

Study of radiative decays $Y(1S) \rightarrow \gamma \pi^+ \pi^-$ and $Y(1S) \rightarrow \gamma K^- K^+$

Evgeny Kozyrev on behalf of BaBar collaboration

Novosibirsk State University Budker INP SB RAS, Novosibirsk, Russia

25 May, 2018 Novosibirsk, Russia

- Motivation/Introduction
- Event Reconstruction
- Study of two-pion and two-kaon invariant mass spectra
- Spin analyses
- Summary

Comments before start

- The paper has been accepted for publication in PRD (arXiv:1804.04044)
- The system with two pseudoscalars (h⁺h⁻) produced via the decay $Y(1S) \rightarrow \gamma h^+h^-$ has quantum numbers $J^{PC}(I) = even^{++}(0)$
- The helicity angle $\theta_{_H}$ as the angle formed by the h⁺, in the h⁺h⁻ rest frame, and the γ in the h⁺h⁻ γ rest frame.

Motivation

• There is a "soup" of $J^{PC}(I) = even^{++}(0)$ mesons in nature:

• Despite the long history of the study of the f-like states, located close to each other and with broad widths, we lack precise knowledge of their properties, mixing angles, nature and etc

- The search for gluonium states is still a hot topic for QCD.
- Lattice QCD calculations predict the lightest gluonium states to have quantum numbers $J^{PC} = 0^{++}$ and 2^{++} and to be in the mass region below 2.5 GeV/c² [PRD73 014516].
- Possible candidate for the $J^{PC} = 0^{++}$ glueball is the $f_0(1710)$. For this resonance early analyses assigned $J^{PC} = 2^{++}$.

There are a lot of sources for the production of f-like states. Among them – radiative decay of J/ψ , $\psi(2S)$ or Y(1S):

• So, it is important to improve the precision of the parameters of f-like mesons and to check complementarity of beauty and charm hadron physics in the radiative decays.

Physics Motivations: Other experiments

- Used integrated luminosities of 13.6 $fb^{\rm -1}$ and 28.0 $fb^{\rm -1}$ at the Y(2S) and Y (3S) resonances
- We use the following full reconstructed decay chains: $Y(2S)/Y(3S) \rightarrow \pi_s^{+}\pi_s^{-}Y(1S)$ $\rightarrow yh^+h^-$

where $h = \pi$, K.

• The chain of the "reference" decay $Y(2S)/Y(3S) \rightarrow \pi_s^{-+}\pi_s^{--}Y(1S) \rightarrow \mu^+\mu^-$

 \bullet We consider only events containing exactly four well-measured tracks with transverse momentum greater than 0.1 GeV/c

- We also require exactly one well-reconstructed γ in the calorimeter having an energy greater than 2.5 GeV

Analysis strategy: MOMENTUM BALANCE

 χ^2 distribution used for defining the momentum balance

•
$$\chi^2 = \sum_{i=1}^3 \frac{(\Delta \mathbf{p}_i - \langle \Delta \mathbf{p}_i \rangle)^2}{\sigma_i^2}$$

•
$$\Delta \mathbf{p}_i = \mathbf{p}_i^{e^+} + \mathbf{p}_i^{e^-} - \sum_{j=1}^5 \mathbf{p}_i^j$$
 - the missing laboratory three-momenta components

$$M_{\rm rec}^2(\pi_s^+\pi_s^-) = |p_{e^+} + p_{e^-} - p_{\pi_s^+} - p_{\pi_s^-}|^2$$

Combinatorial recoiling mass M_{rec} to $\pi_{s}^{+}\pi_{s}^{-}$ candidates

• Sidebands in the recoiling mass spectra are used for the study of background in further analysis.

