Rare charm decays A quest for New Physics?

Alexey A. Petrov Wayne State University Michigan Center for Theoretical Physics

Table of Contents:

Introduction
Rare D-decays into charged leptons short distance/long distance
lepton flavor diagonal decays: phenomenology and experiment
lepton flavor violation with charm
Rare D-decays into neutral states (aka "missing energy")
Conclusions

1. Introduction: experimental data

Gauge forces in SM do not distinguish between fermions of different generations:

- e, μ, τ have same electrical charge "Lepton universality"
- quarks have same color charge
- * Why generations? Why only 3? Are there only 3?
- ★ Why hierarchies of masses and mixings?
- Can there be transitions between quarks/leptons of the same charge but different generations?

The flavor puzzle

Caution: fermion mass hierarchy might not have a single explanation...

Why is M_{Jupiter} >> M_{Mercury}?

But what if it does? New Physics?

Introduction: energy scales

* Main goal of the exercise: understand physics at the most fundamental scale

 \star It is important to understand relevant energy scales for the problem at hand

2a. Rare decays: short distance

* Effective Lagrangian can be obtained by integrating out heavy modes

- Contrary to b-physics, two matching scales (M_W and m_b)
- GIM mechanism is effective for light quarks
- Only two operators at $M_{\rm W}$

$$H_{ ext{eff}}(M_W > \mu > m_b) = rac{4G_F}{\sqrt{2}} \sum_{q=d,s,b} V_{cq}^* V_{uq}[C_1(\mu)\mathcal{O}_1^q + C_2(\mu)\mathcal{O}_2^q]$$

$$egin{aligned} \mathcal{O}_1^q &= (ar{u}_L \gamma_\mu T^a q_L) (ar{q}_L \gamma^\mu T^a c_L) \,, \ \mathcal{O}_2^q &= (ar{u}_L \gamma_\mu q_L) (ar{q}_L \gamma^\mu c_L) \,, \end{aligned}$$

- Ten operators at $m_{\rm b}$
- Those that correspond to rare decays

$$\mathcal{O}_9 = rac{lpha_{
m em}}{4\pi} (ar{u}_L \gamma_\mu c_L) (ar{\ell} \gamma^\mu \ell) \,,
onumber \ \mathcal{O}_{10} = rac{lpha_{
m em}}{4\pi} (ar{u}_L \gamma_\mu c_L) (ar{\ell} \gamma^\mu \gamma_5 \ell) \,.$$

Short distance (cont.)

★ Effective Lagrangian can be obtained by integrating out heavy modes
 - Most recent results: NNLL
 De Boer, Muller, Seidel, 2016

	$ar{C}_1$	$ar{C}_2$	$ar{C}_3$	$ar{C}_4$	$ar{C}_5$	$ar{C}_6$
LL	-0.517	1.266	0.010	-0.025	0.007	-0.029
NLL	-0.356	1.157	0.014	-0.042	0.010	-0.045
NNLL	-0.317	1.140	0.013	-0.040	0.009	-0.045

- Short distance contribution for $\mu < m_b$ for $C_9(\mu)$ Wilson coefficient

$$egin{aligned} C_9(\mu) &= C_9(m_b) + W^{(n_f=4)}(\mu,m_b) \, R \, U^{(n_f=5)}(m_b,M_W) \, C(M_W) \, , \ & W^{(n_f=4)}(\mu,m_b) = -rac{1}{2} \, \int_{a_s(m_b)}^{a_s(\mu)} da_s \, rac{\kappa(a_s)}{eta(a_s)} \, U^{(n_f=4)}(\mu,m_b) \, , \ & rac{d}{d\ln\mu_1} \, U^{(n_f)}(\mu_1,\mu_2) = \gamma^T(n_f,\mu_1) \, U^{(n_f)}(\mu_1,\mu_2) \end{aligned}$$

- The results are

	$C_7^{ m eff}$	$C_8^{ m eff}$	C_9	C_{10}	$C_9^{ m NNLL}$	$C_{10}^{ m NNLL}$
$\mathbf{L}\mathbf{L}$	0.078	-0.055	-0.098	0		
NLL	0.051	-0.062	-0.309	0	-0.488	0

An order of magnitude difference between leading log and NNLL results for C₉!

Short distance/long distance

★ Effective Lagrangian can be obtained by integrating out heavy modes

 Take into account light quarks: "effective Wilson coefficient" C₉^{eff}(µ)
 De Boer, Muller, Seidel, 2016

$$C_9^{\text{eff}}(\mu, s) = (V_{cd}^* V_{ud} + V_{cs}^* V_{us}) \left(C_9(\mu) + Y^{(ds)}(\mu, s) \right) \\ + V_{cd}^* V_{ud} Y^{(d)}(\mu, s) + V_{cs}^* V_{us} Y^{(s)}(\mu, s) ,$$

- ... where $Y^{(s)}(\mu,s)$, $Y^{(d)}(\mu,s)$ and $Y^{(ds)}(\mu,s)$ are functions of C and $\log(m_q^2/\mu^2)$

* Long distance effects: hadron resonances and others

- Since-particle resonances modify $C_9^{\text{eff}}(\mu)$ as $C_9^{\text{eff}} \rightarrow C_9^{\text{eff}} + \frac{3\pi}{\alpha^2} \sum_i \kappa_i \frac{m_{V_i} \Gamma_{V_i \rightarrow l^+ l^-}}{m_{V_i}^2 - s - i m_{V_i} \Gamma_{V_i}}$,

$$egin{aligned} C_9^{
m R} &= a_
ho e^{i\delta_
ho} igg(rac{1}{q^2 - m_
ho^2 + im_
ho \Gamma_
ho} - rac{1}{3} rac{1}{q^2 - m_\omega^2 + im_\omega \Gamma_\omega} igg) \ &+ rac{a_\phi e^{i\delta_\phi}}{q^2 - m_\phi^2 + im_\phi \Gamma_\phi}, \end{aligned}$$

- Similar modifications are present for other "effective Wilson coefficients"

- In principle, should also contain contributions from two-particle states, etc.

