

Charmed Hadron Spectroscopy at Belle

XiaoLong Wang

Fudan University, Shanghai

on behalf of Belle Collaboration

9th International Workshop on Charm Physics Budker INP, Novosibirsk, Russia, May 21-25, 2018

The Belle Experiment

The new generation SuperKEKB has been launched, and Belle II recorded the first collisions on April 26, 2018, JST!

X.L. Wang (Fudan)

Physics of charmed baryons

- Charm quark is the first heavy quark, much heavier than *u*, *d*, *s* quarks
- Spin-Spin interaction is $\propto 1/m_1 \cdot m_2$
- Di-quark structure in light quarks
 - Di-quark as new degree of freedom.
 - Easier to understand baryon system

Every pair can not be distinguished.

Charmed baryon

Light di-quark and charm quark.

- The weak decay of charmed baryon has not been understood well.
- Three diagrams contribute in the tree level, but their strengths are not known.
- Ground state charm baryon is a good laboratory for studying strange baryons as decay proceed via *c* → *s* transition.
- Belle has collected $\sim 1 \text{ ab}^{-1} \text{ e}^+\text{e}^-$ data samples (mainly at $\Upsilon(4S)$).
 - $10^9 e^+e^-_- \rightarrow c\bar{c}$ samples
 - $7.7 \times 10^8 B\overline{B}$ samples
- Huge data sample enable to study various charmed baryons.

Outline

- Search for a *s*-version pentaquark via $\Lambda_c^+ \to \pi^0 p \phi$ decay
- Q Ω_c decays: 5 most precise measurements and 3 first measurements
- **③** Observation of $\Xi_c(2930)$ in $B^- \to K^- \Lambda_c^+ \Lambda_c^-$
- Evidence of $\Xi_c(2930)^{\pm}$ in $B^0 \to K^0 \Lambda_c^+ \Lambda_c^-$
- Onfirmation of excited Ω[']_c

Search for a strange pentaquark via $\Lambda_c^+ \rightarrow \pi^0 p \phi$ decay

• LHCb observed hidden charm pentaquark state in $\Lambda_b^0 \to K^- P_c^+ \to K^- (J/\psi p).$ R. Aaij et al., PRL115, 072002(2015)

Analogue search for hidden-strange pentaquark by switching b → c(Λ^b_b → Λ^c_c), c → s(J/ψ → φ): Λ⁺_c → π⁰P⁺_s → π⁰(φp).
 Λ⁺_c → π⁰φp decay has not been measured so far.

- $\Lambda_c^+ \to \phi p \pi^0$ is Cabibbo-suppressed decay.
- $\Lambda_c^+ \rightarrow p K^- \pi^+$ is used for reference, and the Cabibbo-favored decay $\Lambda_c^+ \rightarrow K^- \pi^+ p \pi^0$ is measured.

•
$$\frac{\mathcal{B}(\Lambda_c^+ \to K^- \pi^+ \rho \pi^0)}{\mathcal{B}(\Lambda_c^+ \to K^- \pi^+ \rho)} = (0.685 \pm 0.007 \pm 0.018)$$

Most precise measurement:

 $\mathcal{B}(\Lambda_c^+ \to K^- \pi^+ \rho \pi^0) = (4.42 \pm 0.05 \pm 0.12 \pm 0.16)\%$

- Previous measurement from BESIII: (4.53 \pm 0.23 \pm 0.30)%
- B. Pal et al., Phys.Rev.D96, 051102(R)(2017)

X.L. Wang (Fudan)

Search for a strange pentaquark via $\Lambda_c^+ \rightarrow \pi^0 p \phi$ decay (results)

• Perform 2D fit to $M_{K^+K^-p\pi^0}$ vs $M_{K^+K^-}$ plane.

 $e^{-\sum_{j}Y_{j}}\prod_{i}^{N}\left(\sum_{j}Y_{j}\mathcal{P}_{j}[m^{i}(K^{+}K^{-}p\pi^{0}),m^{i}(K^{+}K^{-})]\right)$

- No significant Λ⁺_c signal is observed. New upper limits:
 - $\mathcal{B}(\Lambda_c^+ \to \phi p \pi^0) < 15.3 \times 10^{-5}$ • $\mathcal{B}(\Lambda_c^+ \to \phi p \pi^0)_{NB} < 6.3 \times 10^{-5}$
- Also perform 2D fit in each $M_{K^+K^-}$ bin. No significant P_s^+ signal.
 - $\mathcal{B}(\Lambda_c^+ \to \pi^0 P_s^+) \times \mathcal{B}(P_s^+ \to \phi p) < 8.3 \times 10^{-5}.$

B. Pal et al., Phys.Rev.D96, 051102(R)(2017) X.L. Wang (Fudan) Char Among 4 ground state charmed baryons, Ω_c(css) is not studied well as cross section is small.

