Light hadron spectroscopy at BESIII

Igor Denisenko

Joint Institute for Nuclear Research (for the BESIII collaboration)

CHARM'18 21-25 May 2018

BEPCII/BESIII at IHEP (Beijing)

Beam energy: 1.0-2.3 GeV Energy spread: 5.16 x 10⁻⁴

Design luminosity 1 x 10^{33} /cm²/s $@\psi(3770)$

Achieved luminosity: 1.01 x 10³³/cm² (05.04.2016)

The BESIII detector

NIM A614, 345(2010)

Super conducting magnet: 1 T

EMC: CsI cristal

• Energy resolution: 2.5% @1GeV

• Spatial resolution: 6mm

MDC:

• Spatial resolution: $\sigma_{xy} = 120 \mu m$

• Momentum resolution: 0.5% @ 1GeV

• dE/dx resolution: 6%

TOF (double layer scintillator):

Time resolution: **80ps** (barrel) **110ps** (endcaps)

Muon ID:

9 layers RPC (8 for endcaps) in the flux-return yoke

World largest J/ ψ , ψ (2S), ψ (3770), ψ (4160), Y(4260), ... produced directly from e⁺e⁻ collision

Light hadron spectroscopy

- ➤ Hadron spectroscopy is a key tool to investigate QCD in the strong coupling regime.
- ➤ One of the most intriguing questions is existence of exotic QCD states, which have been predicted long ago: multiquark states (baryonium, tetraquark states,), glueballs, hybrid states.

$X(p\overline{p})$ and X(1835)

X(pp) and X(1835)

Phys. Rev. Lett.91.022001

BESII

If caused by resonance:

- mass below pp threshold
- very strong coupling to pp
- baryonium?

$X(p\overline{p})$ and X(1835)

$J/\psi \longrightarrow \gamma p \overline{p}$

Phys. Rev. Lett.108.112003

$$J^{PC} = 0^{-+}$$

 $M = 1832^{-5}_{+19} {}^{-17}_{+18} \pm 19 \text{ MeV}$
 $\Gamma < 76 \text{ MeV} @ 90 \% C.L.$

FSR corrections notably improve data description.

May 21-25, 2018

BESIII 225M J/ψ

Phys. Rev. Lett. 106,072002

$$M = 1836.5 \pm 3.0(\text{stat})^{+5.6}_{-2.1}(\text{syst}) \text{ MeV}/c^2$$

 $\Gamma = 190 \pm 9(\text{stat})^{+38}_{-36}(\text{syst}) \text{ MeV}/c^2$

X(1835) in $J/\psi \rightarrow \gamma K_s K_s \eta$

Phys. Rev. Lett. 115, 091803

1.3 billion J/ ψ events collected in 2009 and 2012 were analyzed.

Absent π^0 -related background.

Clear structure in $K_sK_s\eta$ mass spectrum.

The structure strongly correlates with $f_0(980) \rightarrow K_s K_s$

PWA in $M(K_sK_s) < 1.1 \text{ GeV/c}^2 \text{ region}$

X(1835) in $J/\psi \rightarrow \gamma K_s K_s \eta$

- X(1560)
 - J^{PC} : 0⁻⁺; $X(1560) \rightarrow K_s K_s \eta$ (> 8.9 σ)
 - $M = 1565 \pm 8^{+0}_{-63} \text{ MeV}/c^2$
 - $\Gamma = 45^{+14}_{-13}{}^{+21}_{-28} \text{ MeV}/c^2$
 - Consistent with η(1405)/η(1475) within 2.0σ
- X(1835)
 - JPC: 0-+
 - $X(1835) \rightarrow K_s K_s \eta$ (> 12.9 σ), dominated by $f_0(980)$ production
 - $M = 1844 \pm 9^{+16}_{-25} \text{ MeV}/c^2$
 - $\Gamma = 192^{+20+62}_{-17-43} \text{ MeV}/c^2$
 - Consistent with the values obtained from $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - $\mathfrak{B}(J/\psi \rightarrow \gamma X(1835)) \cdot \mathfrak{B}(X(1835) \rightarrow K_S K_S \eta) = (3.31^{+0.33+1.96}_{-0.30-1.29}) \times 10^{-5}$

Phys. Rev. Lett. 115, 091803

slide from Tianjue Min FPCP 2017

Anomalous line shape of π⁺π⁻η' mass spectrum near pp threshold in J/ψ → γπ⁺π⁻η'

Phys. Rev. Lett. 117, 042002 (2016)

1.09 billion J/ψ events collected in 2012

 η ' reconstructed from $\gamma \pi^+ \pi^-$ and $\eta \pi^+ \pi^-$ decay modes

Clear peaks of X(1835), X(2120), X(2370) and η_c .