Burdman et al (02), Fajfer et al (03), Paul et al (11)

2b. Rare leptonic decays: phenomenology

 \bigstar Standard Model contribution to $D \to \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$.

$$B^{(ext{s.d.})}_{D^0\ell^+\ell^-} \simeq rac{G_F^2 M_W^2 f_D m_\ell}{\pi^2} F\,, \quad F = \sum_{i=d,s,b} \ V_{ui} V_{ci}^* \left[rac{x_i}{2} + rac{lpha_s}{4\pi} x_i \cdot \left(\ln^2 x_i + rac{4+\pi^2}{3}
ight)
ight]$$

UKQCD, HPQCD; Jamin, Lange; Penin, Steinhauser; Khodjamirian

- LD effects amount to Br ~ 10⁻¹³
- BGHP (2002) paper probably overestimates LD contributions to $D \to \mu \text{+} \mu \text{-}$.

Rare semileptonic decays: phenomenology

These decays also proceed at one loop in the SM; GIM is very effective - SM rates are expected to be small De Boer, Hiller (2016)

- ★ Rare decays D → M e⁺e⁻/µ⁺µ⁻ just like D → e⁺e⁻/µ⁺µ⁻ are mediated by c→u II
 - SM contribution is dominated by LD effects, e.g.

 ρ/ω

De Boer, Hiller (2016)

η

0.001

 $d\mathcal{B}(D^{+} \to \pi^{+} \mu^{+} \mu^{-})/ dq^{2} [GcV^{-2}]$ $10^{-1} 10^{-11} 10^{-11}$ $10^{-6} 0^{-11} 10^{-11}$

 10^{-15}

Burdman, Golowich, Hewett, Pakvasa: Fajfer, Prelovsek, Singer

Carve out "resonance window" by comparing fResonance /fLead Resonance to experimental sensitivity?

	0.0	0.5	1.0	1.5	2.0	2.5	3.0	
	-		. <u>-</u>	_ a² [GeV2]				
q^2 bin				Ĕ	$\mathcal{B}(D^+ o \pi$	$^+\mu^+\mu^-)_{\rm nr}^{\rm SM}$		90% C.L. [27]
Full q^2 : (2	$(m_{\mu})^2 \le q^2 \le (m_{\mu})^2$	$(n_{D^+} - m_{\pi^+})^2$!	3.7×10^{-12}	$(\pm 1, \pm 3, \pm 3)$	$\pm 16_{15}, \pm 1, \pm $	$^{+158}_{-1}$, $^{+16}_{-12}$)	$7.3 imes 10^{-8}$
Low $q^2: 0$.	$250^2 \text{ GeV}^2 \le q$	$^{2} \leq 0.525^{2}$	GeV ²	7.4×10^{-13}	$(\pm 1, \pm 4, \pm 4, \pm 4)$	-23 $+10$ $+10$ $+10$ -11 -1	(+238,+6)	$2.0 imes 10^{-8}$
High q^2 : q	$^2 \ge 1.25^2 \text{ GeV}^2$	1		7.4×10^{-13}	$(\pm 1, \pm 6, \pm 6, \pm 6)$	$\pm 15,\pm 6,\pm 0,\pm 0,\pm 0$	$^{+136}_{-45}$, $^{+27}_{-20}$)	$2.6 imes 10^{-8}$

21

Rare decays: new physics

★ Can New Physics be "hiding" in the up-type quark transitions?

- explicit models can be constructed where it can be done
- long-distance effects complicate interpretation
- must use exp and theo tricks to sort out

Maybe correlations between different measurements can help sorting out NP in charm?

20

Generic NP contribution to $D \to \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$

★ Most general effective Hamiltonian:

$$\begin{split} \widetilde{Q}_1 &= (\overline{\ell}_L \gamma_\mu \ell_L) \ (\overline{u}_L \gamma^\mu c_L) \ , \qquad \widetilde{Q}_4 &= (\overline{\ell}_R \ell_L) \ (\overline{u}_R c_L) \ , \\ f|\mathcal{H}_{NP}|i\rangle &= G \sum_{i=1} \overset{\sim}{\mathbf{C}}_i(\mu) \ \langle f|Q_i|i\rangle(\mu) \qquad \widetilde{Q}_2 &= (\overline{\ell}_L \gamma_\mu \ell_L) \ (\overline{u}_R \gamma^\mu c_R) \ , \qquad \widetilde{Q}_5 &= (\overline{\ell}_R \sigma_{\mu\nu} \ell_L) \ (\overline{u}_R \sigma^{\mu\nu} c_L) \ , \\ \widetilde{Q}_3 &= (\overline{\ell}_L \ell_R) \ (\overline{u}_R c_L) \ , \qquad \qquad \mathsf{plus } \mathsf{L} \leftrightarrow \mathsf{R} \end{split}$$

