Low-energy tests of QCD with tau decay data

- to be deal

Antonio Pich IFIC, Univ. Valencia – CSIC

The 9th International Workshop on Charm Physics (CHARM 2018) BINP, Novosibirsk, Russia, 21–25 May 2018

Hadronic τ Decay

Only lepton massive enough to decay into hadrons

$$R_{\tau} \equiv \frac{\Gamma(\tau \rightarrow v_{\tau} + \text{Hadrons})}{\Gamma(\tau \rightarrow v_{\tau} e^{-} \overline{v_{e}})} \approx N_{C} \qquad ; \qquad R_{\tau} = \frac{1 - B_{e} - B_{\mu}}{B_{e}} = 3.637 \pm 0.011$$

$$R_{\tau}^{R} = \frac{1}{B_{e^{\pm}}^{R_{\mu^{\pm}}}} - 1.9725\overline{6} = 3.640\overline{7} \pm 0.0072 \qquad ; \qquad R_{\tau} \equiv \frac{\text{Br}(\tau \rightarrow \nu_{\tau} + \text{Hadrons})}{B_{e}} \equiv 3.6349 \pm 0.0082$$

QCD Tests with τ Data

au Hadronic Width: $R_{ au}$

Davier et al, 1312.1501

Theoretical Framework

$$R_{\tau} = \frac{\Gamma[\tau^- \to \nu_{\tau} + \text{hadrons}]}{\Gamma[\tau^- \to \nu_{\tau} e^- \overline{\nu}_e]} = R_{\tau,V} + R_{\tau,A} + R_{\tau,S}$$

$$= 12\pi \int_0^{m_\tau} \frac{ds}{m_\tau^2} \left(1 - \frac{s}{m_\tau^2}\right)^2 \left[\left(1 + 2\frac{s}{m_\tau^2}\right) \operatorname{Im} \Pi^{(1)}(s) + \operatorname{Im} \Pi^{(0)}(s) \right]$$

$$\Pi^{(J)}(s) \equiv |V_{ud}|^2 \left(\Pi^{(J)}_{ud,V}(s) + \Pi^{(J)}_{ud,A}(s)\right) + |V_{us}|^2 \Pi^{(J)}_{us,V+A}(s)$$

$$i \int d^4x \; e^{iqx} \; \langle 0| \; T \left[\mathcal{J}_{ij}^{\mu}(x) \mathcal{J}_{ij}^{\nu\dagger}(0) \right] \; |0\rangle \; = \; (-g^{\mu\nu} q^2 + q^{\mu} q^{\nu}) \; \Pi^{(1)}_{ij,\mathcal{J}}(q^2) + q^{\mu} q^{\nu} \; \Pi^{(0)}_{ij,\mathcal{J}}(q^2)$$

$$A_{\mathcal{J}}^{\omega}(s_{0}) \equiv \int_{s_{\text{th}}}^{s_{0}} \frac{ds}{s_{0}} \,\omega(s) \, \operatorname{Im} \Pi_{\mathcal{J}}^{(J)}(s) = -\frac{1}{2i} \oint_{|s|=s_{0}} \frac{ds}{s_{0}} \,\omega(s) \, \Pi_{\mathcal{J}}^{(J)}(s)$$

$$\prod_{\sigma \neq \sigma}^{\operatorname{Im}(q^{2})} \Pi_{\mathcal{J}}^{(J)}(s) \approx \Pi_{\mathcal{J}}^{(J)}(s)^{\operatorname{OPE}} = \sum_{D} \frac{\mathcal{O}_{D,\mathcal{J}}^{(J)}}{(-s)^{D/2}}$$

$$\omega(s) = s^{N} \quad \blacktriangleright \quad \mathcal{O}_{2N+2,\mathcal{J}}^{(J)}$$

$$\delta_{\mathrm{DV}} \equiv \frac{1}{2\pi i} \oint_{|s|=s_0} ds \,\omega(s) \, \left\{ \Pi_{\mathcal{J}}^{(J)}(s) - \Pi_{\mathcal{J}}^{(J)}(s)^{\mathrm{OPE}} \right\} = \frac{1}{\pi} \int_{s_0}^{\infty} ds \,\omega(s) \, \mathrm{Im} \left[\Pi_{\mathcal{J}}^{(J)}(s) - \Pi_{\mathcal{J}}^{(J)}(s)^{\mathrm{OPE}} \right]$$

Add residues whenever there are poles within the integration contour

A. Pich

QCD Tests with τ Data

Left-Right Correlator

$$\Pi(s) \equiv \Pi_{ud,LR}^{(0+1)}(s) \equiv \Pi_{ud,V}^{(0+1)}(s) - \Pi_{ud,A}^{(0+1)}(s) = \frac{2f_{\pi}^2}{s - m_{\pi}^2} + \overline{\Pi}(s)$$

- Pure non-perturbative quantity: Ideal to test the OPE
- Known short-distance constraints: $\Pi(s)_{m_q=0}^{OPE} = \sum_{D>6} \frac{\mathcal{O}_D}{(-s)^{D/2}}$

1 1st WSR:
$$\int_{s_{th}}^{\infty} ds \frac{1}{\pi} \ln \Pi(s) = 2f_{\pi}^{2}$$

2 2nd WSR: $\int_{s_{th}}^{\infty} ds s \frac{1}{\pi} \ln \Pi(s) = 2f_{\pi}^{2}m_{\pi}^{2}$
3 π SR: $\int_{s_{th}}^{\infty} ds s \log\left(\frac{s}{\Lambda^{2}}\right) \frac{1}{\pi} \ln \Pi(s)\Big|_{m_{q}=0} = (m_{\pi^{0}}^{2} - m_{\pi^{+}}^{2})_{em} \frac{8\pi}{3\alpha} f_{\pi}^{2}|_{m_{q}=0}$

