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Open bottom tetraquarks
and their relation to doubly charmed baryons

• Doubly bottom tetraquarks and charmed bottom tetraquarks will be discussed
through the combined lens of lattice QCD and effective field theories.

• Existing experimental input from heavy mesons, heavy baryons, and
a doubly charmed baryon will provide valuable insight.

• Prospects for experimental observation of open bottom tetraquarks will be
considered.

randy.lewis@yorku.ca
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Binding in a light diquark
The strong force within qq is more attractive with I = 0 than with I = 1.

Known baryon masses show the difference:

randy.lewis@yorku.ca 5/19

light diquarks prefer spin zero
The ud diquark binds more strongly in spin 0 (⇤) than spin 1 (⌃).
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To make a tetraquark, replace the heavy quark Q with a heavy anti-diquark Q̄Q̄.

What is the binding within Q̄Q̄?. . .
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Lattice QCD and lattice NRQCD

Lattice QCD is a first-principles approach to strong interactions.
Statistical and systematic errors can be quantified and managed.

Typical lattice spacings are too large to handle a dynamical bottom quark.
This is no problem because there is an effective field theory: lattice NRQCD.

The lattice NRQCD Hamiltonian is a familiar non-relativistic expansion:
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Lepage,Magnea,Nakleh,Magnea,Hornbostel,PRD46(1992)4052

Interactions with gluons (and thus light quarks) come through Ẽ, B̃ and ∆̃.
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Hadron spectrum from lattice QCD
22 15. Quark model
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Figure 15.6: Hadron spectrum from lattice QCD. Comprehensive results for
mesons and baryons are from MILC [52,53], PACS-CS [54], BMW [55],
QCDSF [56], and ETM [74]. Results for η and η′ are from RBC & UKQCD [7],
Hadron Spectrum [59]( also the only ω mass), UKQCD [58], and Michael, Ottnad,
and Urbach [60]. Results for heavy-light hadrons from Fermilab-MILC [63],
HPQCD [64,65], and Mohler and Woloshyn [66]. Circles, squares, diamonds,
and triangles stand for staggered, Wilson, twisted-mass Wilson, and chiral sea
quarks, respectively. Asterisks represent anisotropic lattices. Open symbols denote
the masses used to fix parameters. Filled symbols (and asterisks) denote results.
Red, orange, yellow, green, and blue stand for increasing numbers of ensembles (i.e.,
lattice spacing and sea quark mass). Black symbols stand for results with 2+1+1
flavors of sea quarks. Horizontal bars (gray boxes) denote experimentally measured
masses (widths). b-flavored meson masses are offset by −4000 MeV.

endeavor. These simulations use Non-Relativistic QCD (NRQCD) or Heavy Quark
Effective Theory (HQET), systematic expansions of the QCD Lagrangian in powers
of the heavy quark velocity, or the heavy quark mass. Terms in the Lagrangian have
obvious quark model analogs, but are derived directly from QCD. For example, the heavy
quark potential is a derived quantity, extracted from simulations. Fig. 15.7 shows the
mass spectrum for mesons containing at least one heavy (b or c) quark from Ref. 65.
It also contains results from Refs. 67 and 68. The calculations uses a discretization of
nonrelativistic QCD for bottom quarks with charm and lighter quarks being handled with
an improved relativistic action. Four flavors (u, d, s, c) of dynamical quarks are included.

Fig. 15.8 shows a compilation of recent lattice results for doubly and triply charmed
baryons, provided by S. Meinel [69]. The state recently announced by LHCb [29] is also
shown. Note that the lattice calculations for the mass of this state were predictions, not
postdictions.

December 1, 2017 09:35

Particle Data Group, 2017
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ccq and ccc baryons from lattice QCD
24 15. Quark model
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Figure 15.8: Comparison of lattice QCD results for the doubly and triply charmed
baryon masses. Labels are Liu, et al., [70]; Briceno, et al., [71]; Namekawa, et
al., [72]; Padmanath, et al., [73]; Alexandrou, et al., [74]; Brown, et al., [75];
Perez-Rubio et al., [76] Alexandrou and Kallidonis 2017, [77]. Only calculations
with dynamical light quarks are included; for the doubly charmed baryons, only
calculations were performed at or extrapolated to the physical pion mass are shown.
Results without estimates of systematic uncertainties are labeled “stat. only”. The
lattice spacing values used in the calculations are also given; a = 0 indicates that
the results have been extrapolated to the continuum limit. In the plot of the doubly
charmed baryons, the recently announced experimental result for the Ξ+

cc mass from
LHCb [29] is shown with a horizontal line.

Modern calculations use a large bases of trial states, which allow them to probe many
quantum number channels simultaneously. This is vital for studying “difficult sectors” of
QCD, such as the isoscalar mesons. A recent example of meson spectroscopy where this
is done, by Ref. 61, is shown in Fig. 15.9. The quark masses are still heavier than their
physical values, so the pion is at 524 MeV. The authors can assign a relative composition
of nonstrange and strange quark content to their states, observing, for example, a
nonstrange ω and a strange φ. Some states also have a substantial component of gluonic
excitation. Note especially the three exotic channels JPC = 1−+, 0+−, and 2+−, with
states around 2 GeV. These calculations will continue to improve as the quark masses are
carried lower.

The interesting physics questions of excited baryon spectroscopy to be addressed are
precisely those enumerated in the last section. An example of a recent calculation, due
to Ref. 78 is shown in Fig. 15.10. Notice that the pion is not yet at its physical value.
The lightest positive parity state is the nucleon, and the Roper resonance has not yet
appeared as a light state.

December 1, 2017 09:35

Particle Data Group, 2017

Note: The LHCb Ξcc measurement came after the lattice predictions above.
The original quenched lattice QCD predictions also agree: Lewis,Mathur,Woloshyn,PRD64(2001)094509

Mathur,Lewis,Woloshyn,PRD66(2002)014502
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Q̄Q̄ binding energy

Lattice QCD shows the approach toward mQ →∞ for QQ = ss, cc, bb.
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Stability of qq′Q̄Q̄ tetraquarks

For sufficiently heavy Q, there is a strong-interaction stable qq′Q̄Q̄ tetraquark.