State	Λ_c^+	Ξ_c^0	Ξ_c^+	Ω_c
$\tau(ps)$	200 ± 6	112^{+13}_{-10}	442 ± 26	69 ± 1
$\Delta au / au$ (%)	3	1	6	17

- Only Ω_c has the same flavor light quarks (ss). Constructive interference is thought to be the origin of its short life time.
- Precise measurements will shed light on the dynamics of baryon weak decays.
- Belle performed measurements of 8 decay modes relative to the bench mark mode: $\Omega^{-}\pi^{+}$.
 - Most precisements: $\Omega^{-}\pi^{+}\pi^{0}$, $\Omega^{-}\pi^{+}\pi^{-}\pi^{+}$, $\Xi^{-}K^{-}\pi^{+}\pi^{+}$, and $\Xi^{0}K^{-}\pi^{+}$.
 - First measurements: $\Xi^- \bar{K}^0 \pi^+$, $\Xi^0 \bar{K}^0$ and $\Lambda \bar{K}^0 \bar{K}^0$.

Mass distributions for eight decay modes

J. Yelton et al., Phys. Rev. D 97, 032001(2018)

Search for intermidiate states

Intermediate resonances are studied for the first time in 3 decays.

J. Yelton et al., Phys. Rev. D 97, 032001(2018)

Mode	Branching ratio with respect to $\Omega^-\pi^+$	Substructure	Previous measurement
$\overline{\Omega^{-}\pi^{+}}$	1		
$\Omega^{-}\pi^{+}\pi^{0}$	$2.00 \pm 0.17 \pm 0.11$		$1.27 \pm 0.3 \pm 0.11$ [4]
$\Omega^- \rho^+$		>71%	
$\Omega^-\pi^+\pi^-\pi^+$	$0.32 \pm 0.05 \pm 0.02$		$0.28 \pm 0.09 \pm 0.01$ [4]
$\Xi^- K^- \pi^+ \pi^+$	$0.68 \pm 0.07 \pm 0.03$		$0.46 \pm 0.13 \pm 0.03$ [4]
$\Xi^{0}(1530)K^{-}\pi^{+}$		$(33 \pm 9)\%$	
$\Xi^- \bar{K}^{*0} \pi^+$		$(55 \pm 16)\%$	
$\Xi^0 K^- \pi^+$	$1.20 \pm 0.16 \pm 0.08$		$4.0 \pm 2.5 \pm 0.4$ [2]
$\Xi^0 \bar{K}^{*0}$		$(57 \pm 10)\%$	
$\Xi^- \overline{K^0} \pi^+$	$2.12 \pm 0.24 \pm 0.14$ NEW		
$\Xi^0 \overline{K^0}$	$1.64 \pm 0.26 \pm 0.12$ NEW		
$\Lambda \bar{K}^0 \bar{K}^0$	$1.72 \pm 0.32 \pm 0.14$ NEW		
$\Sigma^+ K^- K^- \pi^+$	<0.32 (90% CL)		

- Precision improved by factor 2 for already measured modes.
- First measurements of intermediate resonances.
 - Dominant contributions.
- Three first observations.

J. Yelton et al., Phys. Rev. D 97, 032001(2018)

Observation of $\Xi_c(2930)$

- Weak evidence of $\Xi_c(2930)$ was reported by BaBar in $B^- \to \Xi_c(2930)\bar{\Lambda}_c, \, \Xi_c(2930) \to \Lambda_c^+ K^-.$
- Assigned as one star in PDG (need confirmation).
- Belle performed the study with \sim 3 times larger statistics.

	Mass (MeV/c²)	Width (MeV)
BaBar	2931±3±5	$36 \pm 7 \pm 11$
Belle	$2928.9 \pm 3.0^{+0.8}$	$19.5 \pm 8.4^{+5.4}$

- The statistical significance of the peak at Belle is 5.1σ .
- Mass and width are consistent with each other.

X.L. Wang (Fudan)

Comments on $\Xi_c(2930)$

• $\Xi_c(2930)^0 = csd$ is the first charmed-strange baryon established in B decay.

 $M(\Lambda_c^+K^-)$ in $e^+e^- \rightarrow c\overline{c}$ by BaBar. No signal.

Candidates of corresponding Λ_c, Σ_c states?

• $B \to (\Lambda_c^+) \bar{p}$ by BaBar

• Possibly $\Sigma_c(2800)$, may be a different state.

•
$$M_{\equiv'_c} - M_{\Sigma_c}$$
 is about 120 MeV/ c^2

- Good candidate as partner of $\Xi_c(2930)$.
- Need confirmation by Belle/Belle II.
- As it is two-body B decay, spin can be determined un-ambiguously from helicity constraint if we have enough statistics. → Belle II

Search for Y in $\Lambda_c^+ \bar{\Lambda}_c^-$

• Y(4630) observed in $e^+e^- \rightarrow \Lambda_c \bar{\Lambda}_c$ when searching for Y(4660)

 Y(4660) and its spin partner, Y_η, are searched for in the Λ⁺_c Λ⁻_c invariant mass spectrum.

