CHARM 2018

Review of recent developments on leptonic and semileptonic charm decays from lattice QCD

Università di Roma Tre, INFN Roma Tre, LPT Orsay

Lattice QCD

$$\mathcal{L}_{\text{QCD}} = \sum_{f} \bar{\psi}_f (\not \!\! D + m_f) \psi_f + \frac{1}{4} \text{tr} F_{\mu\nu} F^{\mu\nu}$$

Non-perturbative QCD contributions from first principles

Control all systematic uncertainties

- ◆ Discrete Euclidean Space-Time
- Finite spatial volume and time extent
- Path integrals rigorously defined and computed via Monte Carlo methods

Lattice QCD

$$\mathcal{L}_{\text{QCD}} = \sum_{f} \bar{\psi}_{f} (\not \!\! D + m_{f}) \psi_{f} + \frac{1}{4} \text{tr} F_{\mu\nu} F^{\mu\nu}$$

Non-perturbative QCD contributions from first principles

Control all systematic uncertainties

Parameters in a simulation:

- lacktriangle Lattice spacing: a
- lacktriangle Finite volume and time: $L,\,T$
- lacktriangle Quark masses: $m_{ud}, \, m_s, \, m_c, \, m_b$
- ♦ # see quarks: $N_f = 2, 2 + 1, 2 + 1 + 1, ...$

Lattice QCD

$$\mathcal{L}_{\text{QCD}} = \sum_{f} \bar{\psi}_f (\not \!\! D + m_f) \psi_f + \frac{1}{4} \text{tr} F_{\mu\nu} F^{\mu\nu}$$

QCD recovered by removing cutoffs

Continuum limit:

$$a \rightarrow 0$$

◆ Infinite volume limit:

$$L, T \to \infty$$

Interpolation/Extrapolation to physical quark masses:

$$m_f \to m_f^{phys}$$

To reliably estimate systematic errors:

repeat the calculation for several lattice spacing, volumes and sea-quark masses

Lattice QCD - State of the art

Quark masses on the lattice

Light quarks: discretization errors $\sim (a\Lambda_{QCD})^n$ finite size effects $\sim \exp{[-M_\pi L]}$ Extrapolation in m_{u.d} often necessary (ChPT)

Heavy quarks: discretization errors $\sim (am_h)^n$

- Charm quarks: $am_c \sim 0.3$ directly accessible on the lattice
- Bottom quarks: $am_b \gtrsim 1$ extrapolation or an effective theory (HQET, NRQCD, ...) is needed

Euclidean Correlators

Masses and hadronic matrix elements are extracted from Euclidean Correlators

Leptonic decays

- Experimental + LQCD inputs for the determination of CKM elements
- Systematic and statistical errors cancellation in the SU(3) ratio f_{D_s}/f_D

Leptonic decays - FLAG

FLAG2016

EPJC77 no.2, 112

FNAL/MILC 14A

PRD**90**, 074509

- Improved action
- ullet Physical mass: $ud,\,s,\,c$

ETM 14E

PRD**91**, 054507

- Improved action
- ullet Physical mass: $s,\ c$
- $a \sim 0.06 fm \div 0.09 fm$

RBC/UKQCD

JHEP**12** 008

- $N_f=2+1\,\mathrm{DW}$ fermions
- Physical mass: ud, s, c
- $a \sim 0.11 fm \div 0.07 fm$
- $am_c \lesssim 0.4$

$$f_D = 208.7(2.8)_{\text{stat}}(^{+2.1}_{-1.8})_{\text{sys}} \text{ MeV}$$

$$f_{D_s} = 246.4(1.9)_{\text{stat}}(^{+1.3}_{-1.9})_{\text{sys}} \,\text{MeV}$$

FNAL/MILC

arXiv:1712.09262

- $N_f = 2 + 1 + 1$
- 20 ensembles
- Light-quark mass down to $rac{1}{2}(m_u+m_d)$
- down to $a \sim 0.03 fm$
- Very high statistics (1000x4 samples)
- Big volumes (up to: 144³ x 288, 6 fm)
 - always $0.9m_c$, m_c ;
 - omit $am_c \ge 0.9$ from heavy-quark fits (need $< \pi/2$);