• χPT : $\overline{\Pi}(s) = -8 L_{10} + \chi \log s + s [16 C_{87} + \chi \log s] + O(s^2)$

QCD Tests with τ Data

Non-Pinched & Pinched Weights

González-Alonso, Pich, Rodríguez-Sánchez, 1602.06112

QCD Tests with τ Data

Playing with Duality Violations

González-Alonso, Pich, Rodríguez-Sánchez, 1602.06112

- Ad-hoc Ansatz: $\rho(s > s_z) = \kappa e^{-\gamma s} \sin\{\beta(s s_z)\}$ (Cata et al)
- 3 \cdot 10⁶ randomly generated tuples ($\kappa, \gamma, \beta, s_z$)
- Select "Acceptable" Spectral Functions, satisfying:
 - **1** Consistent with ALEPH at 90% C.L., above $s = 1.7 \text{ GeV}^2$
 - 2 Fulfill 1st and 2nd WSRs, and π SR

Statistical Distributions of $L_{10}^{\rm eff}$, $C_{87}^{\rm eff}$, \mathcal{O}_6 and \mathcal{O}_8

• χ **PT** Parameters:

Good agreement with large- N_C approximation (work in progress)

QCD Tests with τ Data

au Hadronic Width: $R_{ au}$

Davier et al, 1312.1501

$$i \int d^{4}x \ e^{iqx} \ \langle 0| \ T \left[\mathcal{J}_{ij}^{\mu}(x) \ \mathcal{J}_{ij}^{\nu\dagger}(0) \right] |0\rangle = (-g^{\mu\nu} q^{2} + q^{\mu} q^{\nu}) \ \Pi_{ij,\mathcal{J}}^{(1)}(q^{2}) + q^{\mu} q^{\nu} \ \Pi_{ij,\mathcal{J}}^{(0)}(q^{2})$$

$$Im(q^{i}) \qquad \qquad A_{\mathcal{J}}^{\omega}(s_{0}) \equiv \int_{s_{th}}^{s_{0}} \frac{ds}{s_{0}} \ \omega(s) \ Im \ \Pi_{\mathcal{J}}^{(J)}(s) = \frac{i}{2} \oint_{|s|=s_{0}} \frac{ds}{s_{0}} \ \omega(s) \ \Pi_{\mathcal{J}}^{(J)}(s)$$

$$\Pi_{\mathcal{J}}^{(J)}(s) \approx \ \Pi_{\mathcal{J}}^{(J)}(s)^{\text{OPE}} = \sum_{D} \frac{\mathcal{O}_{D,\mathcal{J}}^{(J)}}{(-s)^{D/2}}$$

$$i \int d^{4}x \ e^{iqx} \ \langle 0| \ T \left[\mathcal{J}_{ij}^{\mu}(x) \ \mathcal{J}_{ij}^{\nu\dagger}(0) \right] |0\rangle = (-g^{\mu\nu}q^{2} + q^{\mu}q^{\nu}) \ \Pi_{ij,\mathcal{J}}^{(1)}(q^{2}) + q^{\mu}q^{\nu} \ \Pi_{ij,\mathcal{J}}^{(0)}(q^{2})$$

$$= \int_{S_{th}}^{S_{0}} \frac{ds}{s_{0}} \ \omega(s) \ \ln \Pi_{\mathcal{J}}^{(J)}(s) = \frac{i}{2} \oint_{|s|=s_{0}} \frac{ds}{s_{0}} \ \omega(s) \ \Pi_{\mathcal{J}}^{(J)}(s)$$

$$= \int_{\mathcal{J}}^{\mathcal{J}}(s) \approx \Pi_{\mathcal{J}}^{(J)}(s)^{OPE} = \sum_{D} \frac{\mathcal{O}_{D,\mathcal{J}}^{(J)}}{(-s)^{D/2}}$$

$$= 6\pi i \ \oint_{|x|=1} (1-x)^{2} \left[(1+2x) \ \Pi^{(0+1)}(m_{\tau}^{2}x) - 2x \ \Pi^{(0)}(m_{\tau}^{2}x) \right]$$

$$\delta_{P} = a_{\tau} + 5.20 \ a_{\tau}^{2} + 26 \ a_{\tau}^{3} + 127 \ a_{\tau}^{4} + \dots \approx 20\%$$

$$a_{\tau} \equiv \alpha_{s}(m_{\tau}^{2})/\pi \qquad , \qquad S_{EW} = 1.0201 \ (3)$$

$$Davier et al '14$$

Perturbative Contribution $(m_q = 0)$ $a_{\tau} \equiv \frac{\alpha_s(m_{\tau}^2)}{\pi}$

$$A^{(n)}(\alpha_s) \equiv \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} \left(1 - 2x + 2x^3 - x^4\right) \left(\frac{\alpha_s(-m_\tau^2 x)}{\pi}\right)^n = a_\tau^n + \cdots$$

Perturbative Contribution $(m_q = 0)$ $a_{\tau} \equiv \frac{\alpha_s(m_{\tau}^2)}{\pi}$

$$-s \frac{d}{ds} \Pi^{(0+1)}(s) = \frac{1}{4\pi^2} \sum_{n=0}^{\infty} K_n a_s(-s)^n \implies \delta_{\mathbf{P}} = \underbrace{\sum_{n=1}^{\infty} K_n A^{(n)}(\alpha_s)}_{\text{CIPT}} = \underbrace{\sum_{n=1}^{n} r_n a_{\tau}^n}_{\text{FOPT}}$$

$$A^{(n)}(\alpha_s) \equiv \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} \left(1 - 2x + 2x^3 - x^4\right) \left(\frac{\alpha_s(-m_\tau^2 x)}{\pi}\right)^n = a_\tau^n + \cdots$$

