$D^0 - \overline{D}^0$ mixing and CPV measurements at the B-factories

Yeqi Chen

(On behalf of the Belle Collaboration)

University of Science and Technology of China (USTC)

The 9th International Workshop on Charm Physics, May 21-25, Novosibirsk, Russia

Outline

- ➢ Belle & BaBar at the B-factories
- Formalism and Status of $D^0 \overline{D}^0$ mixing and *CP* violation

Several $D^0 - \overline{D}^0$ mixing and *CP* asymmetry measurements

- Mixing in $D^0 \rightarrow \pi^+ \pi^- \pi^0$ via TDDA at BaBar [PRD 93, 112014, (2016)]
- T-odd asymmetry in $D^0 \rightarrow K^0_S \pi^+ \pi^- \pi^0$ at Belle [PRD 95, 091101(R), (2017)]
- *CP* asymmetry in $D^0 \to K^0_S K^0_S$ at Belle [PRL **119**, 171801, (2017)]
- CP asymmetry in $D^+ \rightarrow \pi^+ \pi^0$ at Belle [PRD 97, 011101(R), (2018)]

➢Summary

Belle @KEKB and BaBar @PEP-II

- ✓ KEKB and PEP-II: asymmetric e⁺e⁻ colliders, operate near Y(4S) resonance, with high peak luminosity 2.1(1.2)×10³⁴ cm⁻²s⁻¹
- ✓ Comparable cross section for $c\bar{c} @\sqrt{s} = 10.58 \text{ GeV} \implies \text{also charm factories}$
- ✓ Excellent vertex info. & PID with SVD, Cherenkov detector, etc.
 for precise flight time of D mesons
- ✓ Good reconstructed capacity for $\gamma/\pi^0/K_S^0$ final states

$b\overline{b}$	1.1
$c \overline{c}$	1.3
$q\bar{q}(\mathrm{q=u,d,s})$	2.1
$ au^+ au^-$	0.93
$\gamma\gamma$	11.1

cross section $\sigma(nb)$

Process

Regular method at B-factories

 \succ D^{*+} tagging method (needed for $D^0 - \overline{D}^0$ mixing): D^{*+} tagging D^0 flavor is tagged by charge of π_s^{\pm} from $D^{*\pm}$ $D^{*+}(c\bar{d}) \to D^{0}(c\bar{u})\pi_{s}^{+}; D^{*-}(\bar{c}d) \to \overline{D}^{0}(\bar{c}u)\pi_{s}^{-}$ \succ Veto signals from B decays by a limit on $p^*(D^*)$ or $p^*(D^0)$ **D**⁰ decay vtx \succ Determine D^0 lifetime t and its error σ_t with vertices and momentum: $l_{\rm dec}$ $t = \frac{m_{D^0}}{cp} \left(\overrightarrow{r_{dec}} - \overrightarrow{r_{prod}} \right) \cdot \frac{\vec{p}}{p}$ **e**⁻ **e**⁺ $\sigma_t^2 = \left(\frac{\partial t}{\partial \eta}\right)^T V_\eta \left(\frac{\partial t}{\partial \eta}\right), V_\eta = \begin{pmatrix} V_{dec} & cov(dec, IP) & cov(dec, p) \\ cov(IP, dec) & V_{IP} & cov(IP, p) \\ cov(p, dec) & cov(p, IP) & V_\eta \end{pmatrix}$ **D**^{*+} product vtx

Introduction to $D^0 - \overline{D}^0$ mixing

Mixing: neutral particle changes to its anti-particle and vice versa

 $K^0 \Leftrightarrow \overline{K}^0, B^0_d \Leftrightarrow \overline{B}^0_d, B^0_s \Leftrightarrow \overline{B}^0_s, D^0 \Leftrightarrow \overline{D}^0$ $\gg D^0 - \overline{D}^0$ mixing: only up-type quark meson system

