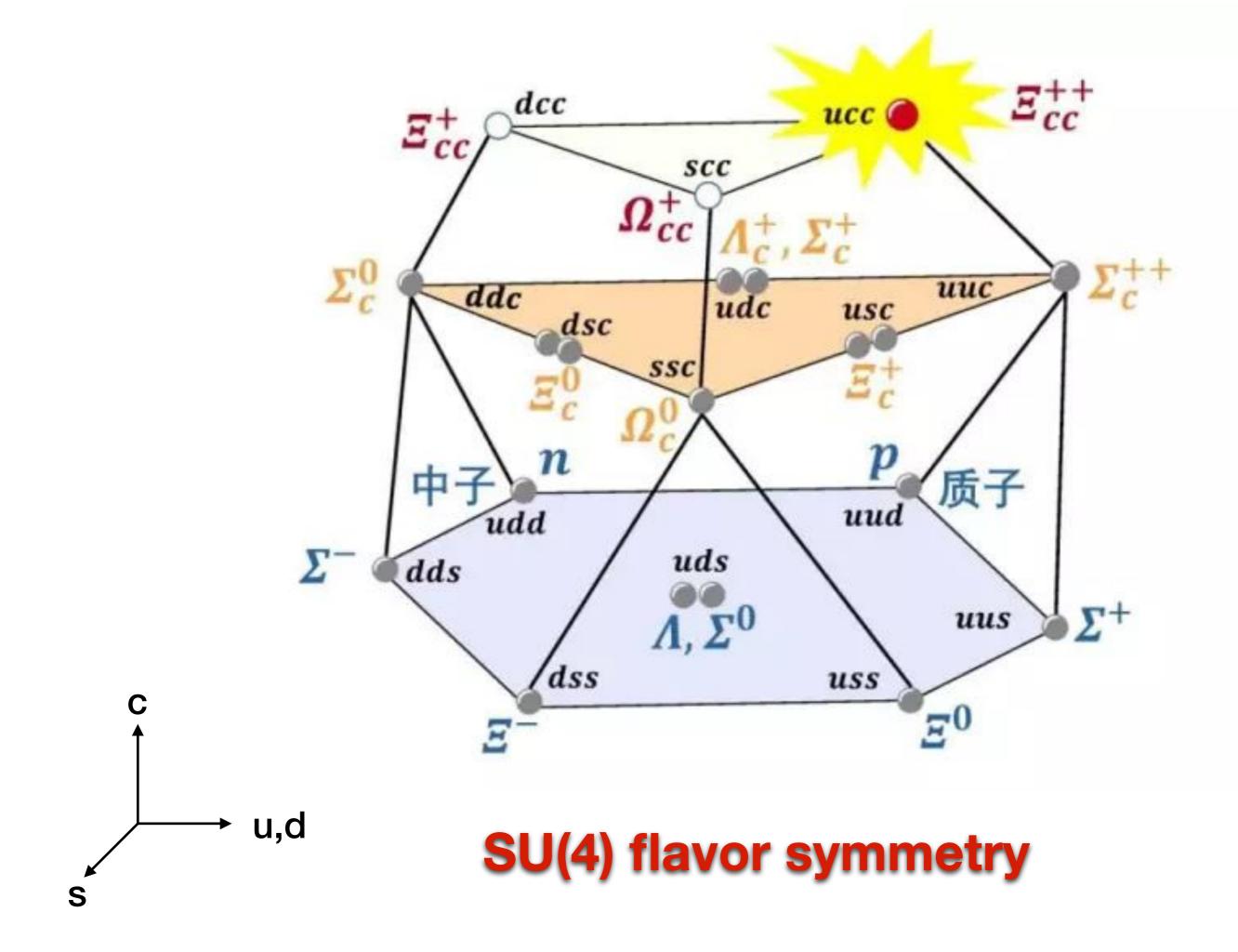
first reported on July 6, 2017

 $m_{\Xi_{cc}^{++}} = 3621.40 \pm 0.72 \pm 0.27 \pm 0.14 \text{ MeV}$ $\tau_{\Xi_{cc}^{++}} = 0.256^{+0.024}_{-0.022} \pm 0.014 \text{ ps}$


See Daniel Vieira's talk yesterday

The discovery channel of $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ was suggested by

[**FSY**, Jiang, Li, Lü, Wang, Zhao, CPC42(2018)05001, [arXiv:1703.09086]]



Theory talks on decays @ LHCb-China, Dec 2016 @ LHCb-Charm, Mar 2017

Observation reported by LHCb, Jul 2017

LHCb spokesperson Passaleva:

A group of Chinese theorists provided fundamental inputs to drive the analysis to the right direction and gave key suggestions to achieve this result. Success by collaboration between theory and experiment

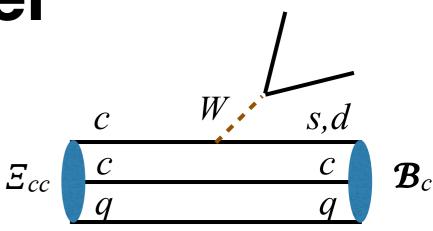
Searching History

- In experiments
 - The only evidence was found for Ξ_{cc}^+ by SELEX
 - $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+ \qquad \Xi_{cc}^+ \rightarrow p D^+ K^- \quad \text{[SELEX, 02', 04']}$
 - But not confirmed by other experiments


$$\begin{split} &\Xi_{cc}^{+} \to \Lambda_{c}^{+} K^{-} \pi^{+} \text{ [FOCUS, 02']} \\ &\Xi_{cc}^{+(+)} \to \Xi_{c}^{0} \pi^{+} (\pi^{+}) \text{ and } \Lambda_{c}^{+} K^{-} \pi^{+} (\pi^{+}) \text{ [Babar, 06'; Belle, 13']} \\ &\Xi_{cc}^{+} \to \Lambda_{c}^{+} K^{-} \pi^{+} \text{ [LHCb, 13']} \end{split}$$

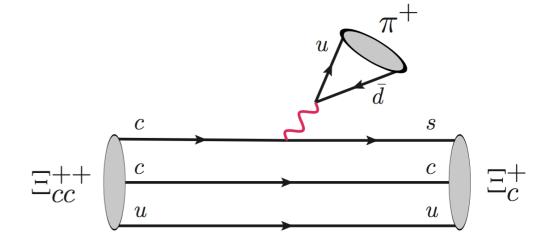
Theory Framework for weak decays of charmed baryons

Short + Long distance contributions


Short-distance contributions

- external W-emission diagrams
- Calculate form factors in light-front quark model
- Calculate amplitudes using factorization approach

Transition form factors (FF) in light-front quark model


- Isospin symmetry relates FF's of Ξ_{cc}^{++} and Ξ_{cc}^{+}
- Flavor SU(3) symmetry relates FF's of $c \rightarrow s$ and $c \rightarrow d$ transitions
- Uncertainties in FFs are c mostly cancelled in the relative branching fractions.