Analysis strategy: THE ISOLATION OF Y(1S)

 $M(\gamma h^+h^-)$ mass distributions after the M_{rec} ($\pi_s^+\pi_s^-$) selection

• We require 9.1 GeV/ c^2 < M(γh^+h^-) < 9.6 GeV/ c^2

STUDY OF THE $\pi^+\pi^-$ AND K⁺K⁻ MASS SPECTRA

Two pions and two kaons invariant mass spectra

- 16 free parameters
- $\chi^2/ndf = 182/152$, $P(\chi^2) = 5\%$
- For the Y(3S) data we also include $\rho(770)^0$ background.
- S-wave = $|BW[f_0(500)(m)] + c \cdot BW[f_0(980)(m)e^{i\varphi}]|^2$
- The fraction of S-wave events associated with the $f_0(500)$ is $(27.7 \pm 3.1)\%$
- $m(f_0(500)) = 0.856 \pm 0.086 \text{ GeV/c}^2$

$$\Gamma(f_0(500)) = 1.279 \pm 0.324 \text{ GeV}$$

- $m(f_0(2100)) = 2.208 \pm 0.068 \text{ GeV/c}^2$.
- 6 free parameters
- $\chi^2/ndf = 35/29$, $P(\chi^2) = 20\%$
- Fits with only $f_2'(1525)$ and $f_0(1500)$ are performed. We label this contribution as $f_J(1500)$.

STUDY OF THE $\pi^+\pi^-$ AND K^+K^- MASS SPECTRA

Resonances $(\pi^+\pi^-)$	Yield $\Upsilon(2S)$	Yield $\varUpsilon(3S)$	Significance	
S-wave	$133\pm16\pm13$	87 ± 13	12.8σ	
$f_2(1270)$	$255 \pm 19 \pm 8$	$77\pm7\pm4$	15.9σ	
$f_0(1710)$	$24\pm8\pm6$	$6\pm8\pm3$	2.5σ	
$f_0(2100)$	33 ± 9	8 ± 15		
$a(770)^{0}$		54 ± 23		
p(110)		54 ± 25		
Resonances (K^+K^-)	Yield $\Upsilon(2S) + \Upsilon(3S)$	04 ± 20	Significance	
$\frac{p(110)}{\text{Resonances }(K^+K^-)}$ $\frac{f_0(980)}{f_0(980)}$	Yield $\Upsilon(2S) + \Upsilon(3S)$ 47 ± 9	04 <u>1</u> 20	$\begin{array}{c} \text{Significance} \\ 5.6\sigma \end{array}$	
$\frac{p(110)}{\text{Resonances } (K^+K^-)} \\ \frac{f_0(980)}{f_J(1500)}$	Yield $\Upsilon(2S) + \Upsilon(3S)$ 47 ± 9 $77 \pm 10 \pm 10$	04 <u>1</u> 20	$\begin{array}{c} \text{Significance} \\ 5.6\sigma \\ 8.9\sigma \end{array}$	
$\frac{p(110)}{\text{Resonances } (K^+K^-)}$ $\frac{f_0(980)}{f_J(1500)}$ $\frac{f_0(1710)}{f_0(1710)}$	Yield $\Upsilon(2S) + \Upsilon(3S)$ 47 ± 9 $77 \pm 10 \pm 10$ $36 \pm 9 \pm 6$	04 <u>1</u> 20	$\begin{array}{c} \text{Significance} \\ 5.6\sigma \\ 8.9\sigma \\ 4.7\sigma \end{array}$	
$\frac{p(110)}{\text{Resonances }(K^+K^-)}$ $\frac{f_0(980)}{f_J(1500)}$ $\frac{f_0(1710)}{f_2(1270)}$	Yield $\Upsilon(2S) + \Upsilon(3S)$ 47 ± 9 $77 \pm 10 \pm 10$ $36 \pm 9 \pm 6$ 15 ± 8	04 <u>1</u> 20	$\begin{array}{c} \text{Significance} \\ 5.6\sigma \\ 8.9\sigma \\ 4.7\sigma \end{array}$	

Resonances yields and statistical significances from the fits.

- The observation of a significant S-wave was not possible in the study of J/ ψ radiative decay to $\pi^+\pi^-$ because of the presence of a irreducible background from J/ $\psi \rightarrow \pi^+\pi^-\pi^0$ [PRD 35, 2077 (1987)].
- Systematic uncertainties are dominated by the uncertainties on resonances parameters

• We compute branching fraction B(R) for resonance R using the expression

$$\mathcal{B}(R) = \frac{N(\Upsilon(nS) \to \pi^+ \pi^- \Upsilon(1S)(\to R\gamma))}{N(\Upsilon(nS) \to \pi^+ \pi^- \Upsilon(1S)(\to \mu^+ \mu^-))} \cdot \mathcal{B}(\Upsilon(1S)(\to \mu^+ \mu^-))$$

where N indicates the efficiency corrected yield for the given resonance.