 \succ Flavor eigenstates (D^0 , \overline{D}^0) ≠ mass eigenstates

($D_{1,2}$ with $m_{1,2}$ and $\Gamma_{1,2}$)

$$|D_{1,2}\rangle \equiv p|D^0\rangle \pm q|\overline{D}{}^0\rangle$$
 (CPT: $p^2 + q^2 = 1$)

➢ Mixing parameters:

$$x \equiv 2 \frac{m_1 - m_2}{\Gamma_1 + \Gamma_2}, y \equiv \frac{\Gamma_1 - \Gamma_2}{\Gamma_1 + \Gamma_2}$$

>Standard model (SM) predicts: |x|, $|y| \sim \mathcal{O}(1\%)$

Precisely measure x and y

- test SM
- search for New physics (NP), such as |x|>>|y|

Introduction to CP violation

➤ CP introduction:

- C: charge-conjugated transform $(P \rightarrow \overline{P})$
- P: parity transform $(\vec{x} \rightarrow -\vec{x})$
- CP: C-P- combined transform
- CKM parameterization by Wolfenstein in SM

$$V = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

only by the complex phase in CKM matrix

>SM predicts in charm sector: $\sim \mathcal{O}(0.1\%)$

• Significant enhancement w.r.t. $SM \implies NP$

$$A^{f}_{CP} = \frac{N(D \to f) - N(\overline{D} \to \overline{f})}{N(D \to f) + N(\overline{D} \to \overline{f})} = A^{f}_{d} + A^{f}_{m} + A^{f}_{i}$$

In the decay (direct):
$$|{}^{A_{f}}/_{\bar{A}_{\bar{f}}}| \neq 1$$

 $\left| -\frac{P}{f} \right|^{2} \neq \left| -\frac{\bar{P}}{f} \right|^{2}$

$$\left\| \frac{P}{p} + \bar{P} \right\|_{\bar{f}}^{2} \neq \left\| \frac{\bar{P}}{p} + \bar{f} \right\|_{\bar{f}}^{2}$$

> In the interference: $\arg(^{q}/_{p}) \neq 0$

Status of $D^0 - \overline{D}^0$ mixing and *CP* violation

L.K. Li *Beauty 2018*

Decay Туре	Final State	BELLE	E	LHCP		CLEO	B€SⅢ
DCS 2-body(WS)	$\kappa^+\pi^-$	*	☆	★ ^(a)	*	✓	
DCS 3-body(WS)	$\kappa^+\pi^-\pi^0$	0 ^(c)	☆			✓ A _{CP}	ο _δ
CP-eigenstate	(even) h^+h^-	☆	☆	☆ ^(b) A _{CP}	✓ A _{CP}	\checkmark	
	(odd) $K_S^0 \phi$	\checkmark		SI			
Self-coni 3-body	$\kappa_{S}^{0}\pi^{+}\pi^{-}$	\checkmark	\checkmark	\checkmark	✓ A _{CP}	\checkmark	\circ_{δ}
decay	$K^0_S K^+ K^-$	0	\checkmark	0			\circ_{δ}
чесау	$K_S^0 \pi^0 \pi^0$					🗸 Dalitz	∘уср
Self-conj. SCS	$\pi^+\pi^-\pi^0$	✓ A _{CP}	✓ ^{mixing} A _{CP}	✓ A _{CP}			\circ_{δ}
3-body decay	$\kappa^+\kappa^-\pi^0$		✓ A _{CP}				\circ_{δ}
SCS 3-body	$\kappa_{S}^{0}K^{\pm}\pi^{\mp}$			✓ A _{CP}		Vδ	°ی
Semileptonic decay	$\kappa^+\ell^- u_\ell$	\checkmark	\checkmark			\checkmark	
	$K^+\pi^-\pi^+\pi^-$	✓ R _{WS}	\checkmark	*			o _δ RS
Multi-body(n≥4)	$\pi^+\pi^-\pi^+\pi^-$	°A _{CP}		$\checkmark^{(d)}_{A_{CP}}$			
	$K^+K^-\pi^+\pi^-$	°A _T	✓ A _T	✓ ^(e) A _{CP}		✓ A _{CP}	0
	$K_S^0\pi^+\pi^-\pi^0$	$\checkmark A_T$					
$\psi(3770) \rightarrow D^0 \overline{D^0}$ via correlations $\checkmark_{\delta K\pi} \checkmark_{\gamma_{CP}}$							

In $D^0 - \overline{D}^0$ mixing measurements: \bigstar for observation (>5 σ); \diamondsuit for evidence (>3 σ); \checkmark for measurement published; \circ for analysis on going. A_{τ} stands for measuring *CP* asymmetry using T-odd correlations.