<u> </u>	$\rightarrow s$	$\Xi_{cc} \to \Xi_c / \Xi_c'(0^+)$			$\Xi_{cc} \to \Xi_c / \Xi_c'(1^+)$				
C	~ 0	f_1	g_1	f_2	g_2	f_1	g_1	f_2	g_2^*
	F(0)	0.75	0.62	-0.78	-0.08	0.74	-0.20	0.80	-0.02
	$m_{ m fit}$	1.84	2.16	1.67	1.29	1.58	2.10	1.62	1.62
	δ	0.25	0.35	0.30	0.52	0.36	0.21	0.31	1.37
С—	→d	$\Xi_{cc} \to \Lambda_c / \Sigma_c(0^+)$		$\Xi_{cc} \to \Lambda_c / \Sigma_c(1^+)$					
		f_1	g_1	f_2	g_2	f_1	g_1	f_2	g_2^*
	F(0)	0.65	0.53	-0.74	-0.05	0.64	-0.17	0.73	-0.03
	$m_{ m fit}$	1.72	2.03	1.56	1.12	1.49	1.99	1.53	2.03
	δ	0.27	0.38	0.32	1.10	0.37	0.23	0.32	2.62

[W.Wang, FSY, Z.X.Zhao, '17]

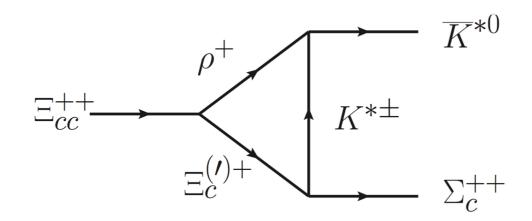
Short-Distance Contributions

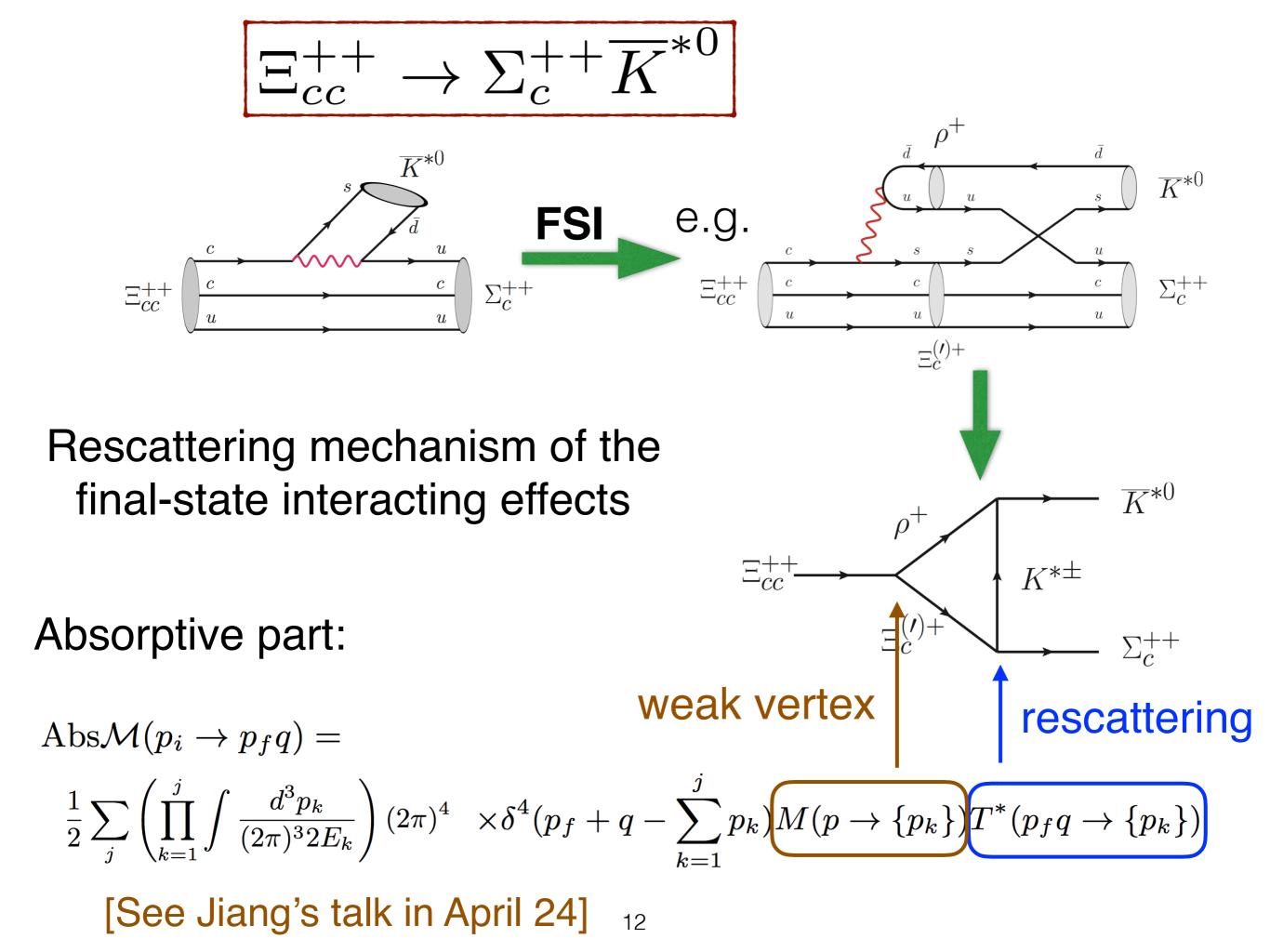
• External W-emission processes using factorization approach $A(\Xi_{cc} \rightarrow \mathcal{B}_c M)_{SD}$

$$= \frac{G_F}{\sqrt{2}} V_{cq'}^* V_{uq} a_1(a_2) \langle M | \bar{u} \gamma^\mu (1 - \gamma_5) q | 0 \rangle \langle \mathcal{B}_c | \bar{q}' \gamma_\mu (1 - \gamma_5) | \Xi_{cc} \rangle$$

Relative branching fractions are reliable

$$\begin{aligned} &\mathcal{B}(\Xi_{cc}^{+} \to \Xi_{c}^{0} \pi^{+}) / \mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+}) = \mathcal{R}_{\tau} = 0.25 \sim 0.37, \\ &\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_{c}^{+} \pi^{+}) / \mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+}) = 0.056, \\ &\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \ell^{+} \nu) / \mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+}) = 0.71, \end{aligned}$$

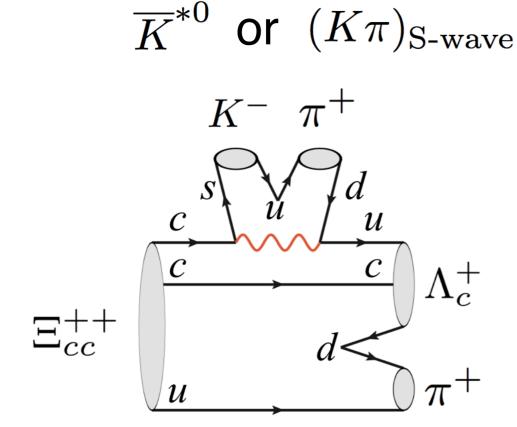

Uncertainties of form factors are mostly cancelled


 $\mathcal{B}(\Xi_{cc}^{++} \to \Xi_c^+ \pi^+)$ is the largest one

Long-distance contributions

- final-state interacting (FSI) effects

- significantly large in charm decays
- Calculate rescattering effects



Relative Branching Fractions with long-distance contributions

	Baryons	Modes	$\mathcal{B}_{ ext{LD}}$
	$\Xi_{cc}^{++}(ccu)$	$\Sigma_c^{++}(2455)\overline{K}^{*0}$	defined as 1
Large	est	pD^{*+}	0.04
		pD^+	0.0008
	$\Xi_{cc}^+(ccd)$	$\Lambda_c^+ \overline{K}^{*0}$	$(\mathcal{R}_{ au}/0.3) imes 0.22$
		$\Sigma_c^{++}(2455)K^-$	$(\mathcal{R}_{ au}/0.3) imes 0.008$
		$\Xi_c^+ ho^0$	$(\mathcal{R}_{\tau}/0.3) \times 0.04$
		ΛD^+	$(\mathcal{R}_{\tau}/0.3) \times 0.004$
		pD^0	$(\mathcal{R}_{\tau}/0.3) \times 0.002$