 \bigstar ... thus, the amplitude for D \rightarrow e⁺e⁻/µ⁺µ⁻ decay is

$$\begin{split} \mathcal{B}_{D^0 \to \ell^+ \ell^-} &= \frac{M_D}{8\pi\Gamma_D} \sqrt{1 - \frac{4m_\ell^2}{M_D^2}} \left[\left(1 - \frac{4m_\ell^2}{M_D^2} \right) |A|^2 + |B|^2 \right] \\ |A| &= G \frac{f_D M_D^2}{4m_c} \left[\tilde{C}_{3-8} + \tilde{C}_{4-9} \right] , \\ |B| &= G \frac{f_D}{4} \left[2m_\ell \left(\tilde{C}_{1-2} + \tilde{C}_{6-7} \right) + \frac{M_D^2}{m_c} \left(\tilde{C}_{4-3} + \tilde{C}_{9-8} \right) \right], \quad \tilde{C}_{i-k} \equiv \tilde{C}_i - \tilde{C}_k \end{split}$$

Many NP models give contributions to both D-mixing and $D \rightarrow e^+e^-/\mu^+\mu^-$ decay: correlate!!!

Mixing vs rare decays: ruling out models

\star Relating mixing and rare decay

- consider an example: heavy vector-like quark (Q=+2/3)
 - appears in little Higgs models, etc.

Mixing:

$$x_{\rm D}^{(+2/3)} = \frac{2G_F \lambda_{uc}^2 f_D^2 M_D B_D r(m_c, M_Z)}{3\sqrt{2}\Gamma_D}$$

 $\mathcal{H}_{2/3} = \frac{g^2}{8\cos^2\theta_w M_z^2} \lambda_{uc}^2 Q_1 = \frac{G_F \lambda_{uc}^2}{\sqrt{2}} Q_1$

Rare decay

ay:
$$A_{D^0 o \ell^+ \ell^-} = 0$$
 $B_{D^0 o \ell^+ \ell^-} = \lambda_{uc} rac{G_F f_{\mathrm{D}} m_\mu}{2}$

$$\mathcal{B}_{D^0 \to \mu^+ \mu^-} = \frac{3\sqrt{2}}{64\pi} \frac{G_F m_\mu^2 x_D}{B_D r(m_c, M_Z)} \left[1 - \frac{4m_\mu^2}{M_D} \right]^{1/2}$$
$$\simeq 4.3 \times 10^{-9} x_D \leq 4.3 \times 10^{-11} .$$

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. PRD79, 114030 (2009)

$$\lambda_{uc} \equiv -\left(V_{ud}^*V_{cd} + V_{us}^*V_{cs} + V_{ub}^*V_{cb}\right)$$

Note: a NP parameter-free relation!

Rare semileptonic decays: New Physics

Rare semileptonic decays can be used to study New Physics

* Example: R-partity-violating SUSY/leptoquarks

- operators with the same parameters contribute to D-mixing
- feed results into rare decays

Burdman, Golowich, Hewett, Pakvasa; Fajfer, Prelovsek, Singer

Mode	LD	Extra heavy q	LD + extra heavy q
$ \begin{array}{c} \hline D^+ \to \pi^+ e^+ e^- \\ D^+ \to \pi^+ \mu^+ \mu^- \end{array} \end{array} $	2.0×10^{-6} 2.0×10^{-6}	1.3×10^{-9} 1.6×10^{-9}	2.0×10^{-6} 2.0×10^{-6}
Mode	MSSMK	LD + MSSM	
$D^+ ightarrow \pi^+ e^+ e^- \ D^+ ightarrow \pi^+ \mu^+ \mu^-$	$\begin{array}{c} 2.1 \times 10^{-7} \\ 6.5 \times 10^{-6} \end{array}$	2.3×10^{-6} 8.8×10^{-6}	

Fajfer, Kosnik, Prelovsek

★ Direct CP-violating asymmetries in D -> $\pi\mu$ + μ -?

De Boer, Hiller (2016)

Rare charm decays: experiment

Any other ideas?

★ Two-body decays of B and D

- only one hadron to deal with: decay constant?
- but: probes limited number of operators, helicity suppression
 - e.g. not sensitive to vector-like New Physics (such as vector Z')
- soft photon effects preclude studies of electron decay modes:

$$\frac{\mathcal{B}(D^0 \to \gamma \ell^+ \ell^-)}{\mathcal{B}(D^0 \to \ell^+ \ell^-)} \propto \alpha \frac{m_D^2}{m_\ell^2}$$

★ Three-body decays of B and D

- probes several operators, many different observables
- but: two hadrons: four form-factors, hard to calculate non-perturbatively

- recent "issues" with lepton universality in B-decays $R_K = \frac{BR(B \to K\mu^+\mu^-)}{BR(B \to Ke^+e^-)}$ = $0.745^{+0.090}_{-0.074}$ (stat) ± 0.036 (syst)

LHCb (2014)

Can one remove helicity suppression AND enlarge the set of probed operators by studying electroweak **decays** of excited states of D or B (like D* or B*)? **No. but...**

Studies of $D^*(B^*) \rightarrow e^+e^-$ in resonance production

★ Instead of searching for a decay of D*/B*, let's produce it!