FNAL/MILC

- 492 data pts;
- 60 parameters;
- $\chi^2/\text{dof} = 466/432$;

$$f_D = 212.1(0.3)_{\text{stat}}(0.3)_{\text{syst}}(0.2)_{f_{\pi,\text{PDG}}} \text{ MeV}$$

$$f_{D_s} = 249.8(0.3)_{\text{stat}}(0.3)_{\text{syst}}(0.2)_{f_{\pi,PDG}} \text{ MeV}$$

Semileptonic decays

 q_{ℓ}

$$D \to \pi(K)\ell\nu$$

$$\begin{array}{c} C \text{KM matrix elements} \\ \frac{d\Gamma}{dq^2}(D \to P \ell \nu) = \frac{G_F^2}{24\pi^3} |V_{cd(s)}|^2 \frac{(q^2 - m_\ell^2)^2 \sqrt{E_P^2 - m_P^2}}{q^4 m_D^2} \times \\ \times \left[\left(1 + \frac{m_\ell^2}{2q^2} \right) m_D^2 (E_P^2 - m_P^2) \left(f_+(q^2) \right)^2 + \frac{3m_\ell^2}{8q^2} (m_D^2 - m_P^2)^2 |f_0(q^2)|^2 \right] \\ \text{Form factors} \\ \text{(Lattice QCD)} \end{array}$$

- Experimental + LQCD inputs for the determination of CKM elements
- Determination of the forms factors in all the physical q2 range
- Momentum dependence of the tensor form factor for BSM analysis

Semileptonic decays - FLAG

FLAG2016

EPJC77 no.2, 112

HPQCD

PRD**82**, 114506 PRD**84**, 114505

- $N_f=2+1$ flavors of HISQ
- Improved action
- Physical mass: s, c
- $a \sim 0.09 fm \div 0.12 fm$
- No renormalization
- D at rest frame
- Modified z-expansion
- f₀ from the Scalar matrix element

New (Preliminary)
(B. Chakraborty) @ LATTICE 2017

HPQCD

PRD**82**, 114506 PRD**84**, 114505

- $N_f = 2 + 1$ flavors of HISQ
- Improved action
- Physical mass: s, c
- $a \sim 0.09 fm \div 0.12 fm$
- No renormalization
- D at rest frame
- Modified z-expansion
- f₀ from the Scalar matrix element

•
$$N_f = 2 + 1 + 1$$

- Physical u/d quarks
- Both f_+ and f_0 over whole q^2 -range

ETMC

PRD**96** no.5, 054514 arXiv:1803.04807

- $N_f = 2 + 1 + 1$ flavors of tmW
- Improved action
- Physical mass: s, c
- $a \sim 0.06 fm \div 0.09 fm$
- No renormalization
- $f_{+,0}$ and f_T over whole q^2 -range
- Hypercubic discretization effects
- Modified z-expansion
- Vector & Scalar matrix elements

 $f_0(q^2)$ and $f_+(q^2)$ at the physical point

$$\chi^2/d.o.f. = 1.2$$
 $d.o.f. \approx 1100$

$$f_{+}^{D\to\pi}(0) = 0.612 (35)_{\text{Stat+fit}} (4)_{\text{Ch}} (7)_{\text{FSE}} (1)_{\text{Disc}} = 0.612 (36)$$

$$f_{+}^{D\to K}(0) = 0.765 (29)_{\text{Stat+fit}} (11)_{\text{Ch}} (1)_{\text{Disc}} = 0.765 (31)$$

JLQCD (T. Kaneko) @ LATTICE 2017 Preliminary

- $N_f = 2 + 1$ of DW fermions
- New ensembles: fine lattice spacing
- Improved action
- Physical mass: s, c
- $a \sim 0.05 fm \div 0.09 fm$
- Both f_+ and f_0 over whole q^2 -range
- D at rest frame
- q²=0 through BCL z-expansion