		Resonance	$\mathcal{B}(10^{-5})$		
		$\pi\pi$ S-wave	$4.63 \pm 0.56 \pm 0.48$		
		$f_2(1270)$	$10.15 \pm 0.59 \ ^{+0.54}_{-0.43}$	<i>~</i>	
		$f_0(1710) \rightarrow \pi\pi$	$0.79 \pm 0.26 \pm 0.17$		BABAR
		$f_J(1500) \rightarrow KK$	$3.97 \pm 0.52 \pm 0.55$		* es i Nation, U Nation Farmed
		$f'_2(1525)$	$2.13 \pm 0.28 \pm 0.72$		
		$f_0(1500) \rightarrow KK$	$2.08 \pm 0.27 \pm 0.65$		
		$f_0(1710) \rightarrow KK$	$2.02 \pm 0.51 \pm 0.35$		
Г ₃₄	$\gamma f_0(980)$	< 3	imes 10 ⁻⁵	90%	
Г ₃₅	$\gamma f'_{2}(1525)$	(3.7	7 $^{+1.2}_{-1.1}$) $ imes$ 10 $^{-5}$		
Г ₃₆	$\gamma f_2(1270)$	(1.0	$01\pm0.09)\times10^{-4}$		PDC
Г ₃₈	$\gamma f_0(1500)$	< 1.5	$\times 10^{-5}$	90%	IDU
Г ₃₉	$\gamma f_0(1710)$	< 2.6	5×10^{-4}	90%	
Г ₄₀	$\gamma f_0(1710) \rightarrow \gamma K^+ K$	- < 7	imes 10 ⁻⁶	90%	

• We correct the efficiency corrected yields for isospin and for PDG measured branching fractions.

BES2

•
$$\frac{\mathcal{B}(f_0(1710) \to \pi\pi)}{\mathcal{B}(f_0(1710) \to K\bar{K})} = 0.64 \pm 0.27_{\text{stat}} \pm 0.18_{\text{sys}}$$

 $\rightarrow J/\psi \rightarrow \gamma \pi^+ \pi^-$

Legendre polynomial moments, $\pi^+\pi^-$.

• Efficiency corrected $\pi^+\pi^-$ mass spectrum weighted by Legendre polynomial moments:

• Y_2^0 is related to the S-D interference, clearly visible at the $f_2(1270)$ mass. • Y_4^0 is related to D-wave, clearly visible at the $f_2(1270)$ mass. • Efficiency corrected K⁺K⁻ mass spectrum weighted by Legendre polynomial moments:

- Y_2^0 is related to the S-D interference, clearly visible at the $f_2^{\prime}(1525)$ mass.
- Y_4^{0} is related to D-wave, clearly visible at the $f_2'(1525)$ mass.
- Activity in Y_2^0 and Y_4^0 in the $f_0(1710)$ region.

The simple PWA

and $f_{2}'(1525)$

(a) S and (b) D-wave contributions to the production of K^+K^-

15

- We define $\theta_{_{\gamma}}$ as the angle formed by the radiative photon in the $h^+h^-\gamma$ rest frame with respect to the Y(1S) direction in the Y(2S)/Y (3S) rest frame.
- We perform a 2-D unbinned maximum likelihood fit to $(\cos \theta_{\gamma} vs. \cos \theta_{H})$ spectrum in the regions around resonances.
- The Likelihood function L is written as:

$$\mathcal{L} = \prod_{n=1}^{N} [f_{sig} \frac{\epsilon(\cos\theta_H, \cos\theta_\gamma) A_s(\cos\theta_H, \cos\theta_\gamma)}{\int A_s(\cos\theta_H, \cos\theta_\gamma) \epsilon(\cos\theta_H, \cos\theta_\gamma) d\cos\theta_H d\cos\theta_\gamma} + (1 - f_{sig}) \frac{\epsilon(\cos\theta_H, \cos\theta_\gamma) A_b(\cos\theta_H, \cos\theta_\gamma)}{\int A_b(\cos\theta_H, \cos\theta_\gamma) \epsilon(\cos\theta_H, \cos\theta_\gamma) d\cos\theta_H d\cos\theta_\gamma}]$$