7

Status of $D^0 - \overline{D}^0$ mixing and *CP* violation

From HFLAV 2016

- >> 11.5σ to exclude no mixing (x,y)=(0,0) with CPV-allowed
- No hint for indirect CPV: no CPV point at C.L. = 40%
- No clear evidence of direct CPV: no CPV at C.L. = 9.3%

Mixing in $D^0 \rightarrow \pi^+\pi^-\pi^0$ via TDDA at BaBar

[PRD **93**, 112014 (2016)]

Time-dependent Dalitz analysis (TDDA) technique used in $D^0 \to K_S^0 \pi^+ \pi^-$ contributes a lot to HFLAV Self-conjugate final state $D^0 \to \pi^+ \pi^- \pi^0$ provides direct measurements of **x** and **y** Decay rate for D^0 by D^{*+} tagging method:

 $|M(f,t)|^2 \propto \frac{e^{-\Gamma t}}{2} \left[\left(\left| A_f \right|^2 + \left| \frac{q}{p} \right|^2 \left| \bar{A}_f \right|^2 \right) \cosh(\mathbf{y}\Gamma t) + \left(\left| A_f \right|^2 - \left| \frac{q}{p} \right|^2 \left| \bar{A}_f \right|^2 \right) \cos(\mathbf{x}\Gamma t) + 2\Re \left[\frac{q}{p} \bar{A}_f A_f^* \right] \sinh(\Gamma t) + 2\Im \left[\frac{q}{p} \bar{A}_f A_f^* \right] \sin(\mathbf{x}\Gamma t) \right]$

> Dalitz plot is parameterized by an Isobar model

$$\bar{A}_f(s_-, s_+) = A_f(s_+, s_-) = \sum_k c_k w_k(s_+, s_-)$$

► BaBar performs first TDDA in $D^0 \rightarrow \pi^+ \pi^- \pi^0$:

 $x = (1.5 \pm 1.2 \pm 0.6)\%$ $y = (0.2 \pm 0.9 \pm 0.5)\%$

- Statistics dominated
- Systematic uncertainty reduced by increased samples

CHARM 2018

T-odd asymmetry in $D^0 \rightarrow K_S^0 \pi^+ \pi^- \pi^0$ at Belle

[PRD **95**, 091101(R) (2017)]

≻Large Br of 5.2%, sample of $\mathcal{O}(10^6) \Rightarrow$ a test at precision of $\mathcal{O}(10^{-3})$ for CP asymmetry

First T-asymmetry measurement for D mesons with two neutral particles

Method:

> Parity-odd observable $C_T = \vec{p}_1 \cdot (\vec{p}_2 \times \vec{p}_3)$ for D^0 and its *CP*-conjugated observable $-\vec{C}_T$ for \overline{D}^0 > Define two asymmetry parameters: $M \rightarrow P_1P_2P_3P_4$

$$A_T = \frac{\Gamma(C_T > 0) - \Gamma(C_T < 0)}{\Gamma(C_T > 0) + \Gamma(C_T < 0)}, \bar{A}_T = \frac{\Gamma(-\bar{C}_T > 0) - \Gamma(-\bar{C}_T < 0)}{\Gamma(-\bar{C}_T > 0) + \Gamma(-\bar{C}_T < 0)}$$

• A_T , \overline{A}_T nonzero due to FSI effects

> CP violation sensitive parameter: $a_{CP}^{T-odd} = \frac{1}{2}(A_T - \bar{A}_T)$