1) The dominant corrections come from the contour integration

Large running of
$$lpha_s$$
 along the circle $s=m_{ au}^2 \; e^{i\phi}$, $\phi\in [-\pi,\pi]$

n	1	2	3	4	5	
K _n	1	1.6398	6.37101	49.0757	?	Baikov
r _n	1	5.2023	26.3659	127.079	307.78 + <i>K</i> ₅	Le Dib
$r_n - K_n$	0	3.5625	19.9949	78.0029	307.78	

8aikov-Chetyrkin-Kühn '08 e Diberder-Pich '92

Perturbative Contribution $(m_q = 0)$ $a_{\tau} \equiv \frac{\alpha_s(m_{\tau}^2)}{\pi}$

$$-s \frac{d}{ds} \Pi^{(0+1)}(s) = \frac{1}{4\pi^2} \sum_{n=0}^{\infty} K_n a_s(-s)^n \implies \delta_{\mathrm{P}} = \underbrace{\sum_{n=1}^{\infty} K_n A^{(n)}(\alpha_s)}_{\mathrm{CIPT}} = \underbrace{\sum_{n=1}^{\infty} r_n a_{\tau}^n}_{\mathrm{FOPT}}$$

$$A^{(n)}(\alpha_s) \equiv \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} \left(1 - 2x + 2x^3 - x^4\right) \left(\frac{\alpha_s(-m_\tau^2 x)}{\pi}\right)^n = a_\tau^n + \cdots$$

2) CIPT gives rise to a well-behaved perturbative series

$a_{ au}=0.11$	$A^{(1)}(\alpha_s)$	$A^{(2)}(\alpha_s)$	$A^{(3)}(\alpha_s)$	$A^{(4)}(\alpha_s)$	$\delta_{ m P}$
$\beta_{n>1} = 0 \beta_{n>2} = 0 \beta_{n>3} = 0 \beta_{n>4} = 0 \beta_{n>5} = 0$	0.14828 0.15103 0.15093 0.15058 0.15041	0.01925 0.01905 0.01882 0.01865 0.01859	0.00225 0.00209 0.00202 0.00198 0.00197	0.00024 0.00020 0.00019 0.00018 0.00018	0.20578 0.20537 0.20389 0.20273 0.20232
$\mathcal{O}(a_{ au}^4)$ FOPT	0.16115	0.02431	0.00290	0.00015	0.22665

FOPT overestimates δ_P by 11%

• Strong power suppression at $s_0 = m_{\tau}^2$: $\sim (\Lambda_{QCD}/m_{\tau})^D$, $D \ge 4$ $\mathcal{O}_{4,V/A} \approx 4\pi^2 \left\{ \frac{1}{12\pi} \langle \alpha_s GG \rangle + (m_u + m_d) \langle \bar{q}q \rangle \right\} \approx [(6.7 \pm 3.2) - 0.6] \cdot 10^{-3} \times m_{\tau}^4$

• Strong power suppression at $s_0 = m_{\tau}^2$: $\sim (\Lambda_{\rm QCD}/m_{\tau})^D$, $D \ge 4$ $\mathcal{O}_{4,V/A} \approx 4\pi^2 \left\{ \frac{1}{12\pi} \langle \alpha_s GG \rangle + (m_u + m_d) \langle \bar{q}q \rangle \right\} \approx [(6.7 \pm 3.2) - 0.6] \cdot 10^{-3} \times m_{\tau}^4$

•
$$\mathsf{R}_{\tau}$$
: $\omega(\mathsf{x}) = 1 - 3\mathsf{x}^2 + 2\mathsf{x}^3 \implies \delta_{\mathsf{NP}} = -3 \frac{\mathcal{O}_{\mathsf{6},\mathsf{V}+\mathsf{A}}}{\mathsf{m}_{\tau}^6} - 2 \frac{\mathcal{O}_{\mathsf{8},\mathsf{V}+\mathsf{A}}}{\mathsf{m}_{\tau}^8}$

Additional chiral suppression in $|\mathcal{O}_{6,V+A}| < |\mathcal{O}_{6,V-A}| \approx (1.1 \pm 0.2) \cdot 10^{-4} \times m_{\tau}^{6}$

• Strong power suppression at $s_0 = m_{\tau}^2$: $\sim (\Lambda_{\rm QCD}/m_{\tau})^D$, $D \ge 4$ $\mathcal{O}_{4,V/A} \approx 4\pi^2 \left\{ \frac{1}{12\pi} \langle \alpha_s GG \rangle + (m_u + m_d) \langle \bar{q}q \rangle \right\} \approx \left[(6.7 \pm 3.2) - 0.6 \right] \cdot 10^{-3} \times m_{\tau}^4$

•
$$R_{\tau}$$
: $\omega(x) = 1 - 3x^2 + 2x^3 \implies \delta_{NP} = -3 \frac{\mathcal{O}_{6,V+A}}{m_{\tau}^6} - 2 \frac{\mathcal{O}_{8,V+A}}{m_{\tau}^8}$

Additional chiral suppression in $|\mathcal{O}_{6,V+A}| < |\mathcal{O}_{6,V-A}| \approx (1.1 \pm 0.2) \cdot 10^{-4} \times m_{\tau}^{6}$