- f_{sig} is the fraction of signal, $\epsilon(\cos \theta_{H}, \cos \theta_{\gamma})$ is the fitted efficiency.
- A_s and A_b are the probability densities for signal and background, respectively. The form of A_s depends strongly on the spin of the resonance.
- We consider as background only the contamination due to the tails of nearby adjacent resonances.

dN/cos0_H

- 104 events
- Background (in gray) from f₂(1270) is 9%
- Only one free parameter: The ratio of the amplitudes corresponding to helicities 0 and 1 of Y(1S)
- Figure of merit: $f = (\chi^2(\cos\theta_H) + \chi^2(\cos\theta_\gamma))/ndf$ ndf = Nbins - Nparam

We obtain:

• f = 14.3/19

 a good description of the data consistent with the spin 0 hypothesis

distributions

The $f_2(1270) \rightarrow \pi^+\pi^-$: 1.092 < $m_{\pi^+\pi^-}$ < 1.460

- 280 events
- One free parameter is the ratio of the amplitudes corresponding to helicities 0 and 1 of Y(1S)
- Two parameters are the ratios of the amplitudes corresponding to helicities 0, 1 and 2 of $f_2(1270)$.

Uncorrected (a)cos θ_{H} and (b)cos θ_{γ} distributions

- Background from S-wave is 16%.
- f = 70/37 for spin 2
- a good description of the cos $\boldsymbol{\theta}_{_{\rm H}}$ projection

- a poor description of the cos $\theta_{_{\gamma}}$ projection. This may be due to the possible unaccounted presence of additional scalar components

The $f_1(1500) \rightarrow K^+K^-$: 1.424 < $m_{\pi^+\pi^-}$ < 1.620

• 76 events

Fit **#**1

- superposition of S and D waves (we assign S to $f_0(1500)$, D to $f_2'(1525)$)
- Three helicity contributions as free parameters, and one free S-wave contribution
- **f** = **8.5**/**16** = **1.22**
- The shaded area represents the spin-0 contribution
- adequate description of the data

Fit #2

• the presence of the spin-2 f_2 (1525) only

• Due the low statistics we cannot statistically distinguish between the two hypotheses.

Uncorrected (a)cos $\theta_{_{H}}$ and (b)cos $\theta_{_{Y}}$ distributions

$$-\Delta(-2\log L) = 1.3$$

Summary

• Spin-parity analyses and branching fraction measurements are reported for the resonances observed in the $\pi^+\pi^-$ and K^+K^- mass spectra.

• We observed of broad S-wave, $f_{_0}(980)$, and $f_{_2}(1270)$ resonances in the $\pi^+\pi^-$ mass spectrum.

• We observed a signal in the 1500 MeV/c² mass region of the K⁺K⁻ mass spectrum. The spin analysis indicates contributions from $f_2'(1525)$ and $f_0(1500)$ resonances.

• We report observation of $f_0(1710)$ in both $\pi^+\pi^-$ and K^+K^- mass spectra with combined significance of 5.7 σ .

BACK UP

Angular analysis

Scatter diagram $cos\theta_{H}$ vs. $m(\pi^{+}\pi^{-})$ and $cos\theta_{H}$ vs. $m(K^{+}K^{-})$.

• We observe clearly the spin-2 structure of the $f_2(1270)$.