JLQCD (T. Kaneko) @ LATTICE 2017 Preliminary

Summary of results

Determination of Vcd and Vcs

Expt. $D \to K\ell\nu_{\ell}$	Mode	$ V_{cs} f_+^K(0)$
BES III (tagged) 1155	(D^0)	0.7195(35)(43)
CLEO-c (tagged) 1159	(D^0, D^+)	0.7189(64)(48)
CLEO-c (untagged) 1160	(D^0, D^+)	0.7436(76)(79)
BABAR 1158	(D^0)	0.7241(64)(60)
Belle 1157	(D^0)	0.700(19)
FOCUS 1162 and others		0.724(29)
Combined	(D^0, D^+)	0.7226(22)(26)
Expt. $D \to \pi \ell \nu_{\ell}$	mode	$ V_{cd} f_+^\pi(0)$
BES III (tagged) 1155	(D^0)	0.1422(25)(10)
CLEO-c (tagged) 1159	(D^0, D^+)	0.1507(42)(11)
CLEO-c (untagged) 1160	(D^0, D^+)	0.1394(58)(25)
BABAR 1158	(D^0)	0.1381(36)(22)
Belle [1157]	(D^0)	0.142(11)
Combined	(D^0, D^+)	0.1426(17)(8)

V_{cd(s)} from semileptonic decays (errors dominated by theoretical inputs)

	V_{cd}	V_{cs}
FLAG 2016	$0.2140(93)_{\text{lat}}(29)_{\text{exp}}$	$0.975(25)_{\text{lat}}(7)_{\text{exp}}$
ETMC	$0.2330 (133)_{\text{lat}} (31)_{\text{exp}}$	$0.945(38)_{\text{lat}}(4)_{\text{exp}}$
JLQCD	$0.232(17)_{\text{lat}}(3)_{\text{exp}}$	$1.035(64)_{\text{lat}}(5)_{\text{exp}}$

V_{cd(s)} from leptonic decays (errors dominated by experimental inputs)

		V_{cd}	V_{cs}
_	FLAG 2016	$0.2164 (14)_{\text{LQCD}} (49)_{\text{exp}}$	$1.008(5)_{\text{LQCD}}(16)_{\text{exp}}$
	FNAL/MILC	$0.2144(5)_{\text{LQCD}}(49)_{\text{exp}}(13)_{\text{EM}}$	$0.997(2)_{\text{LQCD}}(16)_{\text{exp}}(6)_{\text{EM}}$
	RBC/UKQCD	$0.2185(37)_{\text{LQCD}}(50)_{\text{exp}}$	$1.011(11)_{\text{LQCD}}(16)_{\text{exp}}$

CKM 2nd-row Unitarity

Conclusions & Outlooks

- LQCD simulations with very small lattice spacings and light see quarks at their physical masses are being performed
 - No need (reduced) of chiral extrapolation better precision
- ◆ LQCD predictions of the decay constants of the D and D_s mesons are very precise (errors below 1%, now ~0.2%). Uncertainties in CKM matrix elements dominated by experimental inputs
 - New determinations are required to confirm systematic errors are under control
- lacktriangle Determinations of $D_{(s)}$ semileptonic form factors still need to be improved. Uncertainties in CKM matrix elements dominated by LQCD inputs
 - f_{+,0} over whole q²-range
 - f_T over whole q²-range

Thank you for the attention

Other results

ETMC

$$N_f = 2 + 1 + 1$$

PRD**96**, 034524

$$\langle 0|\hat{V}_{\mu}|H_{\ell}^{*}(\vec{p},\lambda)\rangle = f_{H_{\ell}^{*}}M_{H_{\ell}^{*}}\epsilon_{\mu}^{\lambda}$$

$$(m_h + m_\ell)\langle 0|\hat{P}|H_\ell(\vec{p})\rangle = f_{H_\ell}M_{H_\ell}^2$$

$$f_{D^*}/f_D = 1.078(31)_{\text{stat}}(5)_{\text{input}}(6)_{t_{\text{min}}}(8)_{\text{disc}}(9)_{\text{chir}}[36]$$

$$f_{D_s^*}/f_{D_s} = 1.087(16)_{\text{stat}}(6)_{\text{input}}(6)_{t_{\text{min}}}(7)_{\text{disc}}(5)_{\text{chir}}[20]$$