• nonzero \Rightarrow clear signature of T violation [Mat.-fys.Medd. 28, 005 (1954)]

> Via CPT theorem, the T-asymmetry is equivalent to CP violation

T-odd asymmetry in $D^0 \rightarrow K_S^0 \pi^+ \pi^- \pi^0$ at Belle

[PRD 95, 091101(R) (2017)]

Signal decay channel: $e^+e^- \rightarrow c\bar{c} \rightarrow XD^{*+}$, $D^{*+} \rightarrow \pi_s^+ D^0$, $D^0 \rightarrow K_s^0 \pi^+ \pi^- \pi^0$

- Data set with \mathcal{L} = 966 fb^{-1}
- 2D $(M_{D^0}, \Delta M (= M(D^*) M(D^0)))$ correlated fit performed for signal extract and a_{CP}^{T-odd} calculation
- Simultaneously fit to four samples: D^0 with $C_T > 0$, $C_T < 0$ and \overline{D}^0 with $-\overline{C}_T > 0$, $-\overline{C}_T < 0$

$$a_{CP}^{T-odd} = (-0.28 \pm 1.38^{+0.23}_{-0.76}) \times 10^{-3}$$

- Consistent with no CP violation
- Statistically dominated, sensitivity can be improved by Belle II

Bin	Resonance	Invariant mass requirement (MeV/c^2)	$A_T(imes 10^{-2})$	$a_{CP}^{T\text{-odd}}(\times 10^{-3})$
1	$K_S^0 \omega$	$762 < M_{\pi^+\pi^-\pi^0} < 802$	$3.6\pm0.5\pm0.5$	$-1.7 \pm 3.2 \pm 0.7$
2	$K^0_S\eta$	$M_{\pi^+\pi^-\pi^0} < 590$	$0.2\pm1.3\pm0.4$	$4.6\pm9.5\pm0.2$
3	$K^{*-} ho^+$	$790 < M_{K_{ m S}^0\pi^-} < 994$	$6.9\pm0.3^{+0.6}_{-0.5}$	$0.0 \pm 2.0^{+1.6}_{-1.4}$
4	$K^{*+} ho^-$	$610 < M_{\pi^+\pi^0} < 960$ $790 < M_{K_S^0\pi^+} < 994$ $610 < M_{\pi^-\pi^0} < 960$	$22.0\pm0.6\pm0.6$	$1.2 \pm 4.4^{+0.3}_{-0.4}$
5	$K^{*-}\pi^+\pi^0$	$790 < M_{K_{S}^{0}\pi^{-}}^{\pi^{-}} < 994$	$25.5\pm0.7\pm0.5$	$-7.1\pm5.2^{+1.2}_{-1.3}$
6	$K^{*+}\pi^-\pi^0$	$790 < M_{K_S^0 \pi^+} < 994$	$24.5 \pm 1.0^{+0.7}_{-0.6}$	$-3.9\pm7.3^{+2.4}_{-1.2}$
7	$K^{*0}\pi^+\pi^-$	$790 < M_{K_S^0 \pi^0} < 994$	$19.7\pm0.8^{+0.4}_{-0.5}$	$0.0\pm5.6^{+1.1}_{-0.9}$
8	$K^0_S ho^+\pi^-$	$610 < M_{\pi^+\pi^0} < 960$	$13.2\pm0.9\pm0.4$	$7.6\pm6.1^{+0.2}_{-0.0}$
9	Remainder		$20.5 \pm 1.0^{+0.5}_{-0.6}$	$1.8\pm7.4^{+2.1}_{-5.3}$

No evidence for *CP* violation in various bins of $K_S^0 \pi^+ \pi^- \pi^0$ phase space

 a_{CP}^{T-odd} measurements in nine regions

CP asymmetry in $D^0 \rightarrow K_S^0 K_S^0$ at Belle

[PRL 119, 171801 (2017)]

SM-based calculation upper limit 1.1% for direct CPV at 95% C.L. [PRD 92, 054036 (2015)]