- resonant enhancement possible if e+e- energy is tuned to $m_{D*}(m_{B*})$
- single heavy flavor + photon in the final state is a nice tag

- contrary to a usual way of studying FCNC, production cross section is small

★ This way, the FCNC branching ratio for $D^*(2007) \rightarrow e+e$ - is probed

$$\sigma(e^+e^- \to D\pi)_{\sqrt{s} \simeq m_{D^*}} \equiv \sigma_{D^*}(s) = \frac{12\pi}{m_{D^*}^2} \ \mathcal{B}_{D^* \to e^+e^-} \mathcal{B}_{D^* \to D\pi} \ \frac{m_{D^*}^2 \Gamma_0^2}{(s - m_{D^*}^2)^2 + m_{D^*}^2 \Gamma_0^2},$$

Studies of $D^*(B^*) \rightarrow e^+e^-$ in resonance production

The BESIII Detector

★ BEPCII machine with BESIII detector (China)

- optimized for Psi(3770)
- already made scans $\sqrt{s} = 2.0 4.2$ GeV.
- luminosity is about 5x10³¹ cm⁻²s⁻¹

CMD-3 Cryogenic Magnetic Detector RF: 172 MHz Transfer line from BEP

★ VEPP-2000 machine (Novosibirsk, Russia)

- optimized for $E_{CM} < 2000 \text{ MeV}$
- possible upgrade to E_{CM} > 2000 MeV
- luminosity is about 1x10³² cm⁻²s⁻¹

★ HIEPA: new tau-charm factory in Hefei (if approved)

-luminosity is about 5x10³⁴ cm⁻²s⁻¹

Studies of $D^*(B^*) \rightarrow e^+e^-$ in the Standard Model

★ Standard Model, short distance:

- local O_9 and O_{10} operators
- additional dipole contribution

$$egin{aligned} O_9 &= rac{e^2}{16\pi^2} \left(\widetilde{Q}_1 + \widetilde{Q}_7
ight) \,, \ \ O_{10} &= rac{e^2}{16\pi^2} \left(\widetilde{Q}_7 - \widetilde{Q}_1
ight) \ H_{ ext{eff}}^{(7\gamma)} &= rac{4G_F}{\sqrt{2}} C_7^{ ext{c,eff}} \left(rac{e}{16\pi^2} m_c \; \overline{u}_L \sigma^{\mu
u} c_R F_{\mu
u}
ight) \end{aligned}$$

 \star Decay amplitude depends on additional non-perturbative parameter

$$\langle 0 | \overline{u} \sigma^{\mu
u} c | D^*(p)
angle = i f_{D^*}^T \left(\epsilon^\mu p^
u - p^\mu \epsilon^
u
ight)$$

Khodjamirian, Mannel, AAP JHEP 11 (2015) 142

 \star Short-distance result is well-defined

$$\mathcal{B}_{D^* \to e^+ e^-} = \frac{\alpha^2 G_F^2}{96\pi^3 \Gamma_0} m_{D^*}^3 f_{D^*}^2 \left(\left| C_9^{\text{c,eff}} + 2 \frac{m_c}{m_{D^*}} \frac{f_{D^*}^T}{f_{D^*}} C_7^{\text{c,eff}} \right|^2 + |C_{10}^c|^2 \right)$$

★ ... but the Br is small (the width is not though): $\mathcal{B}_{D^* \to e^+ e^-}^{SD} = \frac{\Gamma(D^* \to e^+ e^-)}{\Gamma_0} \approx 2.0 \times 10^{-19}$

★ LD contributions are of the same order of magnitude or less!!!

No helicity suppression: no issues with testing lepton universality!

Alexey A Petrov (WSU & MCTP)

K

$D^*(B^*) \rightarrow e^+e^-$: example of NP contribution

 \star A plethora of NP models that realize charm (beauty) FCNC interactions can be probed

- consider a model with a Z' coupling to a left-handed FCNC quark currents

$$\mathcal{L}_{Z'} = -g'_{Z'1} \overline{\ell}_L \gamma_\mu \ell_L Z'^\mu - g'_{Z'2} \overline{\ell}_R \gamma_\mu \ell_R Z'^\mu - g^{cu}_{Z'1} \overline{u}_L \gamma_\mu c_L Z'^\mu - g^{u}_{Z'2} \overline{u}_R \gamma_\mu c_R Z'^\mu.$$

★ At low energies integrate out Z':

$$\mathcal{L}_{ ext{eff}}^{Z'} \,=\, -rac{1}{M_{Z'}^2} \left[g_{Z'1}' g_{Z'1}^{cu} \widetilde{Q}_1 + g_{Z'1}' g_{Z'2}^{cu} \widetilde{Q}_2 + g_{Z'2}' g_{Z'2}^{cu} \widetilde{Q}_6 + g_{Z'2}' g_{Z'1}^{cu} \widetilde{Q}_7
ight]$$

★ ...which leads to a branching ratio (for $g'_{Z'1} = \frac{g}{\cos \theta_W} \left(-\frac{1}{2} + \sin^2 \theta_W \right), \qquad g'_{Z'2} = \frac{g \sin^2 \theta_W}{\cos \theta_W},$)

$$\mathcal{B}^{Z'}_{D^* o e^+ e^-} = rac{\sqrt{2}G_F}{3\pi\Gamma_0} m_{D^*}^3 f_{D^*}^2 rac{|g^{cu}_{Z'1}|^2}{M^2_{Z'}} rac{M^2_Z}{M^2_{Z'}} \left(rac{1}{4} - \sin^2 heta_W + 2\sin^4 heta_W
ight)$$

 \star ... and current constraint of $\mathcal{B}^{Z'}_{D^* o e^+ e^-} < 2.5 imes 10^{-11}$

Plenty of room in the parameter space to constrain

Studies of lepton flavor violation with charm

- To lift helicity suppression, add more particles to the final state: γ , π , ρ , e.g. $D^0 \rightarrow \gamma \mu^{\pm} e^{\mp}, D^0 \rightarrow \pi \mu^{\pm} e^{\mp}, D^0 \rightarrow \rho \mu^{\pm} e^{\mp}, \text{etc.}$