• Consider decay into two mesons:

E(qQ̄) + E(q′Q̄)− E(qq′Q̄Q̄) =
2

9
mQα

2
s (which is positive)

Therefore this tetraquark cannot decay to two mesons.
Carlson,Heller,Tjon,PRD37(1988)744

• Consider decay into two baryons:

E(qq′q′′) + E(q̄′′Q̄Q̄)− E(qq′Q̄Q̄) = E(qq′q′′) + E(q̄′′Q)− E(qq′Q)

≥ E(proton) + E(q̄′′Q)− E(qq′Q)

Known masses for charm and bottom confirm that the right-hand side is positive.
Therefore this tetraquark cannot decay into two baryons.

Eichten,Quigg,PRL119(2017)202002

Is the bottom quark sufficiently heavy?. . .
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Lattice results for udb̄b̄ and `sb̄b̄ tetraquarks

tilde denotes tree-level improvement and the c5, c6 terms
remove the remaining OðaÞ and Oða2Þ errors.
To tune the bottom quark bare mass we calculated the

ϒ-meson correlation function using local-local hadron
correlators at finite momentum. The tuning is implemented
via the momentum dispersion relation

Eðp̂Þ ¼ M0 þ
1

2

p̂2

Mph
þ
X

n>1

Oðp̂½2n&Þ; ð10Þ

wherewe use lattice momenta p̂μ ¼ a sin ð2πnμ=LμÞ.Mph is
the physical hadronmass and the values quoted in Table I are
from a linear fit in p̂2 to Eq. (10). This setup is known to
account for relativistic effects at the few percent level while
capturing the relevant heavy-light quark physics [23,24].
(Our own heavy meson and baryon spectrum agrees well
with Ref. [24], and a publication is in preparation.)
Numerical results and chiral and volume

extrapolations.—Our results for the ground (red) and
excited state (blue) binding energies are shown in Fig. 1.
For presentational purposes, we show these as log-effective
binding energies. For comparison, results obtained from the
single-operator diquark-antidiquark (grey dashes) and
meson-meson (grey crosses) analyses are also included.
The results show that both operators couple well to the
ground state. We also see, as t=a increases, the second
GEVP eigenvalue approaches the relevant two-meson PV
threshold in both channels, strongly supporting an inter-
pretation of the corresponding ground states as genuine
tetraquarks. (In addition, we estimated the effect of a
possible attractive meson-meson interaction for a hypo-
thetical BB system using the finite volume relations of
Ref. [25] and find it to be at the ΔE ≈ −10 MeV level for
both the ground and threshold energies.)
To estimate the binding energy, we perform a single

exponential fit, Eq. (8), to the first eigenvalue λðtÞ and
accept those that satisfy χ2=d:o:f: ∼ 1. In the case of an
increasing exponential in time, which would indicate a
state below threshold, the quality of χ2=d:o:f: diminishes
as more noise dominated points are added at long
distances. We observe this effect and, in order to give
conservative estimates, for our final results we choose

the longest fit range with χ2=d:o:f:≃ 1 in t=a; these are
7 → 19 and 12 → 25 for the udb̄ b̄ and lsb̄ b̄ channels,
respectively.
We use a linear extrapolation in m2

π to determine our
physical-point tetraquark bindings. (This is the leading
order chiral behavior when the strange quark masses on all
ensembles have been tuned to the physical value [26], as
was done here.) As the ensemble EL has a small mπL, we
estimate our finite volume and chiral extrapolation sys-
tematic by performing two such extrapolations, one using
only EH and EM and the other using all three ensembles,
taking half the difference of the resulting central values as
our systematic error. These extrapolations are shown in
Fig. 2, with the filled red symbols giving the physical-point
results for the three-ensemble fits, and the open blue
symbols the corresponding results for the fits employing
only EH and EM. The results of both extrapolations are in
good agreement, implying that finite volume errors are
under control. The individual-ensemble and extrapolated
physical-point results are given in Table II. Light quark
cutoff effects are at the Oða2Þ level and hence are expected
to be small, while the NRQCD Hamiltonian in Eq. (9) is
Oða2Þ improved.
Decay modes suitable for experimental detection.—We

discuss briefly decay modes likely to be amenable to
experimental searches for the 3̄F, JP ¼ 1þ qq0b̄ b̄ tetra-
quark candidates identified above.
With a binding of 189 MeV relative to its BB' strong-

interaction-stability threshold, a udb̄ b̄ tetraquark will lie
below BB threshold and hence will also be stable with
respect to electromagnetic decays. The same is true of a
lsb̄ b̄ tetraquark bound by 98 MeV. With both the udb̄ b̄
and lsb̄ b̄ tetraquarks decaying only weakly, the resulting
displaced decay vertices should aid in searching for these
states experimentally.
Examples of fully reconstructable modes for the weak

decay of the udb̄ b̄ tetraquark are BþD̄0 and J=ΨBþK0,
with D̄0 and Bþ being fully reconstructable from
D̄0 → Kþπ−, Bþ → D̄0πþ, and K0 from its πþπ−KS decay.
Similarly, J=ΨBsKþ and J=ΨBþϕ would serve as fully
reconstructable modes for the weak decay of the usb̄ b̄
tetraquark, and BþD−

s , BsD̄0, J=ΨB0ϕ, and J=ΨBsK0 for
the dsb̄ b̄ tetraquark.

FIG. 2. Chiral extrapolations of the udb̄ b̄ and lsb̄ b̄ binding
energies. The red lines and points show the extrapolations using
all three ensembles, and the blue points those using EH and EM.

TABLE II. Ensemble and extrapolated physical-point (Phys)
udb̄ b̄ andlsb̄ b̄ binding energies from fitting all ensembles. Errors
for the individual ensembles are statistical. For the extrapolated
physical-point entries, the first error is statistical and the second the
systematic error estimated as described in the text.

Ensemble ΔEudb̄ b̄ [MeV] ΔElsb̄ b̄ [MeV]

EH −139ð5Þ −81ð8Þ
EM −163ð8Þ −94ð9Þ
EL −190ð12Þ −96ð7Þ
Phys −189ð10Þð3Þ −98ð7Þð3Þ

PRL 118, 142001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
7 APRIL 2017

142001-4

Results are from a correlation matrix of two I(JP ) = 0(1+) operators:

(uTaCγ5db)(b̄aCγib̄
T
b ) and (b̄aγ5ua)(b̄bγidb)− (b̄aγ5da)(b̄bγiub)

Francis,Hudspith,Lewis,Maltman,PRL118(2017)142001
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Independent confirmation
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Figure 1. Left panel: Preliminary results for udb̄b̄ tetraquark state. See text for the description of effective
masses. Right panel : Binding energies for a = 0.0583 fm (data in blue) and a = 0.1207 fm (data in green)
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Figure 2. Preliminary results for usb̄b̄. Left panel : Effective energies for the threshold state and the lowest level
of the GEVP solution. Right panel : Summary of binding energies at lower pion masses at a = 0.1207 fm.