$$\frac{dU}{d\cos\theta_{\gamma}\,d\cos\theta_{\pi^{+}}} = \frac{15}{1024} |E_{00}|^{2} \left[6|A_{01}|^{2} \left(22|C_{10}|^{2} + 8|C_{11}|^{2} + 9|C_{12}|^{2} \right) + 2|A_{00}|^{2} \left(22|C_{10}|^{2} + 24|C_{11}|^{2} + 9|C_{12}|^{2} \right) + 24 \left(|A_{00}|^{2} + 3|A_{01}|^{2} \right) \left(2|C_{10}|^{2} - |C_{12}|^{2} \right) \cos 2\theta_{\pi^{+}} + 6 \left(|A_{00}|^{2} \left(6|C_{10}|^{2} - 8|C_{11}|^{2} + |C_{12}|^{2} \right) + |A_{01}|^{2} \left(18|C_{10}|^{2} - 8|C_{11}|^{2} + 3|C_{12}|^{2} \right) \right) \cos 4\theta_{\pi^{+}} - 2 \left(|A_{00}|^{2} - |A_{01}|^{2} \right) \cos 2\theta_{\gamma} \left(22|C_{10}|^{2} - 24|C_{11}|^{2} + 9|C_{12}|^{2} + 12 \left(2|C_{10}|^{2} - |C_{12}|^{2} \right) \cos 2\theta_{\pi^{+}} + 3 \left(6|C_{10}|^{2} + 8|C_{11}|^{2} + |C_{12}|^{2} \right) \cos 4\theta_{\pi^{+}} \right]$$

$$\frac{dU_{\theta\gamma}}{d\cos\theta_{\gamma}} = \frac{3}{8} |C_{10}|^2 |E_{00}|^2 \left(|A_{00}|^2 + 3|A_{01}|^2 - (|A_{00}|^2 - |A_{01}|^2)\cos 2\theta_{\gamma} \right)$$

TABLE III: Results from the helicity amplitude fits to resonances decaying to $\pi^+\pi^-$ and K^+K^- .

Resonance	mass range (GeV/c^2)	events	$_{\rm spin}$	$\chi_H, \chi_\gamma, \chi_t^2/\mathrm{ndf}$	$ A_{00} ^2/ A_{01} ^2$		
$\pi\pi$ $S\text{-wave}$	0.6-1.0	104	0	5.8, 8.4, 14.3/19	0.09 ± 0.33		
					$ A_{01} ^2/ A_{00} ^2$	$ C_{11} ^2/ C_{10} ^2$	$ C_{12} ^2/ C_{10} ^2$
$f_2(1270) \rightarrow \pi^+ \pi^-$	1.092-1.460	280	2	$24.0,\ 46.0,\ 70/37$	1.07 ± 0.31	0.00 ± 0.03	0.29 ± 0.08
$f'_{2}(1525) \rightarrow K^{+}K^{-}$	1.424-1.620	36	2	6.7, 1.8, 8.5/16	47.9 ± 10.8	0.42 ± 0.36	1.43 ± 0.35
$f_0(1500) \rightarrow K^+K^-$		40	0		0.04 ± 0.07		