D. Hazard and A.A.P., arXiv:1711.05314 [hep-ph]

- ... or consider other hadronic systems, e.g. LFV quarkonia decays $M \rightarrow \ell_1 \overline{\ell}_2$ or $M \rightarrow \gamma \ell_1 \overline{\ell}_2$ Unfortunately, very scarce experimental data! D. Hazard and A.A.P., PRD94 (2016), 074023

Studies of lepton flavor violation with charm

* Multitude of NP operators: single operator dominance hypothesis (SODH)

- but it is not often that only a single operator contributes, e.g. for quarkonia

$$\mathcal{L}_{lq} = -\frac{1}{\Lambda^2} \sum_{q} \left[\left(C_{VR}^q \overline{\ell}_1 \gamma^{\mu} P_R \ell_2 + C_{VL}^q \overline{\ell}_1 \gamma^{\mu} P_L \ell_2 \right) \overline{q} \gamma_{\mu} q \right. \\ \left. + \left(C_{AR}^q \overline{\ell}_1 \gamma^{\mu} P_R \ell_2 + C_{AL}^q \overline{\ell}_1 \gamma^{\mu} P_L \ell_2 \right) \overline{q} \gamma_{\mu} \gamma_5 q \right. \\ \left. + m_2 m_q G_F \left(C_{SR}^q \overline{\ell}_1 P_R \ell_2 + C_{SL}^q \overline{\ell}_1 P_L \ell_2 \right) \overline{q} q \right. \\ \left. + m_2 m_q G_F \left(C_{PR}^q \overline{\ell}_1 P_R \ell_2 + C_{PL}^q \overline{\ell}_1 P_L \ell_2 \right) \overline{q} \gamma_5 q + h.c. \right]$$

- Can (partially) do away with SODH if designer initial states are used

Vector:
$$\mathcal{A}(V \to \ell_1 \bar{\ell}_2) = \bar{u}(p_1, s_1) \left[A_V^{\ell_1 \ell_2} \gamma_\mu + B_V^{\ell_1 \ell_2} \gamma_\mu \gamma_5 + \frac{C_V^{\ell_1 \ell_2}}{m_V} (p_2 - p_1)_\mu + \frac{i D_V^{\ell_1 \ell_2}}{m_V} (p_2 - p_1)_\mu \gamma_5 \right] v(p_2, s_2) \ \epsilon^\mu(p).$$

Scalar:
$$\mathcal{A}(S \to \ell_1 \overline{\ell}_2) = \overline{u}(p_1, s_1) \left[E_S^{\ell_1 \ell_2} + i F_S^{\ell_1 \ell_2} \gamma_5 \right] v(p_2, s_2)$$

- No data (other than J/psi) exist!!!

 $\psi(2S)
ightarrow \gamma \chi_{c0}$ D. Hazard and A.A.P., PRD94 (2016), 074023

LFV pseudoscalar/scalar quarkonia decays

★ Constraints on Wilson coefficients of low energy operators

D. Hazard and A.A.P., PRD94 (2016), 074023

	Leptons				Initial state		
Wilson coefficient	$\ell_1\ell_2$	η_b	η_c	$\eta(u/d)$	$\eta(s)$	$\eta'(u/d)$	$\eta'(s)$
$ C_{AI}^{q\ell_1\ell_2}/\Lambda^2 $	μτ			FPS	FPS	FPS	FPS
	e au			FPS	FPS	FPS	FPS
	eμ			3×10^{-3}	2×10^{-3}	$2.1 imes 10^{-1}$	1.9×10^{-1}
$ C_{AB}^{q\ell_1\ell_2}/\Lambda^2 $	$\mu \tau$			FPS	FPS	FPS	FPS
	e au			FPS	FPS	FPS	FPS
	eμ			3×10^{-3}	2×10^{-3}	$2.1 imes 10^{-1}$	1.9×10^{-1}
$ C_{_{PI}}^{q\ell_1\ell_2}/\Lambda^2 $	$\mu \tau$			FPS	FPS	FPS	FPS
	$e\tau$			FPS	FPS	FPS	FPS
	$e\mu$			2×10^3	1×10^3	3.9×10^4	3.6×10^4
$ C_{PR}^{q\ell_1\ell_2}/\Lambda^2 $	μτ			FPS	FPS	FPS	FPS
	$e\tau$			FPS	FPS	FPS	FPS
	$e\mu$			2×10^3	1×10^3	3.9×10^4	3.6×10^4

★ More data is needed: use radiative decays: $(\mathcal{B}(V \to \gamma \ell_1 \overline{\ell}_2) = \mathcal{B}(V \to \gamma M)\mathcal{B}(M \to \ell_1 \overline{\ell}_2))$

$$\begin{split} \mathcal{B}(\psi(2S) &\to \gamma \chi_{c0}(1P)) = 9.99 \pm 0.27\%, \\ \mathcal{B}(\psi(3770) \to \gamma \chi_{c0}(1P)) = 0.73 \pm 0.09\%. \\ \mathcal{B}(J/\psi \to \gamma \eta_c) = 1.7 \pm 0.4\%, \\ \mathcal{B}(\psi(2S) \to \gamma \eta_c) = 0.34 \pm 0.05\%. \end{split}$$

$$\mathcal{B}(\Upsilon(2S) \to \gamma \chi_{b0}(1P)) = 3.8 \pm 0.4\%,$$

 $\mathcal{B}(\Upsilon(3S) \to \gamma \chi_{b0}(1P)) = 0.27 \pm 0.04\%,$
 $\mathcal{B}(\Upsilon(3S) \to \gamma \chi_{b0}(2P)) = 5.9 \pm 0.6\%.$

LFV pseudoscalar/scalar decays

★ Very scarce LFV experimental data available P/S $\rightarrow \mu e$, te, etc.