Uncertainties of the relative branching fractions induced by the parameter of η are less than 10%

 $\rightarrow \Lambda_{a}^{+}K^{-}\pi^{+}\pi^{+}$

$$\Xi_{cc}^{++} \to \Sigma_c^{++} (2455) \overline{K}^{*0}$$

is actually a four-body decay

 $\Sigma_{c}^{++}(2455)$ or $\Sigma_{c}^{++}(2520)$

In charmed hadron decays, final-state particles are not energetic, and easily located in the momentum range of resonances $\mathcal{B}(\Xi_{cc}^{++} \to \Sigma_{c}^{++}(2455)\overline{K}^{*0}) = \left(\frac{\tau_{\Xi_{cc}^{++}}}{300 \, \mathrm{fs}}\right) \times (3.8 \sim 24.6)\%$

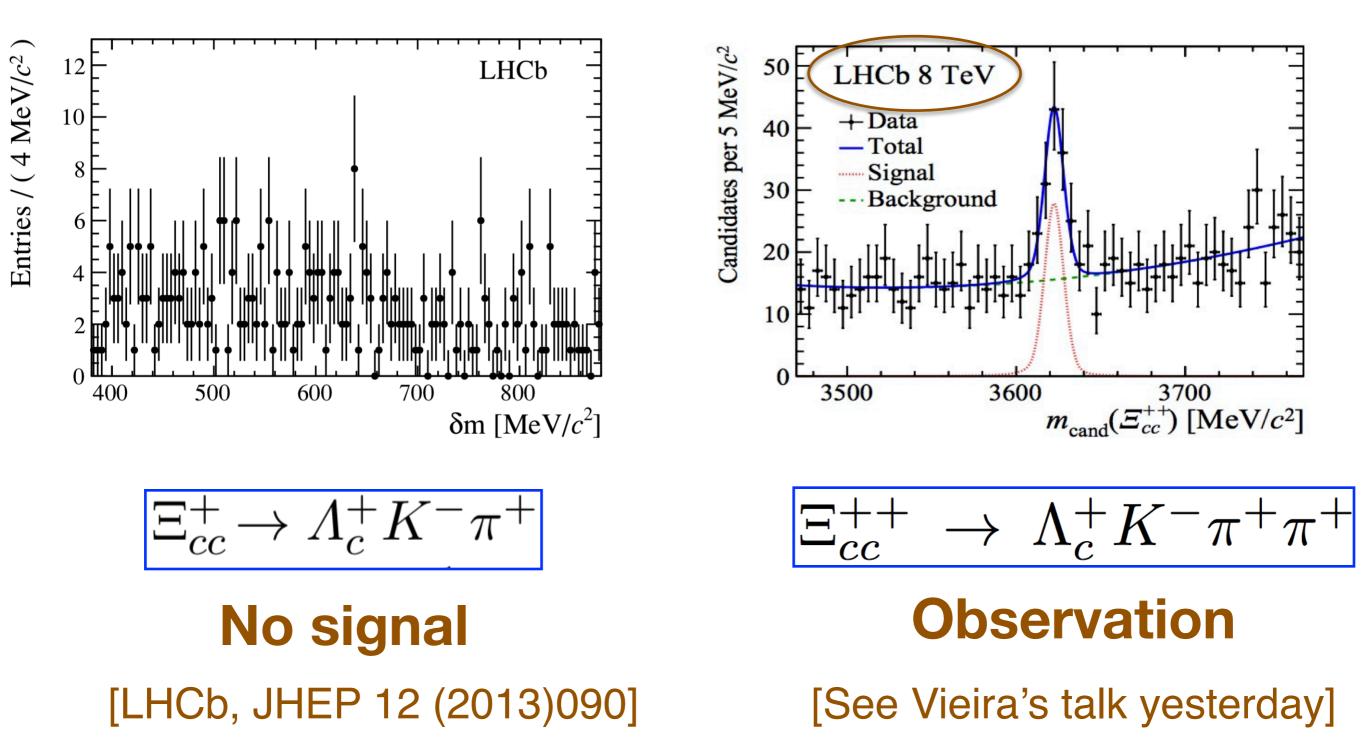
It would be expected to be as large as O(10%)

$$\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+ \text{ V.S. } \Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$$
SELEX's discovery channe
LHCb measured

Baryons	Modes	$\mathcal{B}_{ ext{LD}}$	
$\Xi_{cc}^{++}(ccu)$	$\Sigma_c^{++}(2455)\overline{K}^{*0}$	defined as 1	$\Lambda_c^+ K^- \pi^+ \pi^+$
$\tau \times (\sim 3)$	pD^{*+}	0.04	$3r \times 5$
	pD^+	0.0008	
$\Xi_{cc}^+(ccd)$	$\Lambda_c^+ \overline{K}^{*0}$	$(\mathcal{R}_{ au}/0.3) imes 0.22$	$\Lambda_c^+ K^- \pi^+$
	$\Sigma_c^{++}(2455)K^-$	$(\mathcal{R}_{\tau}/0.3) \times 0.008$	$\Lambda_c \Lambda \pi$
	$\Xi_c^+ ho^0$	$(\mathcal{R}_{ au}/0.3) imes 0.04$	
	ΛD^+	$(\mathcal{R}_{\tau}/0.3) \times 0.004$	
	pD^0	$(\mathcal{R}_{ au}/0.3) imes 0.002$	

 $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ has more signal yields around one more order than $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$

$$\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+ \text{ V.S. } \Xi_{cc}^+ \to pD^+ K^-$$


SELEX's discovery channel

Baryons	Modes	$\mathcal{B}_{ ext{LD}}$	
$\Xi_{cc}^{++}(ccu)$	$\Sigma_c^{++}(2455)\overline{K}^{*0}$	defined as 1	$\Lambda_c^+ K^- \pi^+ \pi^+$
	pD^{*+}	0.04	C
	pD^+	0.0008	
$\Xi_{cc}^+(ccd)$	$\Lambda_c^+ \overline{K}^{*0}$	$(\mathcal{R}_{\tau}/0.3) \times 0.22$	A is below
	$\Sigma_{c}^{++}(2455)K^{-}$	$(\mathcal{R}_{ au}/0.3) imes 0.008$	<i>pK</i> threshold
	$\Xi_c^+ ho^0$	$(\mathcal{R}_{ au}/0.3) imes 0.04$	
	ΛD^+	$(\mathcal{R}_{\tau}/0.3) \times 0.004$	pD^+K^-
	pD^0	$(\mathcal{R}_{\tau}/0.3) \times 0.002$	

We recommend to measure $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ to search for doubly heavy baryons

[FSY, et al, 1703.09086]

LHCb Run-I Data Analysis

It could be observed in 2013 if using the correct mode !!!

List of studies on weak decays

- 1. Doubly heavy baryon weak decays: $\Xi_{bc}^0 \rightarrow pK^-$, $\Xi_{cc}^+ \rightarrow \Sigma_c(2520)^{++}K^-$ [arXiv:1701.03284]
- 2. Discovery potentials of doubly charmed baryons: $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ [arXiv:1703.09086]
- 3. Weak decays of doubly heavy baryons: the $1/2 \rightarrow 1/2$ case [arXiv:1707.02834]
- 4. Weak decays of doubly heavy baryons : SU(3) analysis
 - [arXiv:1707.06570]
- 5. Weak decays of doubly heavy baryons : decay constant

[arXiv:1711.10289]

- 6. Weak decays of doubly heavy baryons : Multi-body decay channels [arXiv:1712.03830]
- 7. Weak decays of triply heavy baryons

[arXiv:1803.01476]

List of studies on weak decays

Prospect

- > Study Ξ_{cc}^{++} in more channels?
- ➢ lifetime?
- $\succ \Xi_{cc}^+$?
- $> J^P = 1/2^+?$
- > Semi-leptonic decay modes?
- > CP Violation?
- **>** ...