- $\sqrt{4\pi} \sigma \langle Y_0^0 \rangle = S_0^2 + P_0^2 + P_-^2 + P_+^2 + D_0^2 + D_-^2 + D_+^2 + F_0^2 + F_-^2 + F_+^2 + G_0^2 + G_-^2 + G_+^2 + H_0^2 + H_-^2 + H_+^2$
- $\sqrt{4\pi} \sigma \langle Y_1^0 \rangle = 2.S_0 P_0 + 1.789 P_0 D_0 + 1.549 (P_- D_- + P_+ D_+) + 1.757 D_0 F_0 + 1.656 (D_- F_- + D_+ F_+) + 1.746 F_0 G_0 + 1.690 (F_- G_- + F_+ G_+) + 1.741 G_0 H_0 + 1.706 (G_- H_- + G_+ H_+)$
- $\sqrt{4\pi} \sigma \langle Y_1^1 \rangle = 1.414S_0P_- + 1.095P_0D_- 0.632P_-D_0 1.014D_0P_- 0.717D_-P_0 + 0.976P_0G_- 0.756P_-G_0 + 0.953G_0H_- 0.778G_-H_0$
- $\sqrt{4\pi} \ o(Y_2^0) = 2.S_0 D_0 + 0.894 F_0^2 + 1.757 F_0 F_0 0.447 (P_-^2 + P_+^2) + 1.434 (P_-F_- + P_+F_+) + 0.639 D_0^2 + 1.714 D_0 G_0 + 0.319 (D_-^2 + D_+^2) + 1.565 (D_-G_- + D_+G_+) + 0.596 F_0^2 + 1.699 F_0 H_0 + 0.447 (F_-^2 + F_+^2) + 1.612 (F_-H_- + F_+H_+) + 0.581 G_0^2 + 0.494 (G_-^2 + G_+^2) + 0.573 H_0^2 + 0.516 (H_-^2 + H_+^2)$
- $\sqrt{4\pi} \sigma \langle Y_2^1 \rangle = 1.414S_0D_- + 1.095P_0P_- + 1.171P_0F_- 0.717P_-F_0 + 0.452D_0D_- + 1.107D_0G_- 0.808D_-G_0 + 0.298F_0F_- + 1.074F_0H_- 0.849F_-H_0 + 0.225G_0G_- + 0.181H_0H_- 0.849F_-H_0 + 0.225G_0G_- + 0.849F_-H_0 + 0.225G_0G_- + 0.181H_0H_- 0.849F_-H_0 + 0.225G_0G_- + 0.849F_-H_0 + 0.849F_$
- $\sqrt{4\pi} \sigma \langle Y_2^2 \rangle = 0.548(P_-^2 P_+^2) 0.293(P_-F_- P_+F_+) + 0.391(D_-^2 D_+^2) 0.319(D_-G_- D_+G_+) + 0.365(F_-^2 F_+^2) 0.329(F_-H_- F_+H_+) + 0.356(G_-^2 G_+^2) + 0.351(H_-^2 H_+^2) 0.319(D_-G_- D_+G_+) + 0.365(F_-^2 F_+^2) 0.329(F_-H_- F_+H_+) + 0.356(G_-^2 G_+^2) + 0.351(H_-^2 H_+^2) 0.319(D_-G_- D_+G_+) + 0.365(F_-^2 F_+^2) 0.329(F_-H_- F_+H_+) + 0.356(G_-^2 G_+^2) + 0.351(H_-^2 H_+^2) 0.319(D_-G_- D_+G_+) + 0.365(F_-^2 F_+^2) 0.329(F_-H_- F_+H_+) + 0.356(G_-^2 G_+^2) + 0.351(H_-^2 H_+^2) 0.319(D_-G_- D_+G_+) + 0.365(F_-^2 F_+^2) 0.329(F_-H_- F_+H_+) + 0.356(G_-^2 G_+^2) + 0.351(H_-^2 H_+^2) 0.319(D_-G_- D_+G_+) + 0.365(F_-^2 F_+^2) 0.329(F_-H_- F_+H_+) + 0.356(G_-^2 G_+^2) + 0.351(H_-^2 H_+^2) 0.319(D_-G_- D_+G_+) + 0.365(F_-^2 F_+^2) 0.329(F_-H_- F_+H_+) + 0.356(G_-^2 G_+^2) + 0.351(H_-^2 H_+^2) 0.319(D_-G_- D_+G_+) + 0.365(F_-^2 