• Sensitivity to \mathcal{O}_{D} with different $\omega(\mathsf{x})$ \longrightarrow Measure δ_{NP}

A. Pich

R_{τ} suitable for a precise α_s determination

- Known to $\mathcal{O}(\alpha_s^4)$. Sizeable $\delta_P \sim 20\%$. Strong sensitivity to α_s
- m_{τ} large enough to safely use the OPE. Flat V + A distribution
- OPE only valid away from real axis: $(1 x)^2$ pinched at $s = m_{\tau}^2$

•
$$m_{u,d} = 0 \implies s \Pi^{(0)} = 0 \implies R_{\tau,V+A} = 6\pi i \oint_{|x|=1} (1 - 3x^2 + 2x^3) \prod_{ud,V+A}^{(0+1)} (m_{\tau}^2 x)$$

 $ightarrow \delta_{
m NP} \sim 1/m_{ au}^6$ Strong suppression of non-perturbative effects

- D = 6 OPE contributions have opposite sign for V & A. Cancellation
- $\delta_{
 m NP}$ can be determined from data: $\delta_{
 m NP}=-0.0064\pm0.0013$ Davier et al

$$\mathsf{R}_{\tau} \quad \Longrightarrow \quad \alpha_{\mathsf{s}}(\mathsf{m}_{\tau}^2) = 0.331 \pm 0.013$$

Pich 2014

QCD Tests with τ Data

A. Pich

ALEPH Spectral Functions

Davier et al. 2014

New analysis of ALEPH data

Rodríguez-Sánchez, Pich, arXiv:1605.06830

Method $(V \perp A)$	$lpha_s(m_ au^2)$			
	CIPT	FOPT	Average	
ALEPH moments ¹	$0.339 {}^{+ 0.019}_{- 0.017}$	$0.319{}^{+0.017}_{-0.015}$	$0.329 {}^{+ 0.020}_{- 0.018}$	
Mod. ALEPH moments ²	$0.338 {}^{+ 0.014}_{- 0.012}$	$0.319{}^{+0.013}_{-0.010}$	$0.329 {}^{+ 0.016}_{- 0.014}$	
$A^{(2,m)}$ moments ³	$0.336 {}^{+ 0.018}_{- 0.016}$	$0.317 {}^{+ 0.015}_{- 0.013}$	$0.326 {}^{+ 0.018}_{- 0.016}$	
s ₀ dependence ⁴	0.335 ± 0.014	0.323 ± 0.012	0.329 ± 0.013	
Borel transform ⁵	$0.328 {}^{+ 0.014}_{- 0.013}$	$0.318 {}^{+ 0.015}_{- 0.012}$	$0.323 {}^{+ 0.015}_{- 0.013}$	
Combined value	0.335 ± 0.013	$\textbf{0.320} \pm \textbf{0.012}$	$\textbf{0.328} \pm \textbf{0.013}$	

1)	$\omega_{kl}(x) = (1+2x)(1-x)^{2+k}x^{l}$	(k, l) = (0, 0), (1, 0), (1, 1), (1, 2), (1, 3)
2)	$\tilde{\omega}_{kl}(x) = (1-x)^{2+k} x^l$	(k, l) = (0, 0), (1, 0), (1, 1), (1, 2), (1, 3)
3)	$\omega^{(2,m)}(x) = (1-x)^2 \sum_{k=0}^{m} (k+1) x^{k-1}$	$x^{k} = 1 - (m+2)x^{m+1} + (m+1)x^{m+2}$, $1 \le m \le 5$
4)	$\omega^{(2,m)}(x)$	$0 \leq m \leq 2$, 1 single moment in each fit
5)	$\omega_a^{(1,m)}(x) = (1 - x^{m+1}) e^{-ax}$	$0 \le m \le 6$
A. Pich		QCD Tests with τ Data

α_s determination with ALEPH-like fit

Rodríguez-Sánchez, A.P.

 $\omega_{kl}(x) = (1-x)^{2+k} x^{l} (1+2x) \quad , \quad x = s/m_{\tau}^{2} \quad , \quad (k,l) = (0,0), (1,0), (1,1), (1,2), (1,3)$

Channel	$\alpha_{s}(m_{\tau}^{2})/\pi$	$\left< \frac{\alpha_s}{\pi} G G \right>$	\mathcal{O}_6	\mathcal{O}_8
		$(10^{-3} { m GeV}^4)$	$(10^{-3} { m GeV}^6)$	$10^{-3} { m GeV^8})$
V (FOPT)	$0.328 {}^{+ 0.013}_{- 0.007}$	8^{+7}_{-14}	$-3.2^{+0.8}_{-0.5}$	$5.0^{+0.4}_{-0.7}$
V (CIPT)	$0.352{}^{+0.013}_{-0.011}$	-8^{+7}_{-7}	$-3.5{}^{+0.3}_{-0.3}$	$4.9^{+0.4}_{-0.5}$
A (FOPT)	$0.304 {}^{+ 0.010}_{- 0.007}$	$-15{}^{+5}_{-8}$	$4.4^{+0.5}_{-0.4}$	$-5.8^{+0.3}_{-0.4}$
A (CIPT)	$0.320{}^{+0.011}_{-0.010}$	$-25{}^{+5}_{-5}$	$4.3^{+0.2}_{-0.2}$	$-5.8^{+0.3}_{-0.3}$
V+A (FOPT)	$0.319{}^{+0.010}_{-0.006}$	-3^{+6}_{-11}	$1.3{}^{+1.4}_{-0.8}$	$-0.8^{+0.4}_{-0.7}$
V+A (CIPT)	$0.339^{+0.011}_{-0.009}$	-16^{+5}_{-5}	$0.9^{+0.3}_{-0.4}$	$-1.0^{+0.5}_{-0.7}$