CLS ensembles

$$N_f = 2$$

arXiv:1803.03065

B. Blossier, J. Heitger, M. Post

$$f_{D_s^*}/f_{D_s} = 1.14(2)$$

id	β	$(L/a)^3 \times (T/a)$	$\kappa_{ m sea}$	a [fm]	$m_{\pi} \; [\mathrm{MeV}]$	Lm_{π}	# cfgs	κ_s	κ_c
E5	5.3	$32^3 \times 64$	0.13625	0.0653	439	4.7	200	0.135777	0.12724
F6		$48^{3} \times 96$	0.13635		313	5	120	0.135741	0.12713
F7		$48^{3} \times 96$	0.13638		268	4.3	200	0.135730	0.12713
G8		$64^3 \times 128$	0.13642		194	4.1	176	0.135705	0.12710
N6	5.5	$48^3 \times 96$	0.13667	0.0483	341	4	192	0.136250	0.13026
O7		$64^3 \times 128$	0.13671		269	4.2	160	0.136243	0.13022

Extraction of the form factors

The two semileptonic form factors f $_{\rm 0}$ and f $_{\rm +}$ can be determined from the matrix element of the vector current

$$f_{+}(q^{2}) = \frac{(E_{D} - E_{P}) \langle \hat{V}_{i} \rangle - (p_{D i} - p_{P i}) \langle \hat{V}_{0} \rangle}{2E_{D} p_{P i} - 2E_{P} p_{D i}}$$

$$f_{-}(q^{2}) = \frac{\left(p_{Di} + p_{Pi}\right)\langle \widehat{V}_{0}\rangle - \left(E_{D} + E_{P}\right)\langle \widehat{V}_{i}\rangle}{2E_{D} p_{Pi} - 2E_{P} p_{Di}}$$

$$f_0(q^2) = f_+(q^2) + \frac{q^2}{M_D^2 - M_D^2} f_-(q^2)$$

$$V_{\mu} = \bar{c}\gamma_{\mu}d$$
$$S = \bar{c}d$$

An alternative way to determine f₀ is to use the scalar density

$$f_0(q^2) = \frac{\mu_c - \mu_q}{M_D^2 - M_P^2} \langle P(p_P) | S | D(p_D) \rangle$$

CHARM 2018 Giorgio Salerno

Simulation Details

$$\vec{p}_D = \frac{2\pi}{L}\vec{\theta}_1$$

$$\vec{p}_\pi = \frac{2\pi}{L}\vec{\theta}_2$$

$$\vec{\theta} = \theta(1, 1, 1)$$

Both the D and the $\pi(K)$ mesons can have non-zero momentum

β	V/a^4	θ	
1.90	$32^3 \times 64$	0.0,	$\pm 0.200,$
		$\pm 0.467,$	± 0.867
	$24^3 \times 48$	0.0,	$\pm 0.150,$
		$\pm 0.350,$	± 0.650
1.95	$32^3 \times 64$	0.0,	$\pm 0.183,$
		$\pm 0.427,$	± 0.794
	$24^3 \times 48$	0.0,	$\pm 0.138,$
		$\pm 0.321,$	± 0.596
2.10	$48^3 \times 96$	0.0,	$\pm 0.212,$
		$\pm 0.493,$	± 0.916

Lorentz Symmetry Breaking

Results

In the continuum limit

CHARM 2018 Giorgio Salerno

Determination of Vcd and Vcs

$$\frac{d\Gamma(D \to P\ell\nu)}{dq^2} = \frac{G_F^2 |V_{cx}|^2}{24\pi^3} |\vec{p}_P|^3 |f_+^{DP}(q^2)|^2 \qquad \longrightarrow \qquad V_{cx}(q_i^2) = \sqrt{\frac{24\pi^3}{G_F^2} \frac{\Delta\Gamma(q_i^2)}{I(q_i^2)}}$$

$$q^2 \in [0, q_{\text{max}}^2]$$

 $|V_{cd}| = 0.2341 (74) |V_{cs}| = 0.970 (33)$

 $q^{2} = 0$ $|V_{cd}| = 0.2330 (137)$ $|V_{cs}| = 0.945 (38)$

3-points correlators

$$\frac{\langle 0|O_{\pi}(0)|\pi(\mathbf{p}_{\pi})\rangle\langle D(\mathbf{p}_{D})|O_{D}^{\dagger}(0)|0\rangle e^{-E_{D}t}e^{-E_{\pi}(t'-t)}}{(2E_{D})(2E_{\pi})}\times\langle \pi(\mathbf{p}_{\pi})|\Gamma(0)|D(\mathbf{p}_{D})\rangle$$