4.2 Results for usb̄b̄

The results for usb̄b̄ tetraquarks are shown in Fig 2. The threshold here is that of Bs meson and B∗
meson. As before, the left panel indicates effective masses of the product of the correlators of Bs
and B∗ (shown in green) and the lowest level of the GEVP solution (data in blue). A clear indication
of a level below the threshold state in seen for mπ = 497 MeV with the binding indicated on the
plot. The results shown here are computed on 243 × 64 lattice with a = 0.1207 fm. The right panel
in fig 2 show the results of the pion mass dependence of the binding energies where the slope of
the binding energies w.r.t pion masses is not as pronounced in comparison with the of udb̄b̄ which

4
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4

EPJ Web of Conferences 175, 05014 (2018) https://doi.org/10.1051/epjconf/201817505014
Lattice 2017

Junnarkar,Padmanath,Mathur,EPJWebConf175(2018)05014

Compared to our study, these authors • use the same two operators,
• use the same lattice NRQCD action,
• use a different light quark action.
• use a coarser lattice and a finer lattice,
• include some heavier values for mπ.
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Lattice QCD and the
Born-Oppenheimer approximation

1. Lattice QCD gives the static Q̄Q̄ potential, V (r). (2 light quarks are present.)
2. V (r) is fit to a phenomenologically motivated continuous function.
3. Solve the Schrödinger equation with Hb̄b̄ = p2

2µ
+ 2mH + V (r).

Finally, to include statistical errors, we compute the
jackknife errors of the medians of α, d, and V0 and add
them in quadrature to the corresponding systematic
uncertainties.
To illustrate this error estimation procedure, we show

in Fig. 3 example histograms representing the distribution
of α and d for the scalar u=d channel. The green, red, and
blue bars correspond to the systematic, statistical, and
combined errors, respectively. In the following, we will
always use and quote the combined errors represented by
the blue bars.

The final results for α and d are collected in Table III.
Note that within errors they agree with the model consid-
erations and crude quantitative expectations discussed in
Sec. II. We do not list results for V0, since it is an irrelevant
constant corresponding to twice the mass of a static-light
meson. The fit function (4) with the parameter sets from
Table III and the corresponding error bands are shown in
Fig. 4. Clearly, these results confirm the qualitative expect-
ations discussed in Sec. II B:

(i) The screening of the b̄ b̄ interaction is stronger for
heavier light quarks qq.

(ii) The scalar channels are more attractive than the
corresponding vector channels.

IV. DEPENDENCE OF THE EXISTENCE
OF qqb̄b̄ TETRAQUARK STATES ON THE

LIGHT QUARK MASS

In [13], we have found evidence for a bound state in the
scalar u=d channel, i.e., the existence of a qqb̄b̄ ¼ udb̄b̄
tetraquark. For heavier quarks qq, the effective b̄b̄ poten-
tials are less attractive. This has qualitatively been antici-
pated in Sec. II and quantified in Sec. III (in particular cf.

TABLE III. Parameters α and d obtained from χ2 minimizing
fits of (4) to lattice QCD b̄b̄ potential results.

qq Spin α d in fm

ðud − duÞ=
ffiffiffi
2

p
scalar 0.35þ0.04

−0.04 0.42þ0.08
−0.08

uu, ðudþ duÞ=
ffiffiffi
2

p
, dd vector 0.29þ0.04

−0.06 0.16þ0.02
−0.01

ðsð1Þsð2Þ − sð2Þsð1ÞÞ=
ffiffiffi
2

p
scalar 0.27þ0.08

−0.05 0.20þ0.10
−0.10

ss vector 0.18þ0.09
−0.02 0.18þ0.11

−0.05

ðcð1Þcð2Þ − cð2Þcð1ÞÞ=
ffiffiffi
2

p
scalar 0.19þ0.12

−0.07 0.12þ0.03
−0.02

FIG. 4 (color online). b̄ b̄ potentials in the presence of two lighter quarks qq (qq flavor: up/down in green, strange in blue, charm in
red; qq spin: j ¼ 0, i.e., scalar, in the upper line, j ¼ 1, i.e., vector, in the lower line). The plotted curves with the error bands correspond
to Eq. (4) with the parameter sets from Table III. Vertical lines indicate lattice separations r ¼ 2a; 3a;… of lattice QCD potential results
V latðrÞ used to generate the parameter sets from Table III via χ2 minimizing fits.

EVIDENCE FOR THE EXISTENCE OF udb̄ b̄ AND … PHYSICAL REVIEW D 92, 014507 (2015)

014507-7

The resulting binding energy
for a 0(1+) udb̄b̄ tetraquark is

−90+46
−42 MeV for mH = mB

−93+47
−43 MeV for mH = mb

Others are found to be unbound,
including ssb̄b̄ and ccb̄b̄.

Bicudo,Cichy,Peters,Wagenbach,Wagner,PRD92(2015)014507
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A phenomenological picture

Q

R

QQ
r

q

q
q

Q

The Q̄Q̄ acts like a single heavy object.

It is surrounded by light d.o.f of QCD.

rQQ ∼
1

MQ

and Rq ∼
1

ΛQCD

(MQ is the reduced mass of the pair.)

Expand in ΛQCD

MQ
. (Recall lattice NRQCD.)

Various models incorporate this idea and find (a) udb̄b̄ is bound,
(b) udc̄c̄ is unbound,

and (c) udc̄b̄ is unbound or barely bound.

Ader,Richard,Taxil,PRD25(1982)2270
Lipkin,PLB172(1986)242

Manohar,Wise,NPB399(1993)17
Karliner,Rosner,PRL119(2017)202001

Eichten,Quigg,PRL119(2017)202002
Czarnecki,Leng,Voloshin,PLB778(2018)233
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Lattice study of Q̄Q̄ and b̄Q̄ tetraquarks

The Q̄ mass is varied to see how the tetraquark binding is affected.