- High sensitivity to α_s . Bad sensitivity to power corrections
- Cancellation in $\mathcal{O}_{6,V+A}$ confirmed. V + A more reliable
- $K_5 = 275 \pm 400$, $\mu^2 = (0.5, 2) m_{\tau}^2$
- Best values taken from V + A. Errors increased with sensitivity to \mathcal{O}_{10}

 $\begin{aligned} \alpha_s(m_\tau^2)^{\text{CIPT}} &= 0.339^{+0.019}_{-0.017} \\ \alpha_s(m_\tau^2)^{\text{FOPT}} &= 0.319^{+0.017}_{-0.015} \end{aligned}$

 $\alpha_s(m_\tau^2) = 0.329^{+0.020}_{-0.018}$

Good agreement with Davier et al.: $\alpha_s(m_{\tau}^2) = 0.332 \pm 0.012$ (arXiv:1312.1501) A. Pich QCD Tests with τ Data

Experiment vs. (pinched) Perturbation Theory (only)

Rodríguez-Sánchez, A.P.

QCD Tests with τ Data

Non-Perturbative Contributions Neglected

Rodríguez-Sánchez, A.P.

$$\omega^{(1,m)}(x) = 1 - x^{m+1} \rightarrow \mathcal{O}_{2m+4}$$

 $\omega^{(2,m)}(x) = (1-x)^2 \sum_{k=0}^{m} (k+1) x^k = 1 - (m+2) x^{m+1} + (m+1) x^{m+2} \implies \mathcal{O}_{2m+4,2m+6}$

Moment	$\alpha_s(m_{ au}^2)$		Moment	$\alpha_{s}($	m_{τ}^2)
(<i>n</i> , <i>m</i>)	FOPT	CIPT	(<i>n</i> , <i>m</i>)	FOPT	CIPT
(1,0)	$0.315{}^{+0.012}_{-0.007}$	$0.327^{+0.012}_{-0.009}$	(2,0)	$0.311{}^{+0.015}_{-0.011}$	$0.314{}^{+0.013}_{-0.009}$
(1,1)	$0.319{}^{+0.010}_{-0.006}$	$0.340{}^{+0.011}_{-0.009}$	(2,1)	$0.311{}^{+0.011}_{-0.006}$	$0.333^{+0.009}_{-0.007}$
(1,2)	$0.322^{+0.010}_{-0.008}$	$0.343^{+0.012}_{-0.010}$	(2,2)	$0.316{}^{+0.010}_{-0.005}$	$0.336{}^{+0.011}_{-0.009}$
(1,3)	$0.324^{+0.011}_{-0.010}$	$0.345^{+0.013}_{-0.011}$	(2,3)	$0.318{}^{+0.010}_{-0.006}$	$0.339^{+0.011}_{-0.008}$
(1,4)	$0.326{}^{+0.011}_{-0.011}$	$0.347^{+0.013}_{-0.012}$	(2,4)	$0.319{}^{+0.009}_{-0.007}$	$0.340{}^{+0.011}_{-0.009}$
(1,5)	$0.327 {}^{+0.015}_{-0.013}$	$0.348^{+0.014}_{-0.012}$	(2,5)	$0.320{}^{+0.010}_{-0.008}$	$0.341^{+0.011}_{-0.009}$

21

Non-Perturbative Contributions Neglected

Rodríguez-Sánchez, A.P.

$$\omega^{(1,m)}(x) = 1 - x^{m+1} \rightarrow \mathcal{O}_{2m+4}$$

 $\omega^{(2,m)}(x) = (1-x)^2 \sum_{k=0}^{m} (k+1) x^k = 1 - (m+2) x^{m+1} + (m+1) x^{m+2} \implies \mathcal{O}_{2m+4,2m+6}$

Moment	$\alpha_s(m_{\tau}^2)$		Moment	$\alpha_s(m_{\tau}^2)$		Amazing
(<i>n</i> , <i>m</i>)	FOPT	CIPT	(<i>n</i> , <i>m</i>)	FOPT	CIPT	stability
(1,0)	$0.315{}^{+0.012}_{-0.007}$	$0.327^{+0.012}_{-0.009}$	(2,0)	$0.311{}^{+0.015}_{-0.011}$	$0.314{}^{+0.013}_{-0.009}$]
(1,1)	$0.319{}^{+0.010}_{-0.006}$	$0.340^{+0.011}_{-0.009}$	(2,1)	$0.311{}^{+0.011}_{-0.006}$	$0.333^{+0.009}_{-0.007}$	
(1,2)	$0.322{}^{+0.010}_{-0.008}$	$0.343^{+0.012}_{-0.010}$	(2,2)	$0.316{}^{+0.010}_{-0.005}$	$0.336{}^{+0.011}_{-0.009}$	
(1,3)	$0.324{}^{+0.011}_{-0.010}$	$0.345^{+0.013}_{-0.011}$	(2,3)	$0.318 {}^{+0.010}_{-0.006}$	$0.339{}^{+0.011}_{-0.008}$	
(1,4)	$0.326^{+0.011}_{-0.011}$	$0.347^{+0.013}_{-0.012}$	(2,4)	$0.319^{+0.009}_{-0.007}$	$0.340^{+0.011}_{-0.009}$]
(1,5)	$0.327 {}^{+0.015}_{-0.013}$	$0.348^{+0.014}_{-0.012}$	(2,5)	$0.320{}^{+0.010}_{-0.008}$	$0.341^{+0.011}_{-0.009}$]