The spectrum is significantly distorted at $p\overline{p}$ threshold.

May 21-25, 2018 CHARM 2018 11

Anomalous line shape of $\pi^+\pi^-\eta'$ mass spectrum near pp threshold in $J/\psi \to \gamma \pi^+\pi^-\eta'$

Phys. Rev. Lett. 117, 042002 (2016)

Two solutions with equally good data description.

- Flatte formula with strong coupling to $p\bar{p}$ for X(1835)
- additional narrow resonance at ~1920 MeV/c²

Model 2:

 Coherent sum of X(1835) and a narrow state with M ~ 1870 MeV/c²

Solutions support existence of a pp molecule-like (broad with strong coupling to pp) or bound state (narrow below pp threshold).

May 21-25, 2018 CHARM 2018 12

$\eta(1475)$ and X(1835) in J/ $\psi \rightarrow \gamma(\gamma \phi)$

Phys. Rev. D97 (2018) no.5, 051101

Use 1.3 billion J/ ψ events collected by BESIII in 2009 and 2012.

The ϕ yield is extracted from K⁺K⁻ invariant mass spectrum in $\gamma \phi$ invariant mass and $\cos \theta$ bins.

In the fit of M($\gamma\phi$) two resonances are observed. Their mass and width are consistent with $\eta(1475)$ (PDG) and X(1835) (previous BESIII measurements).

The photon angular distributions favor JPC=0-+ for both resonances.

The observation X(1835) $\rightarrow \gamma \phi$ decay indicates presence of sizable $s\bar{s}$ component, disfavoring its interpretation as pure NN bound state.

The measurement of $\eta(1475) \rightarrow \gamma \phi$ process provides input for the old $\eta(1405)/\eta(1475)$ puzzle (Phys. Rev. D 87, 014023 (2013)).

$J/\psi \rightarrow \gamma PP$ and $J/\psi \rightarrow \gamma VV$

Radiative J/ψ decays have been long suggested as an ideal process to search for glueballs.

Gluon rich environment.

Mostly, one can consider two body dynamics

LQCD predictions for glueball mass:

scalar: ~1.5-1.7 tensor: ~2.3-2.4 pseudoscalar: ~2.3-2.6

Systematic studies of hadron spectra and resonance production and decay properties are needed due to possible mixing.

Phys. Rev. D 73, 014516

Variety of theoretical suggestions

Scalar (0++)

```
> Eur. Phys. J. C 21, 531–543 (2001), ...
     \checkmark f<sub>0</sub>(1370): Large n\bar{n}, small s\bar{s} and significant Glue
        content
     \checkmark f<sub>0</sub>(1500): s\bar{s} and n\bar{n} out of phase
     \checkmark f<sub>0</sub>(1710): Large s\bar{s} content
> Physics Reports 389 (2004) 61, ...
    ✓ f_0(1370) Largely n\bar{n}
    \checkmark f<sub>0</sub>(1500) mainly Glue
     \checkmark f<sub>0</sub>(1710) mainly s\bar{s}
> PRL 110, 021601 (2013), ...
     ✓ f<sub>0</sub>(1710) dominant Glueball components
                                                         from Guofa Xu at Bergamo Resonance
```

May 21-25, 2018 CHARM 2018 15

Worksop, 2017

$J/\psi \rightarrow \gamma \eta \eta$

Phys. Rev. D. 87, 092009 (2013)

- ✓ For J/ ψ → γPP the only allowed quantum numbers for PP are 0⁺⁺, 2⁺⁺, etc.
- ✓ 225M J/ψ decays
- ✓ Isobar model
- ✓ Dominant contributions from $f_0(1710)$ and $f_0(2100)$.
- ✓ f_o(1500) observed with much small decay fraction
- ✓ Three tensor states observed $(f_2(1525), f_2(1810))$ and $f_2(2340)$