- no data for pseudoscalar heavy-flavored meson decays
- no data for any scalar meson decays
- maybe use B-decays?

$\ell_1\ell_2$	eμ
$\mathcal{B}(\eta \to \ell_1 \ell_2)$	6×10^{-6}
$\mathcal{B}(\eta' o \ell_1 \ell_2)$	4.7×10^{-4}
$\mathcal{B}(\pi^0 \to \ell_1 \ell_2)$	3.6×10^{-10}

$$P = \eta_b, \eta_c, \eta^{(\prime)}, ...$$

 $S = \chi_{b0}, \chi_{c0}, ...$

★ Constraints are available for quark off-diagonal currents from $B/D \rightarrow \mu e$, te, etc.

$\ell_1\ell_2$	μau	e au	$e\mu$
$\mathcal{B}(B^0_d \to \ell_1 \ell_2)$	2.2×10^{-5}	2.8×10^{-5}	1.0×10^{-9}
$\mathcal{B}(B^0_s \to \ell_1 \ell_2)$			5.4×10^{-9}
$\mathcal{B}(\bar{D}^0 \to \ell_1 \ell_2)$	\mathbf{FPS}		1.3×10^{-8}
${\cal B}(K^0_L o \ell_1 \ell_2)$	\mathbf{FPS}	FPS	4.7×10^{-12}

D. Hazard and A.A.P., PRD94 (2016), 074023 D. Hazard and A.A.P., arXiv:1711.05314

Alexey A Petrov (WSU & MCTP)

6

3. Rare D(B)-decays with missing energy

> D-decays with missing energy can probe both heavy and light (DM) NP

What would happen if a photon is added to the final state? ★ For B(D) $\rightarrow \nu\nu\gamma$ decays SM branching ratios are still tiny

- need form-factors to describe the transition
- helicity suppression is lifted

★ BUT: missing energy does not always mean neutrinos

- nice constraints on light Dark Matter properties!!!

Decay	Branching ratio	
$B_s \to \nu \bar{\nu}$	3.07×10^{-24}	
$B_d \to \nu \bar{\nu}$	1.24×10^{-25}	
$D^0 o \nu \bar{\nu}$	1.1×10^{-30}	

Decay	Branching ratio
$B_s ightarrow \nu \bar{\nu} \gamma$	$3.68 imes 10^{-8}$
$B_d o \nu \bar{\nu} \gamma$	1.96×10^{-9}
$D^0 o \nu \bar{\nu} \gamma$	3.96×10^{-14}

A. Badin, AAP (2010) B. Bhattacharya, C. Grant, AAP (2018)

Rare D(B)-decays: scalar DM

Let us discuss B and D-decays simultaneously: physics is similar

Badin, AAP (2010)

 $O_3 = \left(J_{Qq}^{\mu}\right)_{II} \left(\chi_0^* \overleftrightarrow{\partial}_{\mu} \chi_0\right)$

 $O_4 = \left(J_{Qq}^{\mu}\right)_{RR} \left(\chi_0^* \overleftrightarrow{\partial}_{\mu} \chi_0\right)$

★ Generic interaction Lagrangian: $\mathcal{H}_{eff} = \sum_{i} \frac{2C_i^{(s)}}{\Lambda^2} O_i$ $O_1 = m_Q (J_{Qq})_{RL} (\chi_0^* \chi_0)$ $O_2 = m_Q (J_{Qq})_{LR} (\chi_0^* \chi_0)$

- respective neutral currents for B-and D-decays

★ Scalar DM does not exhibit helicity suppression - B(D) → E_{mis} is more powerful than B(D) → E_{mis} γ

These general bounds translate into constraints onto constraints for particular models

Example of a particular model of scalar DM

★ Several different models of light scalar DM

- simplest: singlet scalar DM
- more sophisticated less restrictive

$$\begin{split} \mathcal{L}_{S} &= \frac{\lambda_{S}}{4} S^{4} + \frac{m_{0}^{2}}{2} S^{2} + \lambda S^{2} H^{\dagger} H \\ &= \frac{\lambda_{S}}{4} S^{4} + \frac{1}{2} (m_{0}^{2} + \lambda v_{\text{EW}}^{2}) S^{2} + \lambda v_{\text{EW}} S^{2} h \\ &+ \frac{\lambda}{2} S^{2} h^{2}, \end{split}$$

 \star B(D) decays rate in this model

These results are complimentary to constraints from quarkonium decays with missing energy

Rare D(B)-decays: fermionic DM

 $\mathcal{H}_{eff} = \sum_{i} \frac{4C_i}{\Lambda^2} O_i$

★ Generic interaction Lagrangian:

- respective neutral currents for B-and D-decays

$$O_{1} = \left(J_{Qq}^{\mu}\right)_{LL} (\bar{\chi}_{1/2L}\gamma_{\mu}\chi_{1/2L})$$

$$O_{2} = \left(J_{Qq}^{\mu}\right)_{LL} (\bar{\chi}_{1/2R}\gamma_{\mu}\chi_{1/2R})$$

$$O_{3} = O_{1(L\leftrightarrow R)}, \quad O_{4} = O_{2(L\leftrightarrow R)}$$

$$O_{5} = (J_{Qq})_{LR} (\bar{\chi}_{1/2L}\chi_{1/2R})$$

$$O_{6} = (J_{Qq})_{LR} (\bar{\chi}_{1/2R}\chi_{1/2L})$$

$$O_{7} = O_{5(L\leftrightarrow R)}, \quad O_{8} = O_{6(L\leftrightarrow R)}$$

+ tensor operators

Badin. AAP

 \star Scalar DM does exhibit helicity suppression

– B(D) \rightarrow Emis maybe less powerful than B(D) \rightarrow Emis γ

- ... but it really depends on the DM mass!