Francis,Hudspith,Lewis,Maltman, work in progress

(All data at mπ ≈ 299 MeV.)

r = mb

mQ



13/18

An exploration of ucb̄b̄ (preliminary)
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Junnarkar,Padmanath,Mathur, work in progress
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Ideas for b̄b̄ tetraquark decays

The lifetime of a udb̄b̄ tetraquark is O(half the B meson lifetime) ∼ 0.8 ps
because either b̄ can decay.

The `sb̄b̄ tetraquarks have interesting two-body decays:

9

FIG. 11: The W -exchange diagrams resulting into two-body
mesonic decays with the production of the B- and J/ψ-mesons

in T
{bb}
[ūd̄]

decays (upper frame), T
{bb}
[ūs̄] decays (middle frame),

and T
{bb}
[d̄s̄]

decays (lower frame).

VI. W -EXCHANGE DIAGRAMS

The W -exchange diagrams result into two-body
mesonic decays, some of which can be of interest at the
LHC. The use of W -exchange decay modes of double-
heavy baryons has been advocated in Ref. [33]. The
decays with the J/ψ-meson production are the most
likely. So, the processes which can be searched for are

T
{bb}
[ūd̄]

(10482)− → B− J/ψ, T
{bb}
[ūs̄] (10643)− → B− J/ψ,

and T
{bb}
[d̄s̄]

(10643)0 → B̄0 J/ψ. The corresponding dia-

grams for these processes are presented in Fig. 11.
The decay amplitude to leading order can be factor-

ized. For the T
{bb}
[ūs̄] (10643)− → B− J/ψ decay, as an

example, one can write it as follows:

M(T
{bb}−
[ūs̄] → B− J/ψ) =

GF√
2

VcdV
∗
cs aeff

2 mJ/ψ fJ/ψ ε
∗µ
ψ

×⟨B−(pB) |s̄γµ (1 − γ5) b| T {bb}−
[ūs̄] (pT , εT )⟩, (33)

where aeff
2 = C2+C1/Nc is the effective Wilson coefficient

and the matrix element between the vacuum and J/ψ-
meson is parametrised in terms of the decay constant:

⟨J/ψ(pψ , εψ) |c̄γµPLc| 0⟩ =
1

2
mJ/ψ fJ/ψ ε

∗µ
ψ . (34)

The general decomposition of the transition matrix ele-
ment can be written in the form similar to the B → A
transition, where A is an axial-vector meson [34].

An advantage of these decay modes is that there are
only two mesons in the final state. The J/ψ final state

can be easily reconstructed in the µ+µ− channel, and
the bottom meson can be studied in its decays into two-

body final states. For the T
{bb}
[ūs̄] (10643)− → B− J/ψ, and

T
{bb}
[d̄s̄]

(10643)0 → B̄0 J/ψ, the CKM factors in the transi-

tion are VcbV
∗
cs, and thus they can have sizeable branching

fractions. Without any additional power suppression, we
expect the branching ratios for these two modes to be of

order of 10−3. For the T
{bb}
[ūd̄]

(10643)− → B− J/ψ decay,

the decay width is suppressed due the CKM factor Vcd,
leading to a smaller branching fraction by approximately
the factor 25.

VII. CONCLUSIONS

We have presented the estimate of the double-bottom
hadron production in Z-boson decays. These include

the tetraquarks T
{bb}
[ūd̄]

, T
{bb}
[ūs̄] and T

{bb}
[d̄s̄]

, and the double-

bottom baryons, Ξ0
bb(bbu), Ξ−

bb(bbd), and Ω−
bb(bbs), which

are expected to be produced as the jet-fragments of the
(bb)-diquark jet in the process e+e− → Z → bb̄bb̄. Us-
ing the Monte Carlo generators MadGraph5 aMC@NLO
and Pythia6, we estimate the branching ratios B(Z →
T

{bb}
[ūd̄]

+ b̄b̄) = (1.4+1.1
−0.5) × 10−6, and about the same for

the sum of the branching ratios B(Z → T
{bb}
[ūs̄] + X) and

B(Z → T
{bb}
[d̄s̄]

+ X). The summed branching ratios of the

double-bottom baryons is also estimated compared to the
double-bottom tetraquarks: B(Z → (Ξ0

bb, Ξ
−
bb, Ω

−
bb)+X) :

B(Z → T
{bb}
[q̄q̄′] + X) ≈ 5.8 : 1. Thus, the double-bottom

baryons will be produced about six times more frequently
in Z-boson decays.

The lifetimes of the tetraquarks T
{bb}
[q̄q̄′] are estimated,

and for the SU(3)F -multiplet they are expected to be
approximately similar, about one half of the B-meson
lifetimes, τ ≃ 0.8 ps. We also discussed some sig-
nature decay modes of these tetraquarks. These in-

clude the two-body baryonic decays, such as T
{bb}−
[ūd̄]

→
Ξ0

bc p̄ and T
{bb}−
[ūd̄]

→ Ω0
bc Λ̄−

c , whose branching ratios

are estimated to be of order of 10−3. Likewise, three-

body mesonic decays of T
{bb}−
[ūd̄]

into final states, such

as B−D+π− and B0D0π−, are estimated, and their
branching ratios may also reach order of 10−3. Of par-
ticular interest in this class of decays are those which
have hidden-charm mesons in the final states, such as
J/ψK̄0B− and J/ψK−B̄0. The decay branching ra-

tios B(T
{bb}
[ūd̄]

→ J/ψK̄0B−) and B(T
{bb}
[ūd̄]

→ J/ψK−B̄0)

may be comparable to that of B → J/ψK, which
are also of order of 10−3 [15]. The decays of the

other two members of the SU(3)F -triplet, T
{bb}−
[ūs̄] and

T
{bb}0

[d̄s̄]
are also discussed, and the order of magnitude

of their signature decay modes are also presented. Fi-
nally, we emphasise the so-called W -exchange diagrams,

branching fraction: B ∼ O(10−3)?

(Similar decays for the udb̄b̄ tetraquark
are CKM suppressed by V 2

cd ≈ 0.05.)
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Some b̄b̄ tetraquark decay channels

B ∼ O(10−3):

6

FIG. 7: Feynman diagrams which yield two-body baryonic

final states in T
{bb}−
[ūd̄]

decays due to the b-quark decay b →
c + d + ū (left panel) and b → c + s + c̄ (right panel).