$$\Delta A^{\omega}_{V/A}(s_0) = \frac{i}{2} \oint_{|s|=s_0} \frac{ds}{s_0} \omega(s) \left\{ \Pi_{V/A}(s) - \Pi^{\rm OPE}_{V/A}(s) \right\} = -\pi \int_{s_0}^{\infty} \frac{ds}{s_0} \omega(s) \Delta \rho^{\rm DV}_{V/A}(s)$$

$$\Delta A^{\omega}_{V/A}(s_0) \;=\; \frac{i}{2} \; \oint_{|s|=s_0} \frac{ds}{s_0} \; \omega(s) \; \left\{ \Pi_{V/A} \; (s) - \Pi^{\rm OPE}_{V/A}(s) \right\} \;=\; -\pi \; \int_{s_0}^\infty \frac{ds}{s_0} \; \omega(s) \; \Delta \rho^{\rm DV}_{V/A}(s)$$

Ansatz: $\Delta \rho_{V/A}^{\text{DV}}(s) = s^{\lambda_{V/A}} e^{-(\delta_{V/A} + \gamma_{V/A} s)} \sin(\alpha_{V/A} + \beta_{V/A} s)$, $s > \hat{s}_0$

- 1) Boito et al.: $\lambda_{V/A} = 0$, $\hat{s}_0 \sim 1.55 \text{ GeV}^2$, $\omega(x) = 1$
 - Fit s_0 dependence: \rightarrow { $A^{(00)}(s_0), \rho(s_0 + \Delta s_0), \cdots, \rho(s_0 + (n-1)\Delta s_0)$ }
 - Direct fit of the spectral function. OPE not valid

$$\Delta A^{\omega}_{V/A}(s_0) \;=\; \frac{i}{2} \; \oint_{|s|=s_0} \frac{ds}{s_0} \; \omega(s) \; \left\{ \Pi_{V/A} \; (s) - \Pi^{\rm OPE}_{V/A}(s) \right\} \;=\; -\pi \; \int_{s_0}^\infty \frac{ds}{s_0} \; \omega(s) \; \Delta \rho^{\rm DV}_{V/A}(s)$$

 $\textbf{Ansatz:} \quad \Delta \rho_{V/A}^{\rm DV}(s) \ = \ s^{\lambda_{V/A}} \ e^{-(\delta_{V/A} + \gamma_{V/A} s)} \ \sin\left(\alpha_{V/A} + \beta_{V/A} s\right) \quad , \quad s > \hat{s}_0$

- **1)** Boito et al.: $\lambda_{V/A} = 0$, $\hat{s}_0 \sim 1.55 \text{ GeV}^2$, $\omega(x) = 1$
 - Fit s_0 dependence: $\Rightarrow \{A^{(00)}(s_0), \rho(s_0 + \Delta s_0), \cdots, \rho(s_0 + (n-1)\Delta s_0)\}$
 - Direct fit of the spectral function. OPE not valid

Bad quality fit

(Model dependence. Instabilities. Very low p-value)

A. Pich

QCD Tests with τ Data

$$\Delta A^{\omega}_{V/A}(s_0) \;=\; \frac{i}{2} \; \oint_{|s|=s_0} \frac{ds}{s_0} \; \omega(s) \; \left\{ \Pi_{V/A} \; (s) - \Pi^{\rm OPE}_{V/A}(s) \right\} \;=\; -\pi \; \int_{s_0}^\infty \frac{ds}{s_0} \; \omega(s) \; \Delta \rho^{\rm DV}_{V/A}(s)$$

 $\textbf{Ansatz:} \quad \Delta \rho_{V/A}^{\rm DV}(s) \ = \ s^{\lambda_{V/A}} \ e^{-(\delta_{V/A} + \gamma_{V/A} s)} \ \sin\left(\alpha_{V/A} + \beta_{V/A} s\right) \quad , \quad s > \hat{s}_0$

- 1) Boito et al.: $\lambda_{V/A} = 0$, $\hat{s}_0 \sim 1.55 \text{ GeV}^2$, $\omega(x) = 1$
 - Fit s_0 dependence: $\Rightarrow \{A^{(00)}(s_0), \rho(s_0 + \Delta s_0), \cdots, \rho(s_0 + (n-1)\Delta s_0)\}$
 - Direct fit of the spectral function. OPE not valid

Bad quality fit

(Model dependence. Instabilities. Very low p-value)

QCD Tests with τ Data

Ansatz: $\Delta \rho_{V/A}^{\text{DV}}(s) = s^{\lambda_{V/A}} e^{-(\delta_{V/A} + \gamma_{V/A} s)} \sin(\alpha_{V/A} + \beta_{V/A} s)$, $s > \hat{s}_0$

2) $\lambda_V \geq 0$: $\hat{s}_0 \sim 1.55 \text{ GeV}^2$, $\omega(x) = 1$

Rodríguez-Sánchez, A.P.