F_+^2) 0.329(F_-H_- F_+H_+) + 0.356(F_-^2 G_+^2) + 0.351(H_-^2 H_+^2) 0.319(D_-G_- D_+G_+) + 0.365(F_-^2 F_+^2) 0.329(F_-H_- F_+H_+) + 0.356(F_-^2 G_+^2) + 0.351(H_-^2 H_+^2) 0.319(D_-G_- D_+G_+) + 0.365(F_-^2 F_+^2) 0.329(F_-H_- F_+H_+) + 0.356(F_-^2 F_+^2) 0.329(F_-^2 F_+^2) 0.329(F_-^2 F_+^2) 0.329(F_-^2 F_+^2) + 0.329(F_-^2 F_+^2) 0.329(F_-^2 F_+^2) + 0.329(F_-^2 F_+^2)$
- $\sqrt{4\pi} \sigma \langle Y_1^0 \rangle = 2.S_0 F_0 + 1.757 P_0 D_0 + 1.746 P_0 G_0 1.014 (P_- D_- + P_+ D_+) + 1.380 (P_- G_- + P_+ G_+) + 1.193 D_0 F_0 + 1.699 D_0 H_0 \\ + 0.422 (D_- F_- + D_+ F_+) + 1.519 (D_- H_- + D_+ H_+) + 1.091 F_0 G_0 + 0.704 (F_- G_- + F_+ G_+) + 1.052 G_0 H_0 + 0.816 (G_- H_- + G_+ H_+)$
- $\sqrt{4\pi} \ \sigma \langle Y_3^1 \rangle = 1.414S_0F_- + 1.171F_0D_- + 1.195F_0G_- + 1.014F_-D_0 0.756F_-G_0 + 0.632D_0F_- + 1.140D_0H_- + 0.298D_-F_0 0.849D_-H_0 + 0.498F_0G_- + 0.129F_-G_0 + 0.431G_0H_- + 0.048G_-H_0$
- $\sqrt{4\pi} \sigma(Y_{j}^{2}) = 0.926(P_{-}D_{-}-P_{+}D_{+}) 0.378(P_{-}G_{-}-P_{+}G_{+}) + 0.577(D_{-}F_{-}-D_{+}F_{+}) 0.416(D_{-}H_{-}-D_{+}H_{+}) + 0.514(F_{-}G_{-}-F_{+}G_{+}) + 0.490(G_{-}H_{-}-G_{+}H_{+}) + 0.514(F_{-}G_{-}-F_{+}G_{+}) + 0.490(F_{-}H_{-}-G_{+}H_{+}) + 0.490(F_{-}H_{+}-G_{+}-G_{+}) + 0.490(F_{-}H_{+}-G_{+}) + 0.490(F_{-}H_{+}-G_{$
- $\sqrt{4\pi} \sigma \langle Y_4^0 \rangle = 2.S_0 G_0 + 1.746 P_0 F_0 + 1.741 P_0 H_0 1.069 (P_-F_- + P_+F_+) + 1.348 (P_-H_- + P_+H_+) + 0.857 D_0^2 + 1.162 D_0 G_0 \\ 0.571 (D_-^2 + D_+^2) + 0.318 (D_-G_- + D_+G_+) + 0.545 F_0^2 + 1.052 F_0 H_0 + 0.091 (F_-^2 + F_+^2) + 0.610 (F_-H_- + F_+H_+) + 0.485 G_0^2 \\ + 0.243 (G_-^2 + G_+^2) + 0.462 H_0^2 + 0.308 (H_-^2 + H_+^2)$
- $\sqrt{4\pi} \sigma \langle Y_4^1 \rangle = 1.414S_0G_- + 1.195P_0F_- + 1.206P_0H_- + 0.976P_-F_0 0.778P_-H_0 + 1.107D_0D_- + 0.698D_0G_- + 0.225D_-G_0 + 0.498F_0F_- + 0.577F_0H_- + 0.048F_-H_0 + 0.343G_0G_- + 0.266H_0H_-$
- $\sqrt{4\pi} \, \sigma \langle Y_4^2 \rangle = 0.845(P_-F_- P_+F_+) 0.426(P_-H_- P_+H_+) + 0.452(D_-^2 D_+^2) + 0.453(D_-G_- D_+G_+) + 0.287(F_-^2 F_+^2) + 0.377(F_-H_- F_+F_+) + 0.256(G_-^2 G_+^2) + 0.243(H_-^2 H_+^2) + 0.243(H_-^2$