➢Singly Cabibbo-suppressed (SCS) decay, special interest: possible interference with NP amplitudes ⇒ large nonzero CPV

Method:

 \succ Signal mode ($D^0 \rightarrow K_S^0 K_S^0$):

$$A_{raw} = \frac{N(D^{0}) - N(\overline{D}^{0})}{N(D^{0}) + N(\overline{D}^{0})} = A_{CP} + A_{\epsilon}^{K} + A_{FB} + A_{\epsilon}^{\pm}$$

- *A_{CP}*: true *CP* asymmetry
- A_{ϵ}^{K} : from different strong interaction of K^{0}/\overline{K}^{0} mesons with nucleons of the detector material $A_{\epsilon}^{K^{0}/\overline{K}^{0}} = (-0.11\pm0.11)\%$ [PRD 84, 111501 (2011)]
- A_{FB} : forward- backward production asymmetry of D^0 mesons
- A_{ϵ}^{\pm} : from different detection efficiencies for π^{\pm}

eliminated by normalization mode

 \succ Normalization mode ($D^0 \rightarrow K_S^0 \pi^0$): $A_{CP}^{D^0 \rightarrow K_S^0 \pi^0}$ = (-0.20 ± 0.17)% [PDG 2016]

Measure
$$A_{CP}^{D^0 \to K_S^0 K_S^0} = \left(A_{raw}^{D^0 \to K_S^0 K_S^0} - A_{raw}^{D^0 \to K_S^0 \pi^0}\right) + \left(A_{CP}^{D^0 \to K_S^0 \pi^0}\right) + A_{\epsilon}^{K^0/\overline{K}^0}$$

CP asymmetry in $D^0 \rightarrow K_S^0 K_S^0$ at Belle

[PRL 119, 171801 (2017)]

 $\succ A_{raw}$: simultaneous fit on the ΔM Data set with \mathcal{L} = 921 *fb*⁻¹

\succ Comparison of A_{CP} & B_r measurement results

Exp.	Results	$\mathcal{L} (fb^{-1})$
CLEO A_{CP}	$(-23\pm19)\%$	13.7
LHCb A_{CP}	$(2.0\pm2.9\pm1.0)\%$ (Beauty 2018)	5
Belle A_{CP}	$(-0.02 \pm 1.53 \pm 0.02 \pm 0.17)\%$	921
BESIII Br	$(1.67 \pm 0.11 \pm 0.11) \times 10^{-4}$	2.93
Belle Br	$(1.32 \pm 0.02 \pm 0.04 \pm 0.04) \times 10^{-4}$	921

- A_{CP} consistent with no CPV, precision comparable to theory prediction (1.1%), improved precision
- B_r consistent with the world average (PDG), 2.3 σ away from a recent BESIII measurement
- \succ Both measurements are the most precise ones available for $D^0 \rightarrow K^0_S K^0_S$ mode

18/05/25

CP violation in $D^+ \rightarrow \pi^+ \pi^0$ at Belle

SCS decays (like $D^+ \rightarrow \pi^+ \pi^0$): excellent candidates to probe CPV

> Any *CP* asymmetry found in these SCS channels points to NP [PRD 85,114036 (2012)] Method:

≻Signal mode ($D^+ \rightarrow \pi^+ \pi^0$):

 $A_{raw}^{\pi\pi} = \frac{N(D^+ \to \pi^+ \pi^0) - N(D^- \to \pi^- \pi^0)}{N(D^+ \to \pi^+ \pi^0) + N(D^- \to \pi^- \pi^0)} = A_{CP}^{\pi^+ \pi^0} + A_{FB}^{\pi^\pm} \longrightarrow \text{eliminated by normalization mode}$

- *A_{CP}*: true *CP* asymmetry
- *A_{FB}*: forward- backward production asymmetry of *D* mesons
- $A_{\epsilon}^{\pi^{\pm}}$: from different detection efficiencies for π^{\pm}

► Normalization mode $(D^+ \rightarrow \pi^+ K_S^0)$:

 $A_{CP}^{K\pi} = (-0.363 \pm 0.094 \pm 0.067)\% \quad \text{[PRL 109, 021601 (2012)]}$ Measure $A_{CP}^{\pi\pi} = \left(A_{raw}^{D^+ \to \pi^+ \pi^0} - A_{raw}^{D^+ \to \pi^+ K_S^0}\right) + A_{CP}^{K\pi}$

CP violation in $D^+ \rightarrow \pi^+ \pi^0$ at Belle

Method:

$$A_{CP}^{\pi\pi} = \left(A_{raw}^{D^{+} \to \pi^{+} \pi^{0}} - A_{raw}^{D^{+} \to \pi^{+} K_{S}^{0}}\right) + A_{CP}^{K\pi}$$

> Simultaneous fit to M_D for raw asymmetries

[PRD 97, 011101(R) (2018)]

- Signal mode: $D^+ \rightarrow \pi^+ \pi^0$
- Normalization mode: $D^+ \rightarrow \pi^+ K_S^0$
- $A_{raw}^{\pi\pi}/A_{raw}^{K\pi}$ for tagged and untagged samples tagged $\Delta A_{raw} = (+0.81 \pm 1.97 \pm 0.19)\%$ untagged $\Delta A_{raw} = (+4.02 \pm 1.61 \pm 0.32)\%$
- Combination:

 $\Delta A_{raw} = (+2.67 \pm 1.24 \pm 0.23)\%$

 $A_{CP}^{D^+ \to \pi^+ \pi^0} = (+2.31 \pm 1.24 \pm 0.23)\%$

- consistent with SM expectation
- improved precision by more than a factor of 2

Summary

- Belle and BaBar have achieved fruitful production on charm physics at the B-factories, based on an integrated luminosity of ~1.0 ab⁻¹ and ~0.5 ab⁻¹ data sets.
- Several $D^0 \overline{D}^0$ mixing and *CP* asymmetry measurements.
 - \checkmark First measurement of mixing parameters in $D^0 \rightarrow \pi^+\pi^-\pi^0$ at BaBar
 - $x = (1.5 \pm 1.2 \pm 0.6)\%$, $y = (0.2 \pm 0.9 \pm 0.5)\%$
 - ✓ First measurement of *CP* asymmetry via T-odd in $D^0 \rightarrow K_S^0 \pi^+ \pi^- \pi^0$ at Belle:
 - $A_{CP}^{D^0 \to K_S^0 \pi^+ \pi^- \pi^0} = (-0.28 \pm 1.38^{+0.23}_{-0.76}) \times 10^{-3} \Longrightarrow$ consistent with no *CP* violation
 - $\checkmark CP$ asymmetry in $D^0 \rightarrow K^0_S K^0_S$ at Belle
 - $A_{CP}^{D^0 \to K_S^0 K_S^0} = (-0.02 \pm 1.53 \pm 0.02 \pm 0.17)\% \implies$ consistent with SM, significantly improved precision
 - Br = $(1.32\pm0.02\pm0.04\pm0.04) \times 10^{-4} \implies$ consistent with the world average
 - $\checkmark {\it CP}$ violation in $D^+ \rightarrow \pi^+ \pi^0$ at Belle
 - $A_{CP}^{D^+ \to \pi^+ \pi^0} = (+2.31 \pm 1.24 \pm 0.23)\% \implies$ consistent with SM expectation, improved precision

Statistically limited, more precise results and improved sensitivity are expected at Belle II due to the increased dataset.

Thank you!

Backup

Belle II sensitivity estimation based on ToyMC

• Smear decay time with Gauss (σ =140 fs) for 1000 experiments

Table 1. Belle measurements and Belle II estimations of expected sensitivities of mixing parameters x', y' and CP-violating parameters |q/p|, ϕ of flavor tagged $D^0 \to K^+\pi^- + c.c.$ decays, under situation of CPV and CPV-allowed.