A long long list…

[W. Wang's talk @ Implication of LHCb, 2017]

Summary

- We systematically study the weak decays of doubly charmed baryons
- By comparing all the decay modes, we recommend to measure the following processes to search for doubly heavy baryons

$$\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$$

$$\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$$

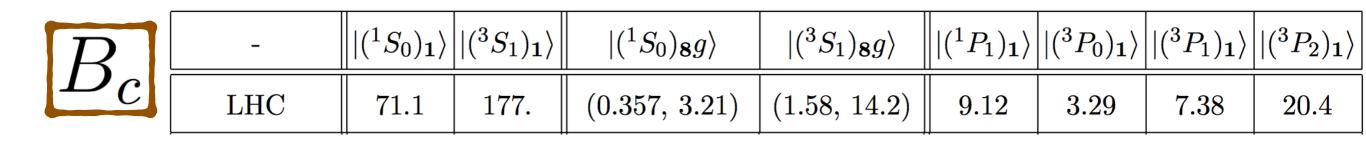
- And LHCb observed it via the first process.
- Outlook: similar analysis to search for other particles.

Thank you !

Backup

cross sections of production @ LHC

$\sigma(\Xi_{cc})$ is close to $\sigma(B_c)$ @ LHC


-cc	
	J

_	$\sqrt{S} = 7.0 \text{TeV}$	$\sqrt{S} = 14.0 \text{TeV}$
$[{}^{3}S_{1}]$	38.11	69.40
$\begin{bmatrix} {}^1S_0 \end{bmatrix}$	9.362	17.05
Total	47.47	86.45

in unit of nb

 $p_t \ge 4GeV \qquad |y| \le 1.5$

[J.-W. Zhang, X.-G. Wu, T. Zhong, Y. Yu, Z.-Y. Fang, Phys.Rev. D 83, 034026 (2011)]

LHC ($\sqrt{S} = 14.0 \text{ TeV}$) in unit of nb

[C.-H. Chang, C.-F. Qiao, J.-X. Wang, X.-G. Wu, Phys.Rev. D71 (2005) 074012]

 B_c well studied at LHCb,

discovery and establishment of Ξ_{cc} would not be far

The key issue is to select the decaying processes with the largest possibilities of observing doubly charmed baryons

Lifetimes

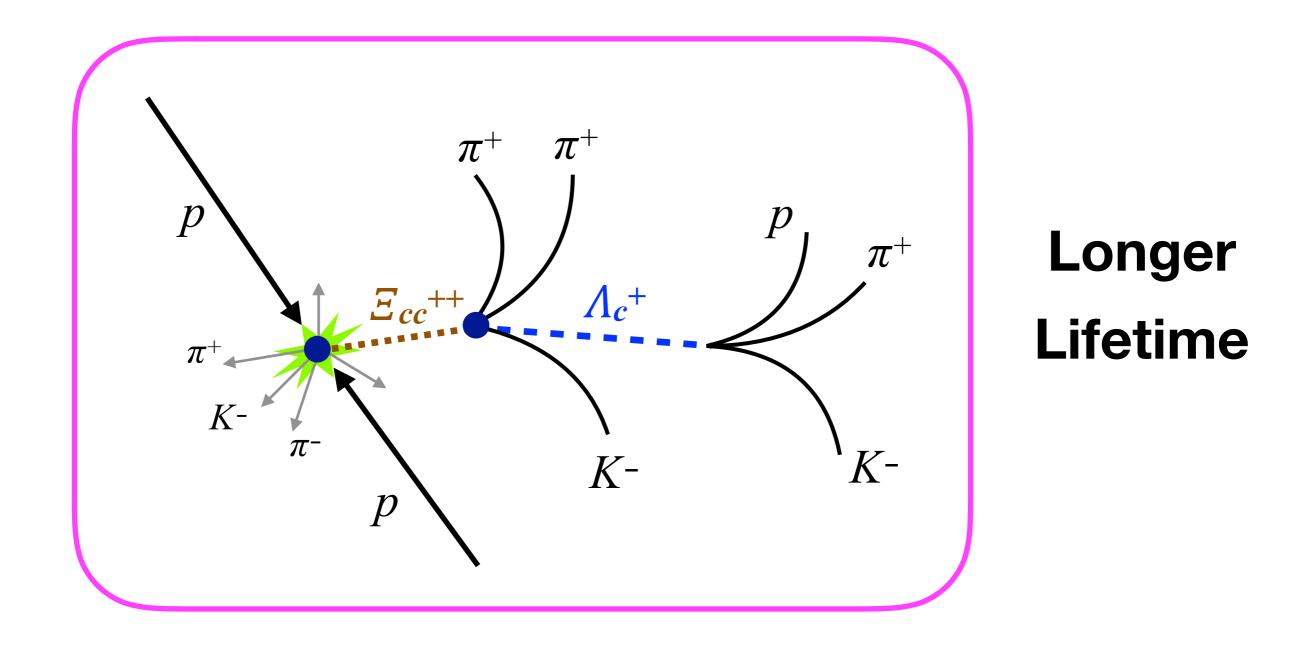
Literatures	<i>E_{cc}++</i> (fs)	Ξ_{cc} + (fs)
Karliner, Rosner, 2014	185	53
Kiselev, Likhoded, Onishchenko, 1998	430±100	110±10
Kiselev, Likhoded, 2002	460±50	160±50
Chang, Li, Li, Wang, 2007	670	250

But much less ambiguity of ratio of lifetimes

$$\mathcal{R}_{\tau} \equiv \frac{\tau_{\Xi_{cc}^+}}{\tau_{\Xi_{cc}^{++}}} = 0.25 \sim 0.37$$

$$\tau(\Xi_{cc}^{++}) \gg \tau(\Xi_{cc}^{+})$$

Effect of destructive Pauli interference


Longer lifetime of
$$\Xi_{cc}^{++}$$

 $\mathcal{R}_{\tau} \equiv \frac{\tau_{\Xi_{cc}^{+}}}{\tau_{\Xi_{cc}^{++}}} = 0.25 \sim 0.37 \qquad \tau(\Xi_{cc}^{++}) \gg \tau(\Xi_{cc}^{+})$

Longer lifetime ⇒ Larger branching fractions

$$\mathcal{B}_i = \Gamma_i \cdot \tau$$

 Longer lifetime ⇒ Higher efficiency of identification at hadron colliders

We recommend to search for Ξ_{cc}^{++} rather than Ξ_{cc}^{+}

colliders [41–43], the longer lifetime of the Ξ_{cc}^{++} baryon should make it significantly easier to observe than the Ξ_{cc}^{+} baryon in such experiments, due to the use of real-time (online) event-selection requirements designed to reject backgrounds originating from the primary interaction point. [LHCb, PRL119,112001(2017)]

$\begin{array}{l} \mbox{small lifetime} \\ \mbox{Cabibbo-} \\ \mbox{suppressed} \end{array} \xrightarrow{\begin{subarray}{l} \mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{0}\pi^{+})/\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+}) = \mathcal{R}_{\tau} = 0.25 \sim 0.37, \\ \end{subarray} \xrightarrow{\begin{subarray}{l} \mathcal{B}(\Xi_{cc}^{++} \to \Lambda_{c}^{+}\pi^{+})/\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+}) = 0.056, \\ \end{subarray} \xrightarrow{\begin{subarray}{l} \mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+}\ell^{+}\nu)/\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+}) = 0.71, \\ \end{subarray} \\ \end{subarray} \\ \end{subarray} \end{array}$