A. Two-Body Baryonic Decays

As the doubly bottom tetraquark T
{bb}
[ūd̄]

(10482)5 con-

sists of two b-quarks and two antiquarks, ū and d̄, the
weak decay of one of the b-quarks results into two pos-
sible Cabibbo-allowed decay channels at the quark level:
b → c+d+ū or b → c+s+c̄. From three quarks and three
antiquarks one can easily construct baryon and anti-
baryon, as shown in Fig. 7. Baryonic states produced
in these modes have in addition to the well-known anti-
baryons, also the so-far undiscovered bottom-charmed
baryons shown in Fig. 4. They are being searched for
at the LHC and are also a part of the experimental pro-
gramme at future electron-positron colliders. Amplitudes
of these decays are non-factorisable as a quark and an-
tiquark produced in the weak transition hadronise into
baryon and anti-baryon, respectively (see Fig. 7). Tak-
ing into account the axial-vector nature of the tetraquark,
with JP = 1+, the general form of the decay amplitude
induced by the b → c + d + ū quark channel is as follows:

M(T
{bb}−
[ūd̄]

→ Ξ0
bc p̄) = v̄(pp)

[
fΞbcp̄
1 qµ + fΞbcp̄

2 γµ

+fΞbcp̄
3 σµν

qν

mT
+ gΞbcp̄

1 γ5 qµ + gΞbcp̄
2 γµγ5

+ gΞbcp̄
3 σµνγ5

qν

mT

]
u(pΞbc

) εµ
T (pT ), (16)

where u(pΞbc
) and v(pp) are the wave-functions of the

Ξ0
bc-baryon and antiproton with the four-momenta pΞbc

and pp, respectively, q = pΞbc
−pp, ε

µ
T (pT ) is the polarisa-

tion vector of the axial-vector tetraquark with the four-

momentum pT = pΞbc
+ pp and mass mT . The fΞbcp̄

i and

gΞbcp̄
i , with i = 1, 2, 3, are two sets of form factors, to be

evaluated at a known kinematic point. Similar amplitude

corresponds to the T
{bb}−
[ūd̄]

→ Ω0
bc Λ̄−

c decay described by

the right diagram in Fig. 7.

5 The mass assignment is according to the predictions of Ref. [7].

FIG. 8: Feynman diagrams which yield three-body mesonic

final states in T
{bb}−
[ūd̄]

decays due to the b-quark decay b →
c + d + ū.

Inspired by the B-meson decay data [15]:

B(B
0 → D+π−) = (2.52 ± 0.13) × 10−3,

B(B
0 → D+D−

s ) = (7.2 ± 0.8) × 10−3, (17)

one infers that the branching fractions for T
{bb}−
[ūd̄]

→ Ξ0
bc p̄

and T
{bb}−
[ūd̄]

→ Ω0
bc Λ̄−

c decays might also reach the same

magnitude, i. e., of order of 10−3.
One needs to further reconstruct the bottom-charmed

baryons Ξ0
bc and Ω0

bc. Including the decay chain Ξ0
bc →

ΛbK
−π+, we find that the two-body baryonic decay

modes of the double-bottom tetraquarks are expected to
have branching fractions of order of 10−6.

B. Three-body Mesonic Decay Modes of T
{bb}−
[ūd̄]

1. Open-Charm Final States

There are some Feynman diagrams with the help of
which the three-body purely mesonic final states with

the open charm in the T
{bb}−
[ūd̄]

decays can be identified.

They are shown in Fig. 8. The factorisable amplitudes of
these decays can be written as follows:

M(T
{bb}−
[ūd̄]

→ B− D+ π−) = i
GF√

2
VcbV

∗
ud aeff

1 fπ pµ
π (18)

×⟨(BD)0JBD
(pBD)

∣∣d̄γµ (1 − γ5)u
∣∣T {bb}−

[ūd̄]
(pT )⟩,

M(T
{bb}−
[ūd̄]

→ B̄0 D0 π−) = i
GF√

2
VcbV

∗
ud aeff

1 fπ pµ
π (19)

×⟨(BD)0JBD
(pBD) |s̄γµ (1 − γ5) c| T {bb}−

[ūd̄]
(pT )⟩,

where aeff
1 = C1 + C2/Nc, with Nc = 3 being the number

of quark colors, and the standard definition of the π-
meson leptonic decay constant is used:

〈
π−(pπ)

∣∣d̄(0)γµ (1 − γ5)u(0)
∣∣ 0

〉
= ifπ pµ

π. (20)

Next, we need to parametrise the transition matrix ele-
ments from the tetraquark state to the double-meson one,
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FIG. 7: Feynman diagrams which yield two-body baryonic

final states in T
{bb}−
[ūd̄]

decays due to the b-quark decay b →
c + d + ū (left panel) and b → c + s + c̄ (right panel).

A. Two-Body Baryonic Decays

As the doubly bottom tetraquark T
{bb}
[ūd̄]

(10482)5 con-

sists of two b-quarks and two antiquarks, ū and d̄, the
weak decay of one of the b-quarks results into two pos-
sible Cabibbo-allowed decay channels at the quark level:
b → c+d+ū or b → c+s+c̄. From three quarks and three
antiquarks one can easily construct baryon and anti-
baryon, as shown in Fig. 7. Baryonic states produced
in these modes have in addition to the well-known anti-
baryons, also the so-far undiscovered bottom-charmed
baryons shown in Fig. 4. They are being searched for
at the LHC and are also a part of the experimental pro-
gramme at future electron-positron colliders. Amplitudes
of these decays are non-factorisable as a quark and an-
tiquark produced in the weak transition hadronise into
baryon and anti-baryon, respectively (see Fig. 7). Tak-
ing into account the axial-vector nature of the tetraquark,
with JP = 1+, the general form of the decay amplitude
induced by the b → c + d + ū quark channel is as follows:

M(T
{bb}−
[ūd̄]

→ Ξ0
bc p̄) = v̄(pp)

[
fΞbcp̄
1 qµ + fΞbcp̄

2 γµ

+fΞbcp̄
3 σµν

qν

mT
+ gΞbcp̄

1 γ5 qµ + gΞbcp̄
2 γµγ5

+ gΞbcp̄
3 σµνγ5

qν

mT

]
u(pΞbc

) εµ
T (pT ), (16)

where u(pΞbc
) and v(pp) are the wave-functions of the

Ξ0
bc-baryon and antiproton with the four-momenta pΞbc

and pp, respectively, q = pΞbc
−pp, ε

µ
T (pT ) is the polarisa-

tion vector of the axial-vector tetraquark with the four-

momentum pT = pΞbc
+ pp and mass mT . The fΞbcp̄

i and

gΞbcp̄
i , with i = 1, 2, 3, are two sets of form factors, to be

evaluated at a known kinematic point. Similar amplitude

corresponds to the T
{bb}−
[ūd̄]

→ Ω0
bc Λ̄−

c decay described by

the right diagram in Fig. 7.

