

The inclusive reconstruction of Charmed mesons on B-factory

Olga Gzhymkovska, INP PAS Krakow 26/05/2018 **CHARM 2018**

Outline

- Introduction
- Reference channels
- Fitting procedure and Cross-feeds treatment
- MC results
- Conclusions

Introduction

- The meson containing the heavy quark is similar to a hydrogen atom.
- At first approximation the mass of this heavy quark (**Q**) is not important in the interaction, and the properties of such type mesons depend only on the charge and mass of the light quark (**q**).
- in the limit $\vec{m}_{o} \rightarrow \infty$ total angular momentum of mezon is $\vec{J} = \vec{J}_{a} + \vec{s}_{o}$

Potential models based on the heavy quarks symmetry predict for $Q\bar{q}$ system the occurrence of so-called spin doublets, classified by total momentum of light quark j_a .

Double-charm production in B decays

The $b \rightarrow ccs$ processes are used to test the description of hadronic effects, they are also a convenient place for studying the cs spectroscopy.

Inclusive Charm reconstruction - Missing mass

5

Reference channels

As a reference range was taken the missing mass range M_{χ} 1.7 - 2.2 GeV, in which there are well known decay channels $B \rightarrow D^{(*)}D_{s'}$, $B \rightarrow D^{(*)}D^*$, $B \rightarrow D^{(*)}D_s^*$.

Results for Data based on the full Belle data set

Fitting procedure

To determine the number of $B \rightarrow D^{(*)}D_{s(j)}^{(*)}$ signal events and its shape parameters the fit performed by the simultaneous unbinned extended maximum likelihood method (UEML fit) event by event was used for the M_x variable taking into account the cross-feeds between individual decay channels.

Probability density functions for the signal: $PDF_{si} = Gauss^{i}(M_{xi}^{j});$

background:
$$PDF_{bkg}^{i} = Cheb^{i}_{1,2,3}(M_{\chi i}^{j})$$
; and cross-feeds: $PDF_{x-feed}^{i \to k} = f_{x-feed}^{i}(M_{\chi k}^{j})$;

The probability function taking into account normalized PDF functions has the following form:

$$\begin{aligned} \mathcal{L} &= \frac{(N_{sig} + N_{bkg})^N \cdot e^{(N_{sig} + N_{bkg})}}{N} \prod_{j=1}^N (\sum_i (N_{sig}^{i \to i}(\mathcal{B}_i) \cdot PDF_{S_i}(M_{X_i}^j) + N_{bkg}^i \cdot PDF_{bkg}^i(M_{X_i}^j) + \sum_k N_{sig}^{i \to k}(\mathcal{B}_i) \cdot PDF_{x-feed}^{i \to k}(M_{X_k}^j))), \end{aligned}$$

MC results

Results of fitting MC to the missing mass distribution in whole examining range, taking to account the cross-feeds between individual channels of D mesons decays.

3000

Event²

2000

1500

1000

500

 $B^{-} \rightarrow D^{0} D_{s(J)}^{(*)}$ $B^0 \rightarrow D^- D_{s(l)}^{(*)}$ Evet / (0.05% D * D_{s1}(2460) D_{s1}(2460) D D_s* D_{s0}(2317) 3000 500 400 2000 cross-feeds from cross-feeds from 300 B->D*D_(*) B->D*D_(*) 200 1000 100 2.2 2.3 2.4 1.8 2.1 25 26 27 1.9 2.1 2.2 2.3 24 26 1.9 2 1.8 2 25 27 M_x(GeV) M_v(GeV)

Numerical results for MC in the range 1.7 - 2.7 GeV

_		
	B⁺ Decays	\mathcal{B} GMC [%]
	$B^+ \to \tilde{D}^0 D_s^+$	0.66 ± 0.05
	$B^+ \to \bar{D}^0 D_s^{*+}$	0.58 ± 0.05
	$B^+ \to \bar{D}^0 D^*_{s0}(2317)^+$	0.24 ± 0.05
\triangleleft	$B^+ \rightarrow \bar{D}^0 D_{s1}(2460)^+$	0.30 ± 0.05
	$B^+\to \bar{D}^0 D^*_{s2}(2573)^+$	0.013 ± 0.016
	$B^+ \to \bar{D}^{*0} D_s^+$	0.77 ± 0.18
	$B^+ \to \bar{D}^{*0} D^{*+}$	0.22 ± 0.17
	$B^+ \to \bar{D}^{*0} D_s^{*+}$	1.70 ± 0.12
	$B^+ \to \tilde{D}^{*0} D^*_{s0} (2317)^+$	0.013 ± 0.026
\triangleleft	$B^+ \to \bar{D}^{*0} D_{s1}(2460)^+$	0.71 ± 0.12
	$B^+\to \bar{D}^{*0} D^*_{s2}(2573)^+$	0.18 ± 0.11
- 1		

B ⁰ Decays	$\mathcal{B} \ \mathrm{GMC} \ [\%]$
$B^0 \rightarrow D^- D_s^+$	0.66 ± 0.06
$B^0 \to D^- D^{*+}$	0.020 ± 0.016
$B^0 \to D^- D_s^{*+}$	0.663 ± 0.066
$B^0 \to D^- D_{sJ}(2457)^+$	0.196 ± 0.059
$B^0 \to D^{*-} D_{sJ}(2573)^+$	0.07 ± 0.05
$B^0 \to D^{*-} D^+_s$	0.64 ± 0.10
$B^0 \to D^{*-} D^{*+}$	0.20 ± 0.09
$B^0 \rightarrow D^{*-} D^{*+}_s$	1.70 ± 0.12
$B^0 \to D^{*-} D_{sJ} (2460)^+$	0.71 ± 0.12
$B^0 \rightarrow D^- D_{sJ}(2573)^+$	0.175 ± 0.112

Conclusions and prospects

- On Belle data we can improve the BF measurements by reducing statistical and systematic uncertainties by factor 3 in respect to the current measurements.
- On Belle II data (50 times more) we can study the properties of higher excited states of D_{s(l)}^(*) mesons.
- Further improvement can come from the including in the simultaneous fit D** mesons.
- With the similar method we can study recoil mass in respect to D_s hence reconstruct inclusively D^(**) mesons.

Backup

Decay channel	PDG	Inclusive results
B⁺→D ⁰ D _{s1} (2460)	0.31 ± 0.1	0.43 ± 0.16 ± 0.13
B⁺→D* ⁰ D _{s1} (2460)	1.2 ± 0.3	1.12 ± 0.26 ± 0.20
B ⁰ →D ⁻ D _{s1} (2460)	0.35 ± 0.11	$0.26 \pm 0.15 \pm 0.07$
B ⁰ →D ^{*-} D _{s1} (2460)	0.93 ± 0.22	0.88 ± 0.20 ± 0.14