Other processes with large branching fractions, but

either have neutral final-state particles

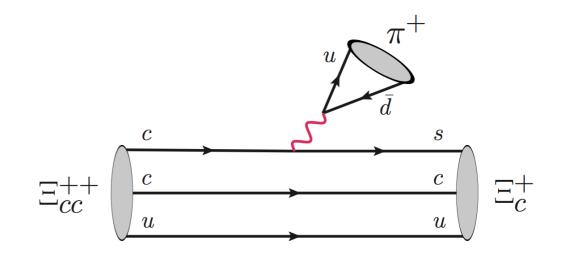
$$\Xi_c^+ \rho^+ (\to \pi^+ \pi^0) \qquad \qquad \Xi_c'^+ (\to \Xi_c^+ \gamma) \pi^+$$

• or have more tracks $\Xi_c^+ a_1^+ (\to \pi^+ \pi^+ \pi^-)$

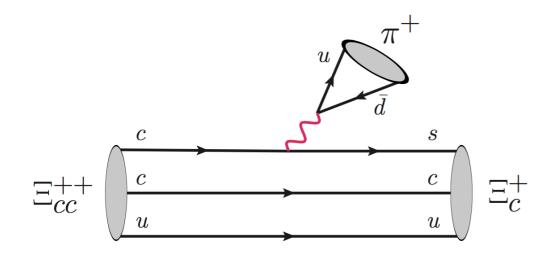
 $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$ is the best one to search for doubly heavy baryons among external W-emission processes

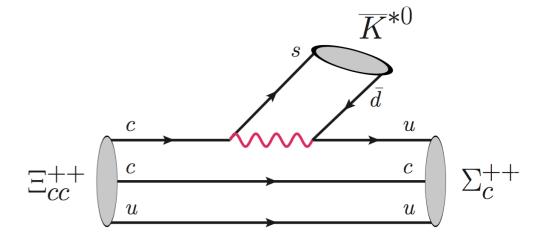
$$\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$$

Absolute branching fractions:


$$\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+}) = \left(\frac{7 \Xi_{cc}^{++}}{300 \,\mathrm{fs}}\right) \times 3.4\%$$

large enough for measurement

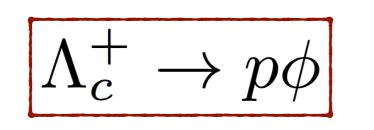

We suggest to measure $\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$ with the reconstruction of $\Xi_c^+ \to p K^- \pi^+$

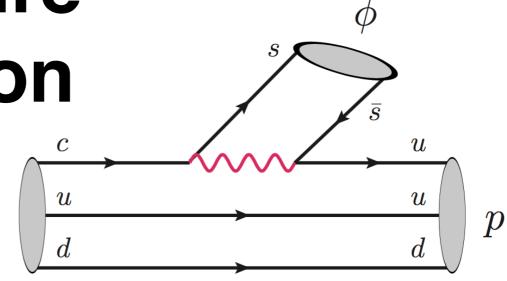

[FSY, et al, 1703.09086]

 $\mathcal{B}(\Xi_c^+ \to pK^-\pi^+)$ has never been directly measured but predicted to be $(2.2 \pm 0.8)\%$

Short-distance v.s. Long-distance Contributions

Br=3.4%


short-distance branching fractions


Br=0.003%

external W-emissioninternal W-emissioncolor-favoredcolor-suppressed $a_1(\mu_c)=1.07$ $a_2(\mu_c)=-0.02$

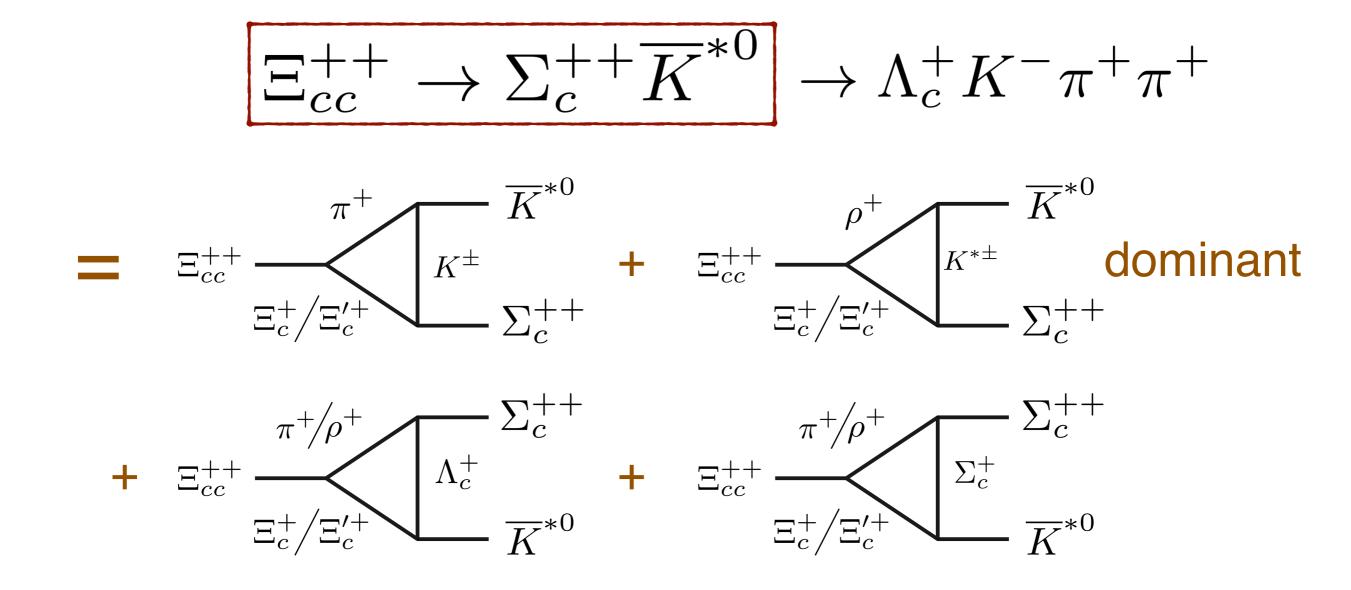
But long-distance contributions are significantly enhanced in charmed hadron decays

Indication from pure internal W-emission

Short-distance v.s. L

Long-distance

 $Br(SD)=10^{-6}$ $Ia_2(\mu_c)I=0.02$


 $Br(exp)=(1.04\pm0.21)\times10^{-3}$

 $la_2^{eff}(\mu_c) = 0.7$

large-N_c limit

Understanding long-distance contributions is essential to find a best process for the searches for doubly heavy baryons

 Λ_c^+

 $\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+}) = 3.4\%$ $\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \rho^{+}) = 6.3\%$ $\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{\prime+} \pi^{+}) = 2.4\%$ $\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{\prime+} \rho^{+}) = 8.7\%$

 $\mathcal{B}(\Xi_{cc}^{++} \to \Sigma_{c}^{++} \overline{K}^{*0}) = (3.8 \sim 24.6)\%$ $\times \frac{\tau_{\Xi_{cc}^{++}}}{300 \, \text{fs}}$