λ_V	$\alpha_s(m_{ au}^2)^{\text{FOPT}}$	δ_V	γ_V	$lpha_V$	β_V	p-value
0	0.298 ± 0.010	3.6 ± 0.5	0.6 ± 0.3	-2.3 ± 0.9	4.3 ± 0.5	5.3%
1	0.300 ± 0.012	3.3 ± 0.5	1.1 ± 0.3	-2.2 ± 1.0	4.2 ± 0.5	5.7 %
2	0.302 ± 0.011	2.9 ± 0.5	1.6 ± 0.3	-2.2 ± 0.9	4.2 ± 0.5	6.0%
4	0.306 ± 0.013	2.3 ± 0.5	2.6 ± 0.3	-1.9 ± 0.9	4.1 ± 0.5	6.6%
8	0.314 ± 0.015	1.0 ± 0.5	4.6 ± 0.3	-1.5 ± 1.1	$\textbf{3.9}\pm\textbf{0.6}$	7.7%

- Fitted α_s is model dependent
- $\lambda_V = 0$ (Boito) gives the worse fit
- Fit quality & α_s increase with λ_V
 - \rightarrow closer to data at $s < \hat{s}_0$
 - Δŝ₀ 🔶 3 times larger errors

Not competitive & unreliable

Ansatz: $\Delta \rho_{V/A}^{\text{DV}}(s) = s^{\lambda_{V/A}} e^{-(\delta_{V/A} + \gamma_{V/A} s)} \sin(\alpha_{V/A} + \beta_{V/A} s)$, $s > \hat{s}_0$

2) $\lambda_V > 0$: $\hat{s}_0 \sim 1.55 \text{ GeV}^2$, $\omega(x) = 1$

Rodríguez-Sánchez, A.P.

	λ_V	$\alpha_s(m_{ au}^2)^{\text{FOPT}}$	δ_V	γ_V	$lpha_V$	β_V	p-value
Boito	0	0.298 ± 0.010	3.6 ± 0.5	0.6 ± 0.3	-2.3 ± 0.9	4.3 ± 0.5	(5.3%)
	1	0.300 ± 0.012	3.3 ± 0.5	1.1 ± 0.3	-2.2 ± 1.0	4.2 ± 0.5	5.7%
	2	0.302 ± 0.011	2.9 ± 0.5	1.6 ± 0.3	-2.2 ± 0.9	4.2 ± 0.5	6.0%
	4	0.306 ± 0.013	2.3 ± 0.5	2.6 ± 0.3	-1.9 ± 0.9	4.1 ± 0.5	6.6%
	8	0.314 ± 0.015	1.0 ± 0.5	4.6 ± 0.3	-1.5 ± 1.1	3.9 ± 0.6	7.7%

- Fitted α_s is model dependent
- $\lambda_V = 0$ (Boito) gives the worse fit
- Fit quality & α_s increase with λ_V
 - \rightarrow closer to data at $s < \hat{s}_0$
- $\Delta \hat{s}_0 \rightarrow 3$ times larger errors

Not competitive & unreliable

New analysis of ALEPH data

Rodríguez-Sánchez, Pich, arXiv:1605.06830

Method $(V \perp A)$	$lpha_s(m_ au^2)$			
	CIPT	FOPT	Average	
ALEPH moments ¹	$0.339 {}^{+ 0.019}_{- 0.017}$	$0.319{}^{+0.017}_{-0.015}$	$0.329 {}^{+ 0.020}_{- 0.018}$	
Mod. ALEPH moments ²	$0.338 {}^{+ 0.014}_{- 0.012}$	$0.319{}^{+0.013}_{-0.010}$	$0.329 {}^{+ 0.016}_{- 0.014}$	
$A^{(2,m)}$ moments ³	$0.336 {}^{+ 0.018}_{- 0.016}$	$0.317 {}^{+ 0.015}_{- 0.013}$	$0.326 {}^{+ 0.018}_{- 0.016}$	
s ₀ dependence ⁴	0.335 ± 0.014	0.323 ± 0.012	0.329 ± 0.013	
Borel transform ⁵	$0.328 {}^{+ 0.014}_{- 0.013}$	$0.318 {}^{+ 0.015}_{- 0.012}$	$0.323 {}^{+ 0.015}_{- 0.013}$	
Combined value	0.335 ± 0.013	$\textbf{0.320} \pm \textbf{0.012}$	$\textbf{0.328} \pm \textbf{0.013}$	

1)	$\omega_{kl}(x) = (1+2x)(1-x)^{2+k}x^{l}$	(k, l) = (0, 0), (1, 0), (1, 1), (1, 2), (1, 3)
2)	$\tilde{\omega}_{kl}(x) = (1-x)^{2+k} x^l$	(k, l) = (0, 0), (1, 0), (1, 1), (1, 2), (1, 3)
3)	$\omega^{(2,m)}(x) = (1-x)^2 \sum_{k=0}^{m} (k+1) x^{k-1}$	$x^{k} = 1 - (m+2)x^{m+1} + (m+1)x^{m+2}$, $1 \le m \le 5$
4)	$\omega^{(2,m)}(x)$	$0 \leq m \leq 2$, 1 single moment in each fit
5)	$\omega_a^{(1,m)}(x) = (1 - x^{m+1}) e^{-ax}$	$0 \le m \le 6$
A. Pich		QCD Tests with τ Data

α_s at N³LO from au and Z

 $lpha_s(m_{ au}^2) = 0.328 \pm 0.013$ $a_s(M_Z^2) = 0.1197 \pm 0.0015$

 $lpha_s(M_Z^2)_{
m Z \ width} = 0.1196 \pm 0.0030$

The most precise test of Asymptotic Freedom

 $\alpha_s^{\tau}(M_Z^2) - \alpha_s^Z(M_Z^2) = 0.0001 \pm 0.0015_{\tau} \pm 0.0030_Z$

Backup

Automica

The 9th International Workshop on Charm Physics (CHARM 2018) BINP, Novosibirsk, Russia, 21–25 May 2018