$$\begin{array}{l} \sqrt{4\pi}\,\sigma\langle Y_{2}^{o}\rangle = 2.s_{0}^{o}H_{0}^{o} + 1.741P_{0}G_{0}^{o} - 1.101(P_{-}G_{-} + P_{+}G_{+}) + 1.699D_{0}F_{0}^{o} + 1.147D_{0}H_{0}^{o} - 1.201(D_{-}F_{-} + D_{+}F_{+}) + 0.256(D_{-}H_{-} + D_{+}H_{+}) \\ + 1.052F_{0}G_{0}^{o} + 0.068(F_{-}G_{-} + F_{+}G_{+}) + 0.923G_{0}H_{0}^{o} + 0.377(G_{-}H_{-} + G_{+}H_{+}) \\ + 0.435G_{0}H_{-} + 1.206P_{0}G_{-} - 0.953P_{-}G_{0}^{o} + 1.140D_{0}F_{-} + 0.730D_{0}H_{-} + 1.074D_{-}F_{0}^{o} + 0.181D_{-}H_{0}^{o} + 0.577F_{0}G_{-}^{o} + 0.431F_{-}G_{0} \\ + 0.435G_{0}H_{-} + 0.266G_{-}H_{0} \\ \sqrt{4\pi}\,\sigma\langle Y_{2}^{o}\rangle = 0.798(P_{-}G_{-} - P_{+}G_{+}) + 0.870(D_{-}F_{-} - D_{+}F_{+}) + 0.372(D_{-}H_{-} - D_{+}H_{+}) + 0.525(F_{-}G_{-} - F_{+}G_{+}) + 0.455(G_{-}H_{-} - G_{+}H_{+}) \\ + 0.504G_{0}^{2} - 0.025(G_{-}^{2} + G_{+}^{2}) + 0.435F_{0}^{b} + 0.131(H_{-}^{2} + H_{+}^{2}) \\ \sqrt{4\pi}\,\sigma\langle Y_{0}^{o}\rangle = 1.212P_{0}H_{-} + 0.939P_{-}H_{0} + 1.155D_{0}G_{-} + 1.055D_{-}G_{0} + 1.12F_{0}F_{-} + 0.617F_{0}H_{-} + 0.390F_{-}H_{0} + 0.517G_{0}G_{-} + 0.364H_{0}H_{-} \\ \sqrt{4\pi}\,\sigma\langle Y_{0}^{b}\rangle = 1.212P_{0}H_{-} + 0.939P_{-}H_{0} + 1.155D_{0}G_{-} + 1.055D_{-}G_{0} + 1.12F_{0}F_{-} + 0.617F_{0}H_{-} + 0.390F_{-}H_{0} + 0.517G_{0}G_{-} + 0.364H_{0}H_{-} \\ \sqrt{4\pi}\,\sigma\langle Y_{0}^{b}\rangle = 0.766(P_{-}H_{-} - P_{+}H_{+}) + 0.844(D_{-}G_{-} - D_{+}G_{+}) + 431(F_{-}^{2} - F_{+}^{2}) + 0.478(F_{-}H_{-} - F_{+}H_{+}) + 0.258(G_{-}^{2} - G_{+}^{2}) + 0.223(H_{-}^{2} - H_{+}^{2}) \\ \sqrt{4\pi}\,\sigma\langle Y_{0}^{b}\rangle = 1.647D_{0}H_{0} - 1.258(D_{-}H_{-} + D_{+}H_{+}) + 1.672F_{0}G_{0} - 1.295(F_{-}G_{-} + F_{+}G_{+}) + 0.996G_{0}H_{0} - 0.121(G_{-}H_{-} + G_{+}H_{+}) \\ \sqrt{4\pi}\,\sigma\langle Y_{0}^{b}\rangle = 1.647D_{0}H_{-} - 1.238(F_{-}H_{-} + F_{+}H_{+}) + 0.831G_{0}^{2} - 0.652G_{0}H_{-} + 0.478(F_{-}H_{-} - G_{+}H_{+}) \\ \sqrt{4\pi}\,\sigma\langle Y_{0}^{b}\rangle = 0.823(D_{-}H_{-} - D_{+}H_{+}) + 0.831G_{0}^{2} - 0.652(G_{0}^{2} + G_{+}^{2}) + 0.481H_{0}^{2} - 0.096(H_{-}^{2} + H_{+}^{2}) \\ \sqrt{4\pi}\,\sigma\langle Y_{0}^{b}\rangle = 0.835(F_{-}H_{-} - F_{+}H_{+}) + 0.848(F_{-}G_{-} - F_{+}G_{+}) + 0.481(G_{-}^{2} - 0.696(H_{-}^{2} + H_{+}^{2}) \\ \sqrt{4\pi}\,\sigma\langle Y_{0}^{b}\rangle = 0.835(F_{$$

We use the abbreviated notation $LL' = \operatorname{Re}(LL'^*)$. A summation over helicity flip and non-flip indices at the nucleon vertex is implicit, that is $\operatorname{Re}(LL'^*) = \operatorname{Re}(L_{\operatorname{flip}}L_{\operatorname{flip}}^*) + \operatorname{Re}(L_{\operatorname{non-flip}}L_{\operatorname{non-flip}}^*)$, see sect. 2.