 $\eta = 1.0 \sim 2.0$

Large enough for measurements

Effective Lagrangian

$$\begin{split} \mathcal{L}_{\text{eff}} =& i \frac{g_{VPP}}{\sqrt{2}} Tr\{V^{\mu}[P,\partial_{\mu}P]\} + i \frac{g_{VVV}}{\sqrt{2}} Tr\{(\partial_{\nu}V_{\mu} - \partial_{\mu}V_{\nu})V^{\mu}V^{\nu}\} - ig_{DDV}(D_{i}\partial_{\mu}D^{j\dagger} - \partial_{\mu}D_{i}D^{j\dagger})(V^{\mu})_{j}^{i} \\ &+ ig_{VD^{*}D^{*}}(D_{i}^{*\nu}\partial_{\mu}D_{\nu}^{*j\dagger} - \partial_{\mu}D_{i}^{*\nu}D_{\nu}^{*j\dagger})(V^{\mu})_{j}^{i} + 4if_{VD^{*}D^{*}D^{*}}D_{i\mu}^{*\dagger}(\partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu})_{j}^{i}D_{\nu}^{*j} \\ &- ig_{PDD^{*}}(D^{i}\partial^{\mu}P_{ij}D_{\mu}^{*j\dagger} - h.c.) + g_{PBB}Tr[\overline{B}i\gamma_{5}PB] + g_{1VBB}Tr[\overline{B}\gamma_{\mu}V^{\mu}B] + \frac{g_{2VBB}}{2m_{B}}Tr[\overline{B}\sigma_{\mu\nu}\partial^{\mu}V^{\nu}B] \\ &+ \{g_{PB_{c\bar{3}}B_{c\bar{3}}}Tr[\overline{B}_{c\bar{3}}i\gamma_{5}PB_{c\bar{3}}] + (\mathcal{B}_{c\bar{3}} \rightarrow \mathcal{B}_{c6})\} + \{g_{PB_{c\bar{6}}B_{c\bar{3}}}Tr[\overline{B}_{c\bar{6}}i\gamma_{5}PB_{c\bar{3}}] + h.c.\}, \\ &+ \{g_{1VB_{c3}}\mathcal{B}_{c\bar{3}}}Tr[\overline{B}_{c\bar{3}}\gamma_{\mu}V^{\mu}B_{c\bar{3}}] + \frac{g_{2VB_{c\bar{3}}B_{c\bar{3}}}}{2m_{c\bar{3}}}Tr[\overline{B}_{c\bar{5}}\sigma_{\mu\nu}\partial^{\mu}V^{\mu}B_{c\bar{3}}] + (\mathcal{B}_{c\bar{3}} \rightarrow \mathcal{B}_{c6})\} \\ &+ \{g_{1VB_{c\bar{6}}B_{c\bar{3}}}Tr[\overline{B}_{c\bar{6}}\gamma_{\mu}V^{\mu}B_{c\bar{3}}] + \frac{g_{2VB_{c\bar{6}}B_{c\bar{3}}}}{2m_{c\bar{3}}}Tr[\overline{B}_{c\bar{6}}\sigma_{\mu\nu}\partial^{\mu}V^{\mu}B_{c\bar{3}}] + h.c.\} + g_{\Lambda_{c}(\Sigma_{c})ND_{q}}\{\overline{\Lambda}_{c}(\overline{\Sigma}_{c})i\gamma_{5}D_{q}N + h.c.\} \\ &+ g_{1\Lambda_{c}(\Sigma_{c})ND_{q}^{*}}\{\overline{\Lambda}_{c}(\overline{\Sigma}_{c})\gamma_{\mu}D_{q}^{*\mu}N + h.c.\} + \frac{g_{2\Lambda_{c}(\Sigma_{c})ND_{q}^{*}}}{m_{\Lambda_{c}(\Sigma_{c})}+m_{N}}\{\overline{\Lambda}_{c}(\overline{\Sigma}_{c})\sigma_{\mu\nu}\partial^{\mu}D_{q}^{*\nu}N + h.c.\} \end{split}$$

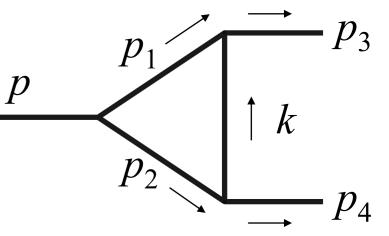
Hadronic coupling constants are related under the flavor SU(3) symmetry and the chiral and heavy quark symmetries

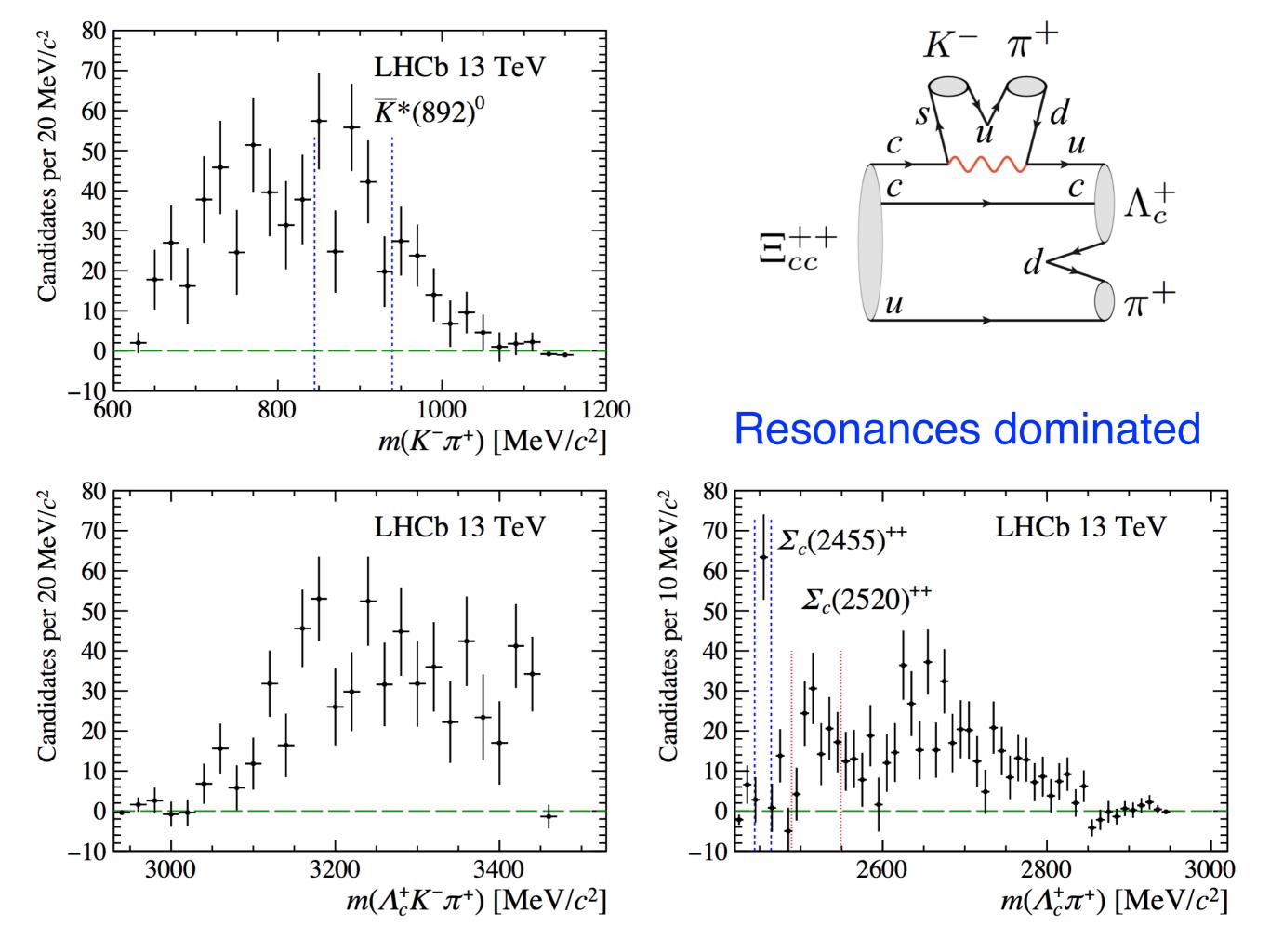
Uncertainties are mostly cancelled in relative Br's