Statistical Distributions of Selected Tuples

González-Alonso, Pich, Rodríguez-Sánchez, 1602.06112

QCD Tests with τ Data

$\mathcal{O}_{6,8}$ with Pinched Weights, ignoring DV

González-Alonso, Pich, Rodríguez-Sánchez, 1602.06112

$\mathcal{O}_{6,8}$ with Pinched Weights, ignoring DV

González-Alonso, Pich, Rodríguez-Sánchez, 1602.06112

Result with DV fully taken into account

Pinched weights suppress very efficiently duality violation effects

Big reduction of errors mainly due to short-distance constraints which overcome the large data uncertainties at large s_0 values

Comparison with Previous Works

González-Alonso, Pich, Rodríguez-Sánchez, 1602.06112

$10^3 \cdot L_{10}^{eff}$	$10^3 \cdot \frac{C_{eff}}{R_7}$	10 ³ ⋅ <mark>⊘</mark> 6	10 ² ⋅ <mark>⊘</mark> 8	Reference	Comments
	(GeV^{-2})	$({\rm GeV}^6)$	$({\rm GeV}^8)$		
-6.45 ± 0.06	_	-2.3 ± 0.6	-5.4 ± 3.3	BPDS'06	ALEPH'05 + DV = 0
-	-	$-6.8^{+2.0}_{-0.8}$	$3.2^{+2.8}_{-9.2}$	ASS'08	ALEPH'05 + DV = 0
-6.48 ± 0.06	8.18 ± 0.14	_		GPP'08	ALEPH'05 + DV = 0
-6.44 ± 0.05	8.17 ± 0.12	-4.4 ± 0.8	-0.7 ± 0.5	GPP'10	$ALEPH'05 + DV_{V-A}$
-6.45 ± 0.09	8.47 ± 0.29	-6.6 ± 1.1	0.5 ± 0.5	Boito'12	$OPAL'99 + DV_{V/A}$
-6.50 ± 0.10	-	-5.0 ± 0.7	-0.9 ± 0.5	DHSS'15	ALEPH'14 + DV = 0
-6.45 ± 0.05	8.38 ± 0.18	-3.2 ± 0.9	-1.3 ± 0.6	Boito'15	$ALEPH'14 + DV_{V/A}$
-6.42 ± 0.10	8.35 ± 0.29	$-5.7^{+1.1}_{-1.2}$	$0.0^{+0.5}_{-0.6}$	this work	$OPAL'99 + DV_{V-A}$
-6.48 ± 0.05	$\textbf{8.40} \pm \textbf{0.18}$	$-3.6^{+0.7}_{-0.6}$	-1.0 ± 0.4	this work	$ALEPH'14 + DV_{V-A}$

$$R_{\tau} = N_{C} S_{EW} \left(1 + \delta_{P} + \delta_{NP}\right)$$
Perturbative (m_q=0) $-s \frac{d}{ds} \Pi^{(0+1)}(s) = \frac{1}{4\pi^{2}} \sum_{n=0}^{\infty} K_{n} \left(\frac{\alpha_{s}(-s)}{\pi}\right)^{n}$
 $K_{0} = K_{1} = 1$, $K_{2} = 1.63982$, $K_{3} = 6.37101$, $K_{4} = 49.07570$ Baikov-Chetyrkin-Kühn '08
$$\implies \delta_{P} = \sum_{n=1}^{\infty} K_{n} A^{(n)}(\alpha_{s}) = a_{\tau} + 5.20 a_{\tau}^{2} + 26 a_{\tau}^{3} + 127 a_{\tau}^{4} + \cdots$$
Le Diberder- Pich '92
$$A^{(n)}(\alpha_{s}) = \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} (1 - 2x + 2x^{3} - x^{4}) \left(\frac{\alpha_{s}(-s)}{\pi}\right)^{n} = a_{\tau}^{n} + \cdots ; \quad a_{\tau} = \alpha_{s}(m_{\tau})/\pi$$

$$\Pi^{(0+1)}_{OPE}(\cdot) \approx \frac{C_{2n} O_{2n}}{(-)}_{C_{4} O_{4}} = 0 \ G^{nr}G_{\mur} 0$$

$$N^{p} \approx \sum_{i = 1}^{\infty} dx (1 - 3x + 2x) = \frac{C_{2n} O_{2n}}{(x - i)} = -3 \frac{C_{6} O_{6}}{\epsilon} - 2 \frac{C_{8}}{8} \frac{8}{\tau}$$

$$C_{5} O_{5} \frac{V A}{T}$$

 $R_{\tau} = N_C S_{EW} (1 + \delta_P + \delta_{NP})$ **Perturbative** $(m_q=0) = s \frac{d}{ds} \Pi^{(\theta,1)}(s) = \frac{1}{4\pi^2} \sum_{k} K_n \left(\frac{\alpha_s(-s)}{\pi} \right)^n$ $K_{\theta} \equiv K_1 \equiv 1$, $K_2 \equiv 1.63982$, $K_3 = 6.37101$, $K_4 = 49.07570$ Baikov-Chetyrkin-Kühn '08 $\hat{\mathscr{O}}_{\rm p} = \sum K_n \; A^{(n)}(\mathscr{Q}_s) \equiv a_{\bar{t}} \pm 5.20 \; a_{\bar{t}}^2 \pm 26 \; a_{\bar{t}}^3 \pm 127 \; a_{\bar{t}}^4 \pm \cdots$ **Power Corrections** $\Pi_{\Theta PE}^{(0\pm1)}(s) \approx \frac{1}{4\pi^2} \sum_{n>2} \frac{\underline{C}_{3\mu} \langle \underline{\Theta}_{3\mu} \rangle}{(-s)^n}$ Braaten-Narison-Pich '92 $e_4 \langle \theta_4 \rangle \