5 The mass assignment is according to the predictions of Ref. [7].

FIG. 8: Feynman diagrams which yield three-body mesonic

final states in T
{bb}−
[ūd̄]

decays due to the b-quark decay b →
c + d + ū.

Inspired by the B-meson decay data [15]:

B(B
0 → D+π−) = (2.52 ± 0.13) × 10−3,

B(B
0 → D+D−

s ) = (7.2 ± 0.8) × 10−3, (17)

one infers that the branching fractions for T
{bb}−
[ūd̄]

→ Ξ0
bc p̄

and T
{bb}−
[ūd̄]

→ Ω0
bc Λ̄−

c decays might also reach the same

magnitude, i. e., of order of 10−3.
One needs to further reconstruct the bottom-charmed

baryons Ξ0
bc and Ω0

bc. Including the decay chain Ξ0
bc →

ΛbK
−π+, we find that the two-body baryonic decay

modes of the double-bottom tetraquarks are expected to
have branching fractions of order of 10−6.

B. Three-body Mesonic Decay Modes of T
{bb}−
[ūd̄]

1. Open-Charm Final States

There are some Feynman diagrams with the help of
which the three-body purely mesonic final states with

the open charm in the T
{bb}−
[ūd̄]

decays can be identified.

They are shown in Fig. 8. The factorisable amplitudes of
these decays can be written as follows:

M(T
{bb}−
[ūd̄]

→ B− D+ π−) = i
GF√

2
VcbV

∗
ud aeff

1 fπ pµ
π (18)

×⟨(BD)0JBD
(pBD)

∣∣d̄γµ (1 − γ5)u
∣∣T {bb}−

[ūd̄]
(pT )⟩,

M(T
{bb}−
[ūd̄]

→ B̄0 D0 π−) = i
GF√

2
VcbV

∗
ud aeff

1 fπ pµ
π (19)

×⟨(BD)0JBD
(pBD) |s̄γµ (1 − γ5) c| T {bb}−

[ūd̄]
(pT )⟩,

where aeff
1 = C1 + C2/Nc, with Nc = 3 being the number

of quark colors, and the standard definition of the π-
meson leptonic decay constant is used:

〈
π−(pπ)

∣∣d̄(0)γµ (1 − γ5)u(0)
∣∣ 0

〉
= ifπ pµ

π. (20)

Next, we need to parametrise the transition matrix ele-
ments from the tetraquark state to the double-meson one,

B ∼ O(10−4):

7

having the total angular momentum JBD and zero elec-
tric charge (specified by the superscript index), in terms
of the form factors.

For the case of the D- and B-mesons, which are pseu-
doscalar particles, the total momentum JBD is com-
pletely determined by the angular momentum LBD of
the system. For the BD-system in the S-wave, the tran-
sition matrix elements:

⟨(BD)00(pBD) |c̄(0)γµb(0)| T {bb}−
[ūd̄]

(pT )⟩, (21)

⟨(BD)00(pBD) |c̄(0)γµγ5b(0)|T {bb}−
[ūd̄]

(pT )⟩, (22)

define the S-wave generalised form factors.
One can also expect a production of (B∗D)0JBD

or

(BD∗)0JBD
pairs in the S-wave and the total angular mo-

mentum (JB∗D = 1 or JBD∗ = 1) is determined by the
spin of the vector meson (SB∗ = 1 or SD∗ = 1). This
requires another set of S-wave generalised form factors.

Currently, we lack a reliable dynamical approach to
calculate the generalised form factors, which prevents us

to reliably predict the branching fractions for T
{bb}−
[ūd̄]

→
B− D+ π− and T

{bb}−
[ūd̄]

→ B̄0 D0 π− decays. However, as

after the b-quark weak decay, the emitted charmed quark
and three spectators have an invariant mass larger than
the B−D+ and B̄0D0 thresholds, we expect the split into
two hadrons will not cause any dynamical suppression.

In this case, the transition T
{bb}−
[ūd̄]

→ (B− D+, B̄0 D0) is

expected to be comparable with the B → D transition.
Accordingly, their branching fractions can reach the value
of 10−3 as well.

From Fig. 8, one may speculate that the final B−D+

and B̄0D0 mesons arise from an intermediate bottom-
charmed tetraquark state T bc

ūd̄
. In the case of a scalar

(JP = 0+) tetraquark, the transition amplitude is gov-
erned by the four form factors:

⟨T bc
ūd̄(pT ′)|c̄γµb|T {bb}

[ūd̄]
(pT )⟩ =

−2V (q2)

mT + mT ′
ϵµνρσε

ν
T pρT pσT ′ ,

⟨T bc
ūd̄(pT ′)|c̄γµγ5b|T {bb}

[ūd̄]
(pT )⟩ = 2i mT A0(q

2)
εT · q

q2
qµ

+i (mT + mT ′)A1(q
2)

[
εµ

T − εT · q

q2
qµ

]

− iA2(q
2) (εT · q)

mT + mT ′

[
(pµ

T + pµ
T ′) − m2

T − m2
T ′

q2
qµ

]
, (23)

where qµ = pµ
T − pµ

T ′ , ε
µ
T is the polarization vector of the

axial-vector T
{bb}
[ūd̄]

tetraquark, and mT and mT ′ are the

masses of T
{bb}
[ūd̄]

and T bc
ūd̄

, respectively. The decay width

for the T
{bb}
[ūd̄]

→ T bc
ūd̄
π− channel is then evaluated as

Γ(T
{bb}
[ūd̄]

→ T bc
ūd̄ π

−) = 2 × 1

3

|p⃗T |
8πm2

T

∑

λ

|M|2 , (24)

with the decay amplitude

M = i
GF√

2
VcbV

∗
ud aeff

1 fπ × 2i mT A0(q
2 = 0) (εT · q) .(25)

FIG. 9: Feynman diagrams which yield three-body mesonic

final states in T
{bb}−
[ūd̄]

decays due to the b-quark decay b →
c + s + c̄.