Resonance	${\rm Mass}({\rm MeV}/c^2)$	${\rm Width}({\rm MeV}/c^2)$	$\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$	Significance
$f_0(1500)$	1468^{+14+23}_{-15-74}	$136^{+41+28}_{-26-100}$	$(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$	8.2σ
$f_0(1710)$	$1759\pm6^{+14}_{-25}$	$172\pm10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$	$25.0 \ \sigma$
$f_0(2100)$	$2081\pm13_{-36}^{+24}$	273^{+27+70}_{-24-23}	$(1.13^{+0.09+0.64}_{-0.10-0.28}) \times 10^{-4}$	13.9σ
$f_{2}^{'}(1525)$	$1513\pm5^{+4}_{-10}$	75^{+12+16}_{-10-8}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$	$11.0~\sigma$
$f_2(1810)$	1822^{+29+66}_{-24-57}	$229^{+52+88}_{-42-155}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	$6.4~\sigma$
$f_2(2340)$	$2362^{+31+140}_{-30-63}$	$334^{+62+165}_{-54-100}$	$(5.60^{+0.62+2.37}_{-0.65-2.07}) \times 10^{-5}$	7.6 o

Amplitude analysis of $\pi^0\pi^0$ system in $J/\psi \to \gamma\pi^0\pi^0$

Phys. Rev. D 92, 052003 (2015)

Problem of "simple" isobar approach: rescattering of pseudoscalars, especially pions, may not be negligible.

Model-independent PWA is performed to permit development of phenomenological models and to embed these data to multichannel analyses.

1.3B J/ ψ events collected in 2009 and 2012 were analyzed.

Clean channel (no irreducible background from $\rho\pi^0$, which is present in $J/\psi \rightarrow \gamma\pi^{\dagger}\pi^{-}$).

More than 440,000 selected events. Background level ~1.8%.

Amplitude analysis of $\pi^0\pi^0$ system in $J/\psi \to \gamma\pi^0\pi^0$

Phys. Rev. D 92, 052003 (2015)

Fit results:

- Only contributions from 0⁺⁺ partial wave and 3 2⁺⁺ partial waves are significant.
- Ambiguous solution.
- Partial wave intensities and relative phases are available as supplementary material.

May 21-25, 2018 CHARM 2018 18

$J/\psi \rightarrow \gamma \omega \phi$

Phys. Rev. D.87.032008

- ➤ Double OZI suppressed decay
- Threshold enhancement was firstly observed at BESII (Phys. Rev. Lett. 96, 162002 (2006)). If it is caused by resonance X(1810), the decay rate is unexpectedly high for DOZI process (~1/2 B(J/ ψ \rightarrow γφφ))
- ➤ Confirmed at BESIII:
 - JPC = 0++
 - $M = 1796 \pm 7 + 13 \pm 19 \pmod{MeV/c^2}$
 - $\Gamma = 95 \pm 10^{+21}_{-34} \pm 75 \pmod{\text{model}} \text{ MeV/c}^2$
- \triangleright Is f₀(1810) the same state as f₀(1710)?

$J/\psi \rightarrow \gamma \phi \phi$

Apart from η(2225) pseudoscalar spectrum above 2 GeV is poorly known. New experimental results are helpful to mapping out pseudoscalar excitations searching for 0⁻⁺ glueball.

Analysis results:

- Pominant contribution from pseudoscalars. Two new states $(\eta(2100))$ and $\eta(2500)$ have been observed.
- Three tensor states $f_2(2010)$, $f_2(2300)$ and $f_2(2340)$ reported in π p reactions were observed, with the dominant production of $f_2(2340)$.
- Model-dependent and modelindependent results are wellconsistent.

Phys. Rev. D.93.112011

Resonance	${\rm M}({\rm MeV}/c^2)$	$\Gamma({\rm MeV}/c^2)$	B.F. $(\times 10^{-4})$	Sig.
$\eta(2225)$	$2216^{+4}_{-5}{}^{+21}_{-11}$	$185^{+12}_{-14}{}^{+43}_{-17}$	$(2.40 \pm 0.10^{+2.47}_{-0.18})$	28σ
$\eta(2100)$	$2050^{+30}_{-24}{}^{+75}_{-26}$	$250^{+36+181}_{-30-164}$	$(3.30 \pm 0.09^{+0.18}_{-3.04})$	$22\;\sigma$
X(2500)	$2470^{+15+101}_{-19-23}$	$230^{+64}_{-35}{}^{+56}_{-33}$	$(0.17 \pm 0.02^{+0.02}_{-0.08})$	$8.8\;\sigma$
$f_0(2100)$	2101	224	$(0.43 \pm 0.04^{+0.24}_{-0.03})$	$24~\sigma$
$f_2(2010)$	2011	202	$(0.35 \pm 0.05^{+0.28}_{-0.15})$	$9.5~\sigma$
$f_2(2300)$	2297	149	$(0.44 \pm 0.07^{+0.09}_{-0.15})$	$6.4\;\sigma$
$f_2(2340)$	2339	319	$(1.91 \pm 0.14^{+0.72}_{-0.73})$	$11\;\sigma$
0^{-+} PHSP			$(2.74 \pm 0.15^{+0.16}_{-1.48})$	6.8σ

Search for Z_s

Similarity of Y(2175) and Y(4260) production (ISR) and decay ($f_0 \phi$ and $\pi \pi J/\psi$) properties may indicate **similar nature** of these states (Phys. Lett. B 650, 390 (2007)).