$$\begin{aligned} \mathcal{B}(B_q \to \bar{\chi}_{1/2} \chi_{1/2}) &= \frac{f_{B_q}^2 M_{B_q}^3}{16 \pi \Gamma_{B_q} \Lambda^2} \sqrt{1 - 4x_{\chi}^2} \\ &\times \left[C_{57} C_{68} \frac{4M_{B_q}^2 x_{\chi}^2}{(m_b + m_q)^2} - (C_{57}^2 + C_{68}^2) \right. \\ &\left. \times \frac{M_{B_q}^2 (2x_{\chi}^2 - 1)}{(m_b + m_q)^2} - 2\tilde{C}_{1 - 8} \frac{x_{\chi} M_{B_q}}{m_b + m_q} \right. \\ &\left. + 2(C_{13} + C_{24})^2 x_{\chi}^2 \right], \end{aligned}$$

Lots of operators — less so in particular models

Rare D(B)-decays: fermionic DM

★ Constraints from B decays are the best at the moment

TABLE I. Constraints (upper limits) on the Wilson coefficients of operators of Eq. (43) from the $B_q \rightarrow \chi_{1/2} \bar{\chi}_{1/2}$ transition. Note that operators $Q_9 - Q_{12}$ give no contribution to this decay.

x_{χ}	C_1/Λ^2 , GeV ⁻²	C_2/Λ^2 , GeV ⁻²	C_3/Λ^2 , GeV ⁻²	C_4/Λ^2 , GeV ⁻²	C_5/Λ^2 , GeV ⁻²	C_6/Λ^2 , GeV ⁻²	C_7/Λ^2 , GeV ⁻²	C_8/Λ^2 , GeV ⁻²
0					2.3×10^{-8}	2.3×10^{-8}	2.3×10^{-8}	2.3×10^{-8}
0.1	1.9×10^{-7}	1.9×10^{-7}	1.9×10^{-7}	1.9×10^{-7}	2.3×10^{-8}	2.3×10^{-8}	2.3×10^{-8}	2.3×10^{-8}
0.2	$9.7 imes 10^{-8}$	9.7×10^{-8}	9.7×10^{-8}	9.7×10^{-8}	2.5×10^{-8}	$2.5 imes 10^{-8}$	2.5×10^{-8}	2.5×10^{-8}
0.3	$6.9 imes 10^{-8}$	$6.9 imes 10^{-8}$	6.9×10^{-8}	6.9×10^{-8}	2.8×10^{-8}	$2.8 imes 10^{-8}$	2.8×10^{-8}	2.8×10^{-8}
0.4	$6.0 imes 10^{-8}$	$6.0 imes 10^{-8}$	$6.0 imes 10^{-8}$	$6.0 imes 10^{-8}$	$3.6 imes 10^{-8}$	$3.6 imes 10^{-8}$	3.6×10^{-8}	$3.6 imes 10^{-8}$

\star ... the same is true for the radiative decays with missing energy

TABLE II. Constraints (upper limits) on the Wilson coefficients of operators of Eq. (43) from the $B_q \rightarrow \chi_{1/2} \bar{\chi}_{1/2} \gamma$ transition. Note that operators $Q_5 - Q_8$ give no contribution to this decay.

x_{χ}	C_1/Λ^2 , GeV ⁻²	C_2/Λ^2 , GeV ⁻²	C_3/Λ^2 , GeV ⁻²	C_4/Λ^2 , GeV $^{-2}$
0	6.3×10^{-7}	6.3×10^{-7}	6.3×10^{-7}	6.3×10^{-7}
0.1	$7.0 imes 10^{-7}$	$7.0 imes 10^{-7}$	$7.0 imes 10^{-7}$	$7.0 imes 10^{-7}$
0.2	9.2×10^{-7}	9.2×10^{-7}	9.2×10^{-7}	9.2×10^{-7}
0.3	$1.5 imes 10^{-6}$	$1.5 imes 10^{-6}$	$1.5 imes 10^{-6}$	$1.5 imes 10^{-6}$
0.4	3.4×10^{-6}	3.4×10^{-6}	$3.4 imes 10^{-6}$	$3.4 imes 10^{-6}$

These general bounds translate into constraints onto constraints for particular models

4. Things to take home

- > Indirect probes for new physics compete well with direct searches
 - for some observables sensitive to scales way above LHC
- > Calculational techniques for heavy flavors are well-established
 - but don't always work well: "heavy-quark-expansion" techniques for charm often miss threshold effects
 - "hadronic" techniques that sum over large number of intermediate states can be used, BUT one cannot use current experimental data on D-decays
- Calculations of New Physics contributions to mixing are in better shape
- > Can correlate mixing and rare decays with New Physics models
 - signals in B/D-mixing vs B/D rare decays help differentiate among models
- > New reach: $D^*(B^*) \rightarrow e^+e^-$ can be studied with resonance production
 - plenty of parameter space for New Physics reach
 - probes models that $D(B) \rightarrow e^+e^-/\mu^+\mu^-$ are not sensitive to
- Rare decays with missing energy provide excellent opportunities to constrain parameters of models with light Dark Matter
 - both scalar and fermonic DM models can be constrained