F	Parameter	$\begin{array}{c} \text{Belle} \\ 976 \ \text{fb}^{-1} \end{array}$	5 ab^{-1}	Belle II 20 ab^{-1}	$50 { m ~ab^{-1}}$
no CPV	$\delta(x'^2) \; (10^{-5}) \ \delta(y') \; (\%)$	$\begin{array}{c} 22 \\ 0.34 \end{array}$	$\begin{array}{c} 7.5 \\ 0.11 \end{array}$	$\begin{array}{c} 3.7 \\ 0.056 \end{array}$	$\begin{array}{c} 2.3 \\ 0.035 \end{array}$
CPV- allowed	$\delta(x') \ (\%) \ \delta(y') \ (\%) \ \delta(q/p) \ \delta(\phi) \ (^\circ)$		$\begin{array}{c} 0.37 \\ 0.26 \\ 0.197 \\ 15.5 \end{array}$	$0.23 \\ 0.17 \\ 0.089 \\ 9.2$	$0.15 \\ 0.10 \\ 0.051 \\ 5.7$

> Time-integrated *CP* asymmetries measurements

$$\mathbf{A^f_{CP}} = \frac{\Gamma(\mathbf{D^0} \rightarrow \mathbf{f}) - \Gamma(\bar{\mathbf{D}^0} \rightarrow \overline{\mathbf{f}})}{\Gamma(\mathbf{D^0} \rightarrow \mathbf{f}) + \Gamma(\bar{\mathbf{D}^0} \rightarrow \overline{\mathbf{f}})}$$

Expected A_{CP} uncertainty @ Belle II of 50 ab^{-1} (D^{*+} tagging)

$$\sigma_{\rm BelleII} = \sqrt{(\sigma_{\rm stat}^2 + \sigma_{\rm syst}^2) \cdot (\mathcal{L}_{\rm Belle}/50 \text{ ab}^{-1}) + \sigma_{\rm irred}^2}$$

Table 2. Time-integrated CP asymmetries measurements from Belle, and the precision expected for Belle II in 50 ab⁻¹ of data.

Channel	Current measurement			
	$\mathcal{L}(\mathrm{fb}^{-1}$	(%) value(%)	References	$50 {\rm ~ab^{-1}}$
$D^0 \rightarrow K^+ K^-$	976	$-0.32 \pm 0.21 \pm 0.09$	PoS ICHEP2012 (2013) 353	± 0.03
$D^0 ightarrow \pi^+\pi^-$	976	$+0.55 \pm 0.36 \pm 0.09$	PoS ICHEP2012 (2013) 353	± 0.05
$D^0 ightarrow \pi^0 \pi^0$	966	$-0.03 \pm 0.64 \pm 0.10$	PRL 112 , 211601 (2014)	± 0.09
$D^0 ightarrow K^0_S \pi^0$	966	-0.21 \pm 0.16 \pm 0.07	PRL 112 , 211601 (2014)	± 0.03
$D^0 ightarrow ec{K_S^0} \eta$	791	$+0.54 \pm 0.51 \pm 0.16$	PRL 106 , 211801 (2011)	± 0.07
$D^0 ightarrow K_S^{ec 0} \eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	PRL 106 , 211801 (2011)	± 0.09
$D^0 \rightarrow K^0_S K^0_S$	921	$-0.02 \pm 1.53 \pm 0.17$	PRL 119 , 171801 (2017)	± 0.20
$D^0 ightarrow \pi^+ \pi^- \pi^0$	532	$+0.43 \pm 1.30$	PLB 662, 102 (2008)	± 0.13
$D^0 ightarrow K^+ \pi^- \pi^0$	281	-0.60 ± 5.30	PRL 95 , 231801 (2005)	± 0.40
$D^0 \to K^+ \pi^- \pi^+ \pi^-$	281	-1.80 ± 4.40	PRL 95, 231801 (2005)	± 0.33
$D^+ o \pi^0 \pi^+$	921	$+0.89 \pm 1.98 \pm 0.22$	PRD 97 , 011101(R) (2018)	± 0.40
$D^+ o \phi \pi^+$	955	$+0.51\pm0.28\pm0.05$	PRL 108, 071801 (2012)	± 0.04
$D^+ o \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	PRL 107 , 221801 (2011)	± 0.14
$D^+ o \eta' \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	PRL 107 , 221801 (2011)	± 0.14
$D^+ \to K^0_S \pi^+$	977	$-0.36 \pm 0.09 \pm 0.07$	PRL 109 , 021601 (2012)	± 0.03
$D^+ \to K_S^{0} K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	JHEP 02 (2013) 098	± 0.05
$D_s^+ \to K_S^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	PRL 104 , 181602 (2010)	± 0.29
$D_s^+ \to K_S^{0}K^+$	673	$+0.12 \pm 0.36 \pm 0.22$	PRL 104, 181602 (2010)	± 0.05