The factor 2 arises since there are two b-quarks in the
initial state, while the factor 1/3 denotes the spin aver-
age. Neglecting the π-meson mass, the decay width can
be written as follows:

Γ(T
{bb}
[ūd̄]

→ T bc
ūd̄ π

−) =
G2

F m3
T

48π
|VudV

∗
cb|2 f2

π

×
(
aeff
1

)2
[
1 − m2

T ′

m2
T

]3 ∣∣A0(q
2 = 0)

∣∣2 , (26)

where GF = 1.166 × 10−5 GeV−2, fπ ≃ 130 MeV,
Vud = 0.974, and |Vcb| = 40.5 × 10−3 [15]. The effec-
tive coefficient aeff

1 is a scale-dependent quantity but in a
wide range of the energy scale its value is close to unity, so
we take aeff

1 = 1 in estimates. Using mT = 10.5 GeV, the
Ξbb → Ξbc transition form factor, A0(q

2 = 0) = 0.44 [31],
and mT ′ = mT + mc − mb ∼ 7.2 GeV, we obtain the
estimate of the partial decay width:

Γ(T
{bb}
[ūd̄]

→ T bc
ūd̄ π

−) ≃ 7.9 × 10−16 GeV ≃ 1.2 ns−1,(27)

and the branching fraction with account of the life-
time (14):

B(T
{bb}
[ūd̄]

→ T bc
ūd̄ π

−) ≃ 1.0 × 10−3. (28)

If one uses the Bc → J/ψ transition form factor instead,
A0(q

2 = 0) = 0.53 [32], the results can be enhanced by
approximately 50%. As the intermediate state, T bc

ūd̄
, will

subsequently turn into the B−D+ and B̄0D0 states with
equal probabilities, and thus we expect

B(T
{bb}
[ūd̄]

→ B−D+π−) = B(T
{bb}
[ūd̄]

→ B̄0D0π−)

≃ 0.5 × 10−3. (29)

2. Hidden-Charm Final States

There are some Feynman diagrams in which the
hidden-charm mesons, such as J/ψ and ψ′, can be pro-
duced. The corresponding Feynman diagrams are shown
in Fig. 9. Decay channels include

T
{bb}
[ūd̄]

→ J/ψK
0
B−,

T
{bb}
[ūd̄]

→ J/ψK−B
0
, (30)

B ∼???:
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FIG. 10: Feynman diagrams which yield three-body baryonic

final states in T
{bb}−
[ūd̄]

decays due to the b-quark decay b →
c + s + c̄.

whose CKM factors are V ∗
cbVcs. Their decay branch-

ing ratios can be comparable with the B → J/ψK de-
cays [15]:

B(B+ → J/ψK+) = (1.026 ± 0.031) × 10−3,

B(B
0 → J/ψK

0
) = (8.73 ± 0.32) × 10−4. (31)

So, it reasonable also to expect branching fractions of the

T
{bb}
[ūd̄]

tetraquark decays (30) at the level of few 10−4.

C. Three-body baryonic decay modes of T
{bb}−
[ūd̄]

The other type of diagrams with hidden-charm have a
light- and a b-baryon in the final state. A representative

example of these decays T
{bb}−
[ūd̄]

→ Ξ0
b p̄ J/ψ, which can

be measured at the colliders, is presented in Fig. 10. As
the two-body baryonic decays discussed earlier, the cor-
responding amplitudes are non-factorisable as the quark
pair produced in the weak decay is devided and hadro-
nised into a baryon and meson. An account of a quark
pair picked up from the vacuum makes the theoretical
analysis even more complicated and we postpone such a
discussion for future.

V. WEAK DECAYS OF T
{bb}
[ūs̄] (10643)− AND

T
{bb}
[d̄s̄]

(10643)0

As mentioned earlier, in the case of the double-bottom

tetraquarks having the strange antiquark, T
{bb}
[ūs̄] (10643)−

and T
{bb}
[d̄s̄]

(10643)06, their masses are closer to the cor-

responding hadronic threshold, B̄∗B̄s, but are still
estimated to lie below it. In particular, these
tetraquark states are predicted to be below the threshold
(10691 MeV) by 48 MeV in Ref. [7]. If this is true, their
decay modes are dominated by flavor-changing charged

6 The mass assignment is according to the predictions of Ref. [7].

currents in the effective Hamiltonian (15). Like the de-

cays of the tetraquark T
{bb}
[ūd̄]

, they have corresponding

two-body and three-body decays, which can be divided
into the purely mesonic and baryonic modes. They are
briefly discussed below.

A. Two-Body Baryonic Decays

As the double-bottom tetraquark T
{bb}
[ūs̄] (10643)− con-

sists of two b-quarks and two antiquarks, ū and s̄, the
weak decay of one of the b-quarks results into two possi-
bilities: b → c+d+ ū or b → c+s+ c̄. From three quarks
and three antiquarks one can easily construct baryon and

anti-baryon. Golden modes are T
{bb}−
[ūs̄] → Ξ0

bc Σ̄− and

T
{bb}−
[ūs̄] → Ω0

bc Ξ̄−
c . For T

{bb}
[d̄s̄]

(10643)0, one can replace

the spectator u-antiquark by the d-antiquark which re-

sults the decay channels: T
{bb}0

[d̄s̄]
→ Ξ0

bc

(
Λ̄0, Σ̄0

)
and

T
{bb}0

[d̄s̄]
→ Ω0

bc Ξ̄0
c .

B. Three-body Mesonic Decay Modes

1. Open-Charm Final State

Three-body mesonic final states with the open charm

include the following decay modes T
{bb}−
[ūs̄] → B− D+

s π
−,

T
{bb}−
[ūs̄] → B̄0

s D0 π−, for the charged strange double-

bottom tetraquark and T
{bb}0

[d̄s̄]
→ B̄0 D+

s π
−, T

{bb}0

[d̄s̄]
→

B̄0
s D+ π− for the neutral one.

2. Hidden-Charm Final State

There are channels in which the hidden-charm mesons
like J/ψ, ψ′, and etc. can be produced:

T
{bb}−
[ūs̄] → J/ψ φB−, T

{bb}0

[d̄s̄]
→ J/ψ φ B̄0,

T
{bb}−
[ūs̄] → J/ψK−B̄0

s , T
{bb}0

[d̄s̄]
→ J/ψ K̄0 B̄0

s . (32)

The final states mentioned here are well reconstructed at
both electron-positron and hadron colliders.