EFFECTIVE FIELD THEORIES

World Scientific

CHARM 2018, Novosibirsk, Russia

Rare radiative decays of charm I

 \bigstar Standard Model contribution to $D \rightarrow \gamma \gamma$

$$A(D \to \gamma \gamma) = \epsilon_{1\mu} \epsilon_{2\nu} \left[A_{PC} \epsilon^{\mu\nu\alpha\beta} k_{1\alpha} k_{2\beta} + i A_{PV} \left(g^{\mu\nu} - \frac{k_2^{\mu} k_1^{\nu}}{k_1 \cdot k_2} \right) \right]$$
$$\Gamma(D \to \gamma \gamma) = \frac{m_D^3}{64\pi} \left[|A_{PC}|^2 + \frac{4}{m_D^4} |A_{PV}|^2 \right]$$

* Short distance analysis $\mathcal{L} = -\frac{G_f}{\sqrt{2}} V_{us} V_{cs}^* C_{7\gamma}^{eff} \frac{e}{4\pi^2} F_{\mu\nu} m_c \left(\bar{u} \sigma^{\mu\nu} \frac{1}{2} (1+\gamma_5) c \right)$

Paul, Bigi, Recksiegel (2011)

- including QCD corrections, SD effects amount to $Br = (3.6-8.1) \times 10^{-12}$

★ Long distance analysis

- long distance effects amount to $Br = (1-3) \times 10^{-8}$

Burdman, Golowich, Hewett, Pakvasa (02); Fajfer, Singer, Zupan (01)

Rare radiative decays of charm II

Hope to isolate penguin-like contribution: BUT SM GIM is very effective

- SM penguin contributions are expected to be small

★ Radiative decays $D \rightarrow \gamma X$, $\gamma \gamma$: FCNC transition $c \rightarrow u \gamma$

$$Q_7 = \frac{e}{8\pi^2} m_c F_{\mu\nu} \bar{u} \sigma^{\mu\nu} (1+\gamma_5) c,$$

- SM contribution is dominated by LD effects
- dominated by SM anyway: useless for NP studies?

Rare radiative decays of charm II

\star Theoretical predictions and experimental bounds (x 10⁵)

$D \rightarrow V \gamma$	Burdman et al	Fajfer et al	Khodjamirian et al
$\overline{D_s^+ o ho^+ \gamma}$	6–38	20-80	4.4
$D^0 ightarrow ar{K}^{*0} \gamma$	7–12	6–36	0.18
$D^0 o ho^0 \gamma$	0.1–0.5	0.1–1	0.38
$D^0 o \omega^0 \gamma$	$\simeq 0.2$	0.1–0.9	—
$D^0 o \phi^0 \gamma$	0.1–3.4	0.4-0.9	_
$D^+ o ho^+ \gamma$	2–6	0.4-6.3	0.43
$D_s^+ o K^{*+} \gamma$	0.8–3	1.2–5.1	_

Rare radiative decays of charm II

* Try to find combinations of decays where LD contributions cancel

★ Consider exclusive decays $D \rightarrow \gamma_Q$, $\gamma_{U:} \omega^{(I=0)} = \frac{1}{\sqrt{2}} (\bar{u}u + \bar{d}d)$, $\rho^{(I=1)} = \frac{1}{\sqrt{2}} (\bar{u}u - \bar{d}d)$

emission from spectators

- Extract $c \rightarrow uu \gamma$: LD contribution cancels in $R_{uu\gamma} = \frac{\Gamma(D^0 \rightarrow \omega \gamma) - \Gamma(D^0 \rightarrow \rho \gamma)}{\Gamma(D^0 \rightarrow \omega \gamma)}$

- Consider isospin asymmetries
$$R_I = \frac{2\Gamma(D^0 \to \rho^0 \gamma) - \Gamma(D^+ \to \rho^+ \gamma)}{2\Gamma(D^0 \to \rho^0 \gamma) + \Gamma(D^+ \to \rho^+ \gamma)}$$
 (same with omega)

- isospin asymmetries are sensitive to 4-fermion operators with photon emissions from "spectators"

Studies of $D^*(B^*) \rightarrow e^+e^-$ in the Standard Model

Studies of $D^*(B^*) \rightarrow e^+e^-$ in the Standard Model

- ★ Standard Model, long distance:
 - local O1 and O2 operators
 - additional penguin-like contribution

 e^+ e^- (b)(b)

★ As a result:

$$\mathcal{B}_{D^* \to e^+ e^-}^{LD,A} \simeq \begin{cases} 4.7 \times 10^{-20} \text{ (NLO)} \\ 5.7 \times 10^{-18} \text{ (LO)} \end{cases}$$

$$\mathcal{B}^{(LD,b)}_{D^* \to e^+ e^-} \ge (0.1 - 5.0) \times 10^{-19}$$

... and recall that the short distance

 $\mathcal{B}^{SD}_{D^*
ightarrow e^+ e^-} pprox 2.0 imes 10^{-19}$

 \star Overall, the Standard Model contribution to D* \rightarrow e+e- is rather small, but

- it is four orders of magnitude higher than the $Br(D \rightarrow e+e-)!$
- the long-distance contribution is moderate
- there is a large window to probe New Physics, as e.g. with BES-III

$$\mathcal{B}_{D^* \to e^+ e^-} > 4 \times 10^{-13}$$

Khodjamirian, Mannel, AAP (2015)

Any interesting New Physics scenarios?