If this conjecture is true, one may expect **narrow** Z_s states in $Y(2175) \rightarrow \pi Z_s \rightarrow \pi \pi \phi$, with Z_s mass close to $K\overline{K}^*$ and $K^*\overline{K}^*$ thresholds (Eur. Phys. J. C 72, 2008 (2012)).

Observation of e⁺e⁻ \rightarrow η Y(2175) at $\sqrt{s} > 3.7$ GeV

Phys. Rev. D.96.012001

The $f_0 \varphi$ invariant mass distribution for data samples with $\sqrt{s} > 3.7$ GeV.

The joint statistical significance > 10σ

$$M = 2135 \pm 8 \pm 9 \text{ MeV/c}^2$$

$$\Gamma = 104 \pm 24 \pm 12 \text{ MeV}$$

Observation of e⁺e⁻ \rightarrow η Y(2175) at $\sqrt{s} > 3.7$ GeV

Phys. Rev. D.96.012001

- ightharpoonup No clear structures in $\pi^{\pm}\phi$ invariant mass at $K\overline{K}^*$ and $K^*\overline{K}^*$ thresholds(1.4 GeV and 1.7 GeV)
- **≻**Low statistics

Search for Z_s at 2125 MeV

arXiv:1801.10384, Submitted to PRL

- ➤ Data: 108.49 ± 0.75 pb⁻¹ collected at collision energy of 2125 MeV
- \triangleright Two modes: $φπ^+π^-$, $φπ^0π^0$
- No obvious structures in φπ invariant mass
- > PWA fit. Nominal PWA solution:
 - \bullet f₀(980)
 - σ
 - f_o(1370)
 - \bullet f₂(1270)

Search for Z_s at 2125 MeV

arXiv:1801.10384, Submitted to PRL

Upper limits for $e^+e^- \rightarrow Z_s\pi \rightarrow \phi\pi\pi$ cross-section were determined for different assumptions on Z_s mass and width.

Additionally cross-sections for $e^+e^- \rightarrow \phi \pi^+\pi^-$ and $e^+e^- \rightarrow \phi \pi^0\pi^0$ were measured with small stat. uncertainty.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		M	1.380		1.400		1.420	
$egin{array}{c ccccccccccccccccccccccccccccccccccc$		Γ	N ^{UL} ε(%)	$\sigma^{\mathrm{UL}}_{\mathrm{Z}_s}$	$N^{UL} \epsilon(\%)$	$\sigma^{\mathrm{UL}}_{\mathrm{Z}_s}$	$N^{UL} \epsilon(\%)$	$\sigma^{\mathrm{UL}}_{\mathrm{Z}_s}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	22.2 47.3	0.90	16.6 46.9	0.68	44.4 46.8	1.82
0 25.6 13.8 3.75 25.2 13.7 3.72 27.2 13.5 4.07 Z _s ⁰ 5 28.0 13.8 4.10 28.6 13.7 4.22 30.2 13.5 4.52	$Z_{\mathcal{S}}^{\pm}$	5	38.0 47.5	1.54	29.8 46.9	1.22	54.4 47.2	2.21
Z_s^0 5 28.0 13.8 4.10 28.6 13.7 4.22 30.2 13.5 4.52		10	49.6 47.5	2.01	40.0 47.4	1.62	60.8 47.3	2.47
· · · · · · · · · · · · · · · · · · ·		0	25.6 13.8	3.75	25.2 13.7	3.72	27.2 13.5	4.07
10 31.2 13.8 4.57 32.4 13.7 4.78 33.6 13.6 4.99	Z_s^0	5	28.0 13.8	4.10	28.6 13.7	4.22	30.2 13.5	4.52
		10	31.2 13.8	4.57	32.4 13.7	4.78	33.6 13.6	4.99

 $\sigma(e^+e^- \to Z_s \pi \to \phi \pi \pi)$ in pb

Summary

- ➤ BESIII is a unique laboratory to study hadron spectra and hunt for long suggested exotic QCD states.
- A number of exciting on results, including those relevant to search for baryonium, glueballs, multiquark states, has obtained.
- Expect much more results from BESIII in future!

Thank You!