Update on $B^0 \to K^0 \Lambda_c^+ \bar{\Lambda_c}^-$

- $I(\Xi_c(2930)) = \frac{1}{2} \rightarrow \text{need to search for } \Xi_c(2930)^{\pm} \text{ in } B^0 \rightarrow K_s^0 \Lambda_c^+ \bar{\Lambda_c}^-$
- BaBar and Belle have studied $B^0 \to K^0 \Lambda_c^+ \bar{\Lambda}_c^-$ with 230×10^6 and $386 \times 10^6 B\bar{B}$ pairs, and found signals of 1.4σ and 6.6σ significanes, respectively.
- Using 772 × 10⁶ $B\bar{B}$ pairs and the reconstructions: $K_s^0 \to \pi^+\pi^-$ and $\Lambda_c^+ \to pK^-\pi^+/pK_s^0/\Lambda\pi^+(\to p\pi^-\pi^+)$.
- Quite clear $\Lambda_c^+ \bar{\Lambda}_c^-$ signals and B^0 signals.
 - $N^{
 m sig}=34.9\pm6.6$ with a statistical signal significance above 8.3σ
 - $\mathcal{B}(B^0 \to K^0 \Lambda_c^+ \bar{\Lambda}_c^-) = (3.84 \pm 0.73 \pm 0.48) \times 10^{-4}$

Being submitted to EPJC

$\Xi_c(2930)^{\pm}$ signals and search for Y(4660)

• $N_{\Xi_c^{\pm}} = 21.2 \pm 4.6$, stat. significance 4.1σ

•
$$M_{\Xi_c^{\pm}(2930)} = 2942.3 \pm 4.4 \pm 1.6 \text{ MeV}/c^2$$

•
$$\Gamma_{\Xi_c^{\pm}(2930)} = 14.8 \pm 8.8 \pm 7.1 \text{ MeV}$$

- No obvious Y(4660) or Y_η signal in M<sub>Λ⁺_c Λ_c⁻
 distribution.
 </sub>
- Inputs: Y(4660) parameters from Belle II, $M_{Y_{\eta}} = 4616 \text{ MeV}/c^2 \text{ and } \Gamma_{Y_{\eta}} = 30 \text{ MeV}$
- Upper Limits at 90% C.L.
 - $\mathcal{B}(B^0 \to K^0 Y(4660)) \mathcal{B}(Y(4660) \to \Lambda_c^+ \bar{\Lambda}_c^-) < 3.2 \times 10^{-4}$
 - $\mathcal{B}(B^0 \to K^0 Y_\eta) \mathcal{B}(Y_\eta \to \Lambda_c^+ \bar{\Lambda}_c^-) < 4.9 \times 10^{-4}$

Being submitted to EPJC

- LHCb reported 5 (+1) excited Ω_c states in the $\Xi_c^+ K^-$ final states.
- Belle studied the same final state to confirm their existence.
- Though statistical sensitivity of Belle is much lower than LHCb, study with different production may shed light on the nature of these states.

Confirmation by Belle

J. Yelton et al., PRD97, 051102(R)(2018)

- The Ξ_c^+ is reconstructed in 7 decay modes: $\Xi^-\pi^+\pi^+$, $\Lambda K^-\pi^+\pi^+$, $\Xi^0\pi^+$, $\Xi^0\pi^+\pi^-\pi^+$, $\Sigma^+K^-\pi^+$, $\Lambda K_s\pi^+$, and $\Sigma^0 K_s\pi^+$
- Widths are fixed to the value obtained by LHCb in the fit.
- 4 of the 5 states are confirmed $(> 3\sigma)$, except the $\Xi_c(3119)$.
- The mass is consistent with LHCb.

	LHCb	Belle
Ω _c (3000)	$3000.4 \pm 0.2 \pm 0.4^{+0.3}$ -0.5	$3000.7 \pm 1.0 \pm 0.2$ (3.9 σ)
Ω _c (3050)	$3050.2 \pm 0.1 \pm 0.1^{+0.3}_{-0.5}$	$3050.2 \pm 0.4 \pm 0.2$ (4.6 σ)
Ω _c (3066)	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3064.9 \pm 0.6 \pm 0.2$ (7.2 σ)
Ω _c (3090)	$3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$	3089.3±1.2±0.2 (5.7σ)
Ω _c (3119)	$3119.1 \pm 0.3 \pm 0.9^{+0.3}$ -0.5	$3119.0 \pm 0.3 \pm 0.9$ (0.4 σ)

Summary

- Belle is still actively working on the charmed baryons.
 - First measurement of $\Lambda_c^+ \to p\phi\pi^0$ from Belle, but no obvious P_s pentaquark state is observed.
 - Branching fractions of hadronic decay of Ω_c have been measured, 5 modes have the most precised measurements plus 3 modes of first observations.
 - Observation of $\Xi_c(2930^0)$ in $B^- \to K^- \Lambda_c^+ \bar{\Lambda}_c^-$
 - Evidence (4.1 σ) of $\Xi_c(2930)^{\pm}$ in $B^0 \to K^0 \Lambda_c^+ \bar{\Lambda}_c^-$
 - Confirmation of excited Ω_c states discovered by LHCb, 4 of the 5 states are confirmed with $> 3\sigma$ significance.
- Belle II will enable us to discover more states, determination of quantum numbers!

Thank you!

Back-up