From 2-point correlators

Form factors

Giorgio Salerno

Euclidean Correlators

$$C(t) \equiv \langle O_{\pi}(t) O_{\pi}^{\dagger}(0) \rangle \approx \sum_{n} \frac{|\langle 0| O_{\pi}(0) | n \rangle|^{2}}{2E_{n}} \exp[-E_{n}t] \xrightarrow[t \to \infty]{} \frac{|\langle 0| O_{\pi}(0) | \pi \rangle|^{2}}{2M_{\pi}} \exp[-M_{\pi}t]$$

Calculated on the lattice (Importance sampling Monte Carlo)

$$\frac{1}{Z} \int \mathcal{D}[\phi] O_1(\phi) O_2(\phi) e^{-S_E[\phi]} \simeq \frac{1}{N_c} \sum_{c=1}^{N_c} O_1(\phi_c) O_2(\phi_c)$$

$$(\Delta O)^2 = \frac{1}{N_c} \sum_{c=1}^{N_c} (O(\phi_c) - \langle O \rangle)^2$$
 Statistical error $\sim \frac{1}{\sqrt{N_c}}$

Quenching

$$\int \mathcal{D}[U] \, \mathcal{D}[\psi, \bar{\psi}] \, e^{-S_g[U]} = \int \mathcal{D}[U] \, \det M \, e^{-S_g[U]}$$

Gaussian integral for anticommutative (Grassmann) variables det M encodes the contribution of see quark loops

Modified z-expansion

$$f_{+}^{D \to \pi}(q^{2}) = \frac{f^{D \to \pi}(0, a^{2}) + c_{+}(a^{2})(z - z_{0})(1 + \frac{z + z_{0}}{2})}{1 - \frac{q^{2}}{M_{V}^{2}}}$$

$$f_{0}^{D \to \pi}(q^{2}) = \frac{f^{D \to \pi}(0, a^{2}) + c_{0}(a^{2})(z - z_{0})(1 + \frac{z + z_{0}}{2})}{1 - \frac{q^{2}}{M_{S}^{2}}K_{FSE}^{0}(L)}$$

$$t_{+} = (M_{D} + M_{P})^{2}$$

$$t_{0} = (M_{D} + M_{P})(\sqrt{M_{D}} - \sqrt{M_{P}})^{2}$$

$$z = \frac{\sqrt{t_{+} - q^{2}} - \sqrt{t_{+} - t_{0}}}{\sqrt{t_{+} - q^{2}} + \sqrt{t_{+} - t_{0}}}$$

$$z_{0} = z(q^{2} = 0)$$

$$t_{+} = (M_{D} + M_{P})^{2}$$

$$t_{0} = (M_{D} + M_{P})(\sqrt{M_{D}} - \sqrt{M_{P}})^{2}$$

$$z = \frac{\sqrt{t_{+} - q^{2}} - \sqrt{t_{+} - t_{0}}}{\sqrt{t_{+} - q^{2}} + \sqrt{t_{+} - t_{0}}}$$

$$z_{0} = z(q^{2} = 0)$$

$$f_{+}^{D \to K}(q^{2}) = \frac{f^{D \to K}(0, a^{2}) + c_{+}(a^{2})(z - z_{0})\left(1 + \frac{z + z_{0}}{2}\right)}{1 - \frac{q^{2}}{M_{D_{s}^{*}}^{2}}(1 + P_{+}a^{2})}$$

$$f_0^{D \to K}(q^2) = f^{D \to K}(0, a^2) + c_0(a^2) (z - z_0) \left(1 + \frac{z + z_0}{2} \right)$$

 $c_+(a^2)$ and $c_0(a^2)$ have a polynomial dependence on a^2

 M_V and M_S are parameters left free to move in the fit

$$f_{+}(0, a^{2}) = f_{0}(0, a^{2}) \equiv f(0, a^{2})$$

ETMC - Tensor form factor

$f_T(q^2)$ at the physical point

ETMC

$$f_T^{D\pi}(0) = 0.506 (79)$$

 $f_T^{DK}(0) = 0.687 (54)$

Giorgio Salerno