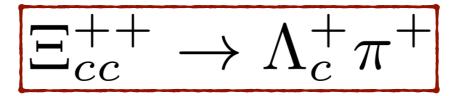
[Yan, *et al*, PRD46,1148(1992)] [Casalbuoni, *et al*, Phys.Rept.281,145(1997)] [Meissner, Phys.Rept.161,213(1988)]

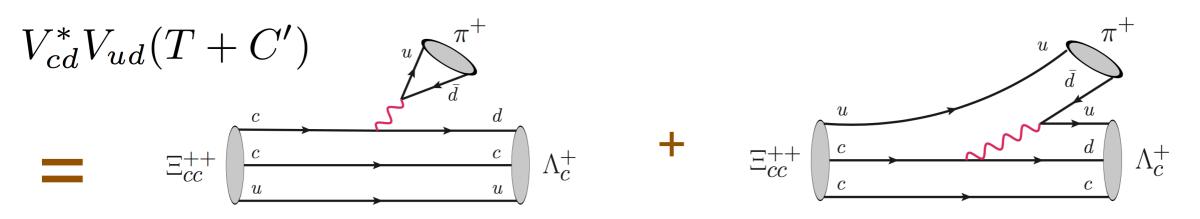
Theoretical Uncertainties

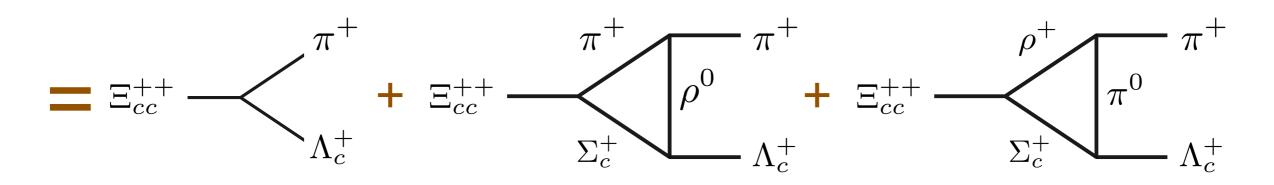
- Transition form factors —cancelled in relative Br's
- Hadronic coupling constants —cancelled in relative Br's

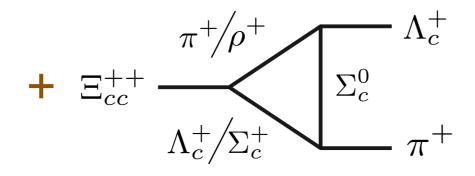

 $\Lambda = m_{\rm exc} + \eta \Lambda_{\rm OCD}$

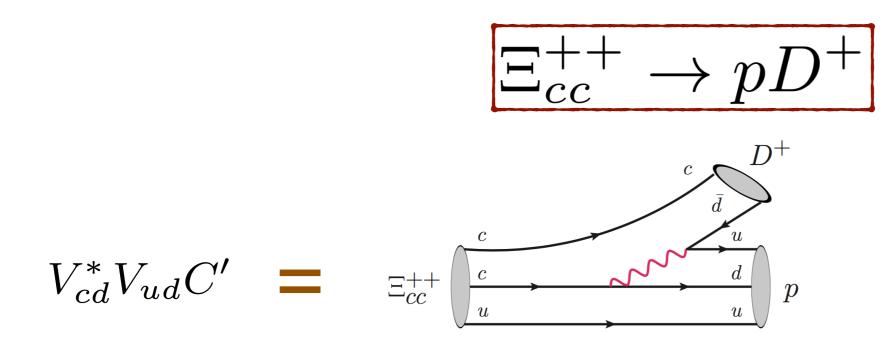

Off-shell effects of intermediate states

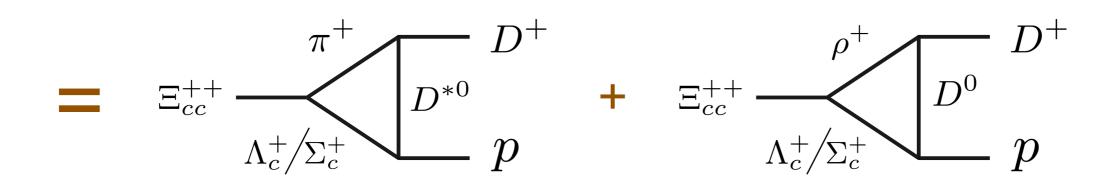

$$F(t,m) = \left(\frac{\Lambda^2 - m^2}{\Lambda^2 - t}\right)^n \qquad t \equiv (p_1 - p_3)^2 \qquad n = 1$$


[Cheng, Chua, Soni, PRD 71, 014030 (2005)]

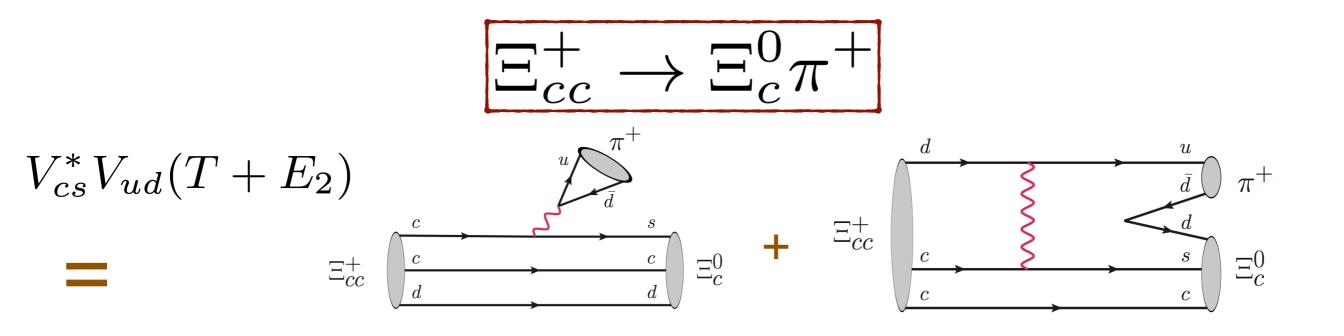

Results are very sensitive to the value of η No first-principle calculations for η We take η from 1.0 to 2.0