C. Three-body baryonic decay modes

The other type of diagrams correspond to three-body
decays with a light- and bottom baryon in the final

state. The most interesting processes could be T
{bb}−
[ūs̄] →

Ξ0
b Σ̄− J/ψ, T

{bb}−
[ūs̄] → Ξ−

b Λ̄J/ψ, T
{bb}0

[d̄s̄]
→ Ξ0

b Σ̄0 J/ψ

and T
{bb}0

[d̄s̄]
→ Ξ−

b Σ̄+ J/ψ.

Similar diagrams arise from
• interchanging u↔d.
• using an s quark.
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Excited b̄b̄ tetraquark states?

• Compare spin-averaged I = 1 and I = 0 baryon masses: Σ̄− Λ = 205 MeV

Σ̄c − Λc = 210 MeV

Σ̄b − Λb = 207 MeV

From this, quark-diquark symmetry predicts a similar splitting for tetraquarks.

We already saw lattice evidence for I = 0 udb̄b̄ binding near 200 MeV.
Therefore the I = 1 udb̄b̄ could be near threshold. Mehen,PRD96(2017)094028

• Notice that distinguishable heavy quarks allow more tetraquark options.
In particular, udc̄b̄ tetraquarks can be I(JP ) = 0(0+) or 0(1+).

Some predictions put them both near threshold, but there is no consensus yet.
Karliner,Rosner,PRL119(2017)202001

Eichten,Quigg,PRL119(2017)202002
Francis,Hudspith,Lewis,Maltman,EPJWebConf175(2018)05023



17/18

udb̄b̄ tetraquark resonances

V (r) is obtained from lattice QCD and the Born-Oppenheimer approximation.
A resonance appears as a pole on the second Riemann sheet at m− iΓ/2.

Eigenvalue of the T matrix. A study of systematic errors.

we find a pole. This confirms our prediction of a resonance
for angular momentum l ¼ 1 and physical values of the
parameters, α ¼ 0.34 and d ¼ 0.45 fm.
Finally we perform a detailed statistical and systematic

error analysis of the pole of t1 and the corresponding values
ðReðEÞ; ImðEÞÞ. We use the same analysis method as for
our previous study of the bound state for l ¼ 0, cf. [24]. To
parametrize the lattice QCD data for the potentials, V latðrÞ,
discussed in Sec. II, we perform uncorrelated χ2 minimiz-
ing fits with the ansatz (3). To this end we minimize the
expression

χ2 ¼
X

r¼rmin;…;rmax

!
VðrÞ − V latðrÞ

ΔV latðrÞ

"
2

ð14Þ

with respect to the parameters α, d and V0 (ΔV latðrÞ denote
the corresponding statistical errors). To quantify systematic
errors, we perform a large number of fits, where we vary the
following parameters:
(1) The range of temporal separations tmin ≤ t ≤ tmax of

the correlation function (2), where V latðrÞ is read off,
according to
(a) tmax − tmin ≥ a,
(b) 4a ≤ tmin, tmax ≤ 9a

(a ≈ 0.079 fm is the lattice spacing).
(2) The range of spatial b̄ b̄ separations rmin ≤ r ≤ rmax

considered in the χ2 minimizing fits to determine the
parameters α, d and V0 according to
(a) rmin ∈ f2a; 3ag,
(b) rmax ∈ f8a; 9a; 10ag.

We obtain a large number of different, but similar potential
parametrizations VðrÞ characterized by sets of values for α,
d, and V0. For each potential parametrization we determine
the position of the pole of t1, i.e., ðReðEÞ; ImðEÞÞ as
discussed above and shown as a cloud of blue points in
Fig. 6. For both ReðEÞ and ImðEÞ we construct a distri-
bution by considering all corresponding results weighted
by expð−χ2=dofÞ with χ2 from Eq. (14). The central values
of ReðEÞ and ImðEÞ are then defined as the medians of the
corresponding distributions and the lower/upper systematic
uncertainties are given by the differences of the 16th/84th
percentiles to the medians. To also include statistical errors,
we compute the jackknife errors of the medians of ReðEÞ
and ImðEÞ and add them in quadrature to the corresponding
systematic uncertainties. With our combined statistical and
systematic error analysis we find a resonance energy
ReðEÞ ¼ 17þ4

−4 MeV and a decay width Γ ¼ −2ImðEÞ ¼
112þ90

−103 MeV. Using the Pauli principle and considering
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FIG. 4. Phase shift δ1 as a function of the energy E for different
parameters for the potential. For illustration, we vary parameter α
only while fixing d ¼ 0.45 fm at the value of the ðI ¼ 0; j ¼ 0Þ
potential. Fixing d and varying α produces comparable results.

FIG. 5. T matrix eigenvalue t1 as a function of the complex
energy E for the ðI¼ 0;j¼ 0Þ potential (α¼ 0.34, d ¼ 0.45 fm).
Along the vertical axis we show the norm jt1j, while the phase
argðtlÞ corresponds to different colors.
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FIG. 6. Locations for the pole of the eigenvalue t1 of the T
matrix in the complex plane ðReðEÞ; ImðEÞÞ. We illustrate with a
cloud of diamond points the computation of the systematic error
of the α and d parameters of the ðI ¼ 0; j ¼ 0Þ potential, utilizing
the technique of Ref. [24]. We also depict (solid line) the
trajectory of the pole corresponding to a variation of the potential
parameters, varying α for d ¼ 0.45 fm.
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This resonance has I(JP )=0(1−), m=2mB + 17± 4 MeV, and Γ=112+90
−103 MeV.

Bicudo,Cardoso,Peters,Pfaumer,Wagner,PRD96(2017)054510
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Summary

To work in QCD directly, use lattice calculations and effective field theories.

• Consistency is observed among various approaches.
• The recent measurement of the Ξcc mass provides useful input.
• The I(JP )=0(1+) udb̄b̄ and `sb̄b̄ tetraquarks decay only weakly.
• Tetraquark excited states and resonances are being studied.
• The possibility of open charmed tetraquarks is also being pursued.

Model approaches have also been used to study open bottom tetraquarks.

• There are too many to describe in this brief presentation.
For example, see the references in Luo,Chen,Liu,Liu,Zhu,EPJC77(2017)709.
• Here too, the recent measurement of the Ξcc mass provides useful input.

randy.lewis@yorku.ca