18/05/25

>Measurements of mixing parameters in Self-conjugate final state decays

	x (%)	у (%)	Luminosity (fb^{-1})
$D^0 \to K_S^0 \pi^+ \pi^- \text{ (no CPV)}$	$0.56{\pm}0.19^{+0.067}_{-0.127}$	$0.30{\pm}0.15^{+0.050}_{-0.078}$	921 (Belle)
(CPV-allowed)	$0.58{\pm}0.19^{+0.0734}_{-0.1177}$	$0.27{\pm}0.16^{+0.0546}_{-0.0854}$	521 (Dene)
$D^0 \to K_S^0 \pi^+ \pi^- (\text{no CPV})$	$-0.86 {\pm} 0.53 {\pm} 0.17$	$0.03{\pm}0.46{\pm}0.13$	1.0 (LHCb)
$D^0 \rightarrow K_S^0 h^+ h^- (h = K/\pi)$ (no CPV)	$0.16 {\pm} 0.23 {\pm} 0.12 {\pm} 0.08$	$0.57 {\pm} 0.20 {\pm} 0.13 {\pm} 0.07$	468.5 (BaBar)
$D^0 \rightarrow \pi^+ \pi^- \pi^0 \text{ (no CPV)}$	$1.5{\pm}1.2{\pm}0.6$	$0.2{\pm}0.9{\pm}0.5$	468.1(BaBar)

>T-odd measurements Vs. other measurements in D meson decays

$$\begin{array}{ll} D^0 \to {\cal K}^0_S \pi^+ \pi^- \pi^0 & {\it a}_{CP}^{{\rm T-odd}} = (-0.28 \pm 1.38^{+0.23}_{-0.76}) \times 10^{-3} & {\rm Belle}^{[1]} \\ D^0 \to {\cal K}^+ {\cal K}^- \pi^+ \pi^- & {\it a}_{CP}^{{\rm T-odd}} = (+1.7 \pm 2.7) \times 10^{-3} & {\rm LHCb}^{[2]}, \, {\rm BaBar}^{[3]}, \, {\rm Focus}^{[4]} \\ D^+ \to {\cal K}^0_S {\cal K}^+ \pi^+ \pi^- & {\it a}_{CP}^{{\rm T-odd}} = (-1.10 \pm 1.09) \times 10^{-2} & {\rm BaBar}^{[5]}, \, {\rm Focus}^{[4]} \\ D^+_s \to {\cal K}^0_S {\cal K}^+ \pi^+ \pi^- & {\it a}_{CP}^{{\rm T-odd}} = (-1.39 \pm 0.84) \times 10^{-2} & {\rm BaBar}^{[5]}, \, {\rm Focus}^{[4]} \\ \end{array}$$

K. Prasanth *et al.*(Belle Collab.), Phys. Rev. D **95**, 091101(R) (2017)
 R. Aaij *et al.*(LHCb Collab.), JHEP **10**, 5 (2014)

[3] P. del Amo Sanchez *et al.*(BaBar Collab.), Phys. Rev. D **81**, 111103(R) (2010)

[4] J.M. Link *et al.*(FOCUS Collab.), Phys. Lett. B **622**, 239 (2005)

[5] J.P. Lees et al. (BaBar Collab.), Phys. Rev. D 84, 031103(R) (2011)