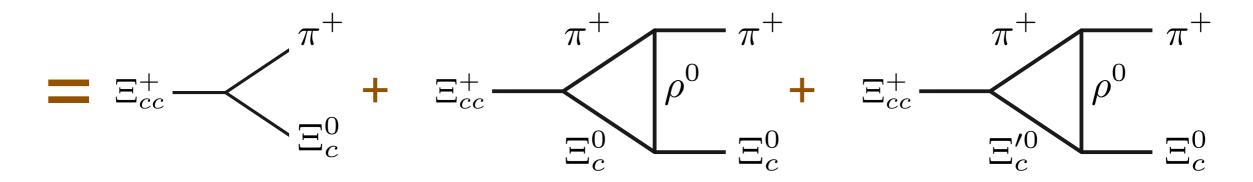


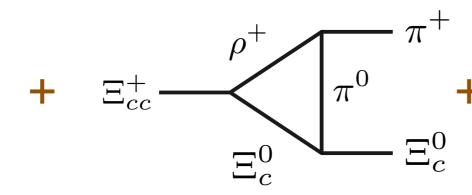


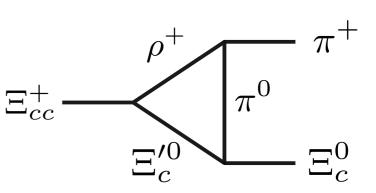


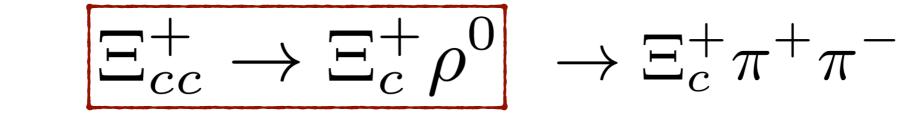


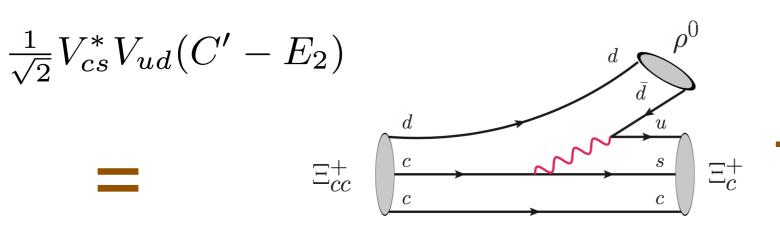


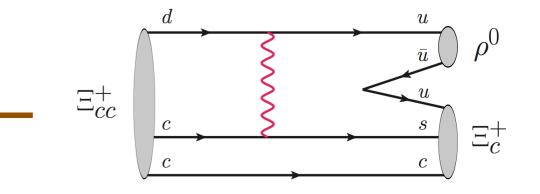


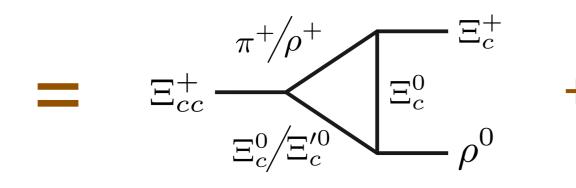


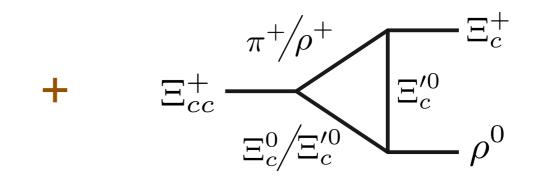


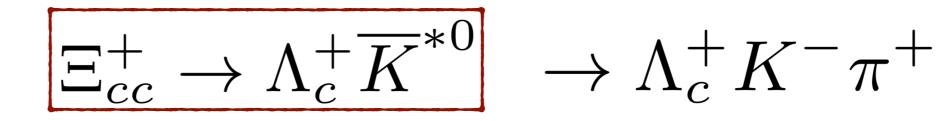


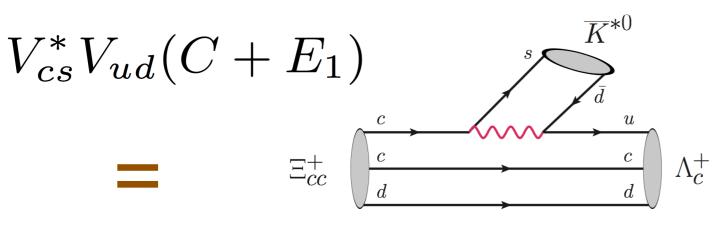


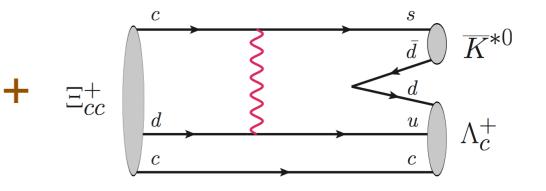


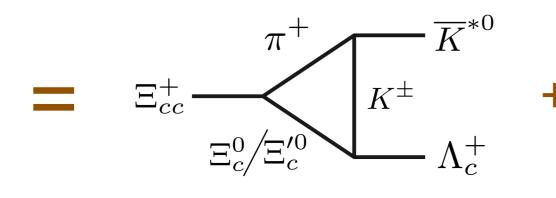


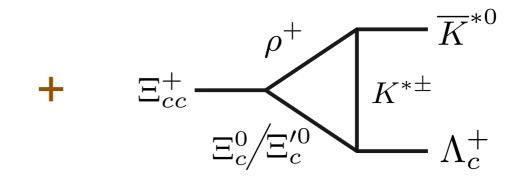


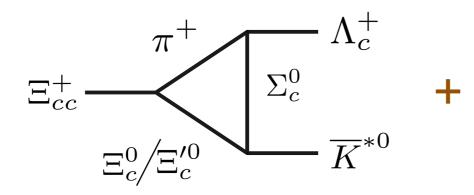


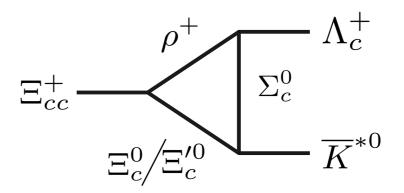


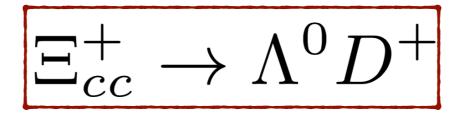


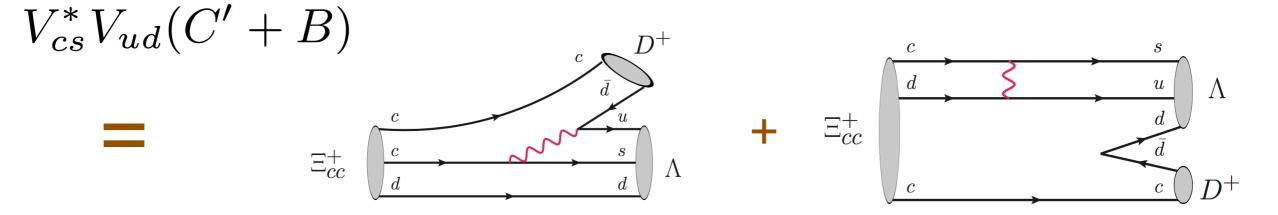


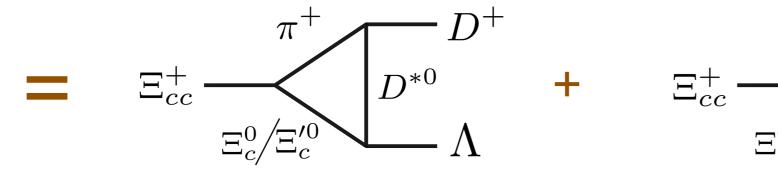


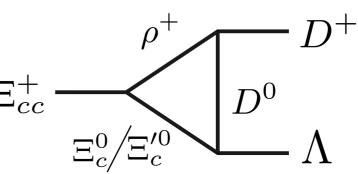


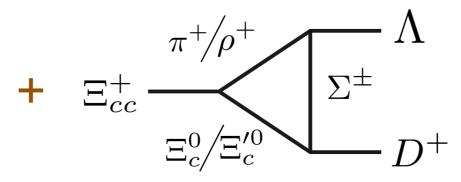












Branching Ratio of $E_c^+ \rightarrow pK^-\pi^+$

Under U-spin symmetry, *d*↔*s*

[FSY, *et al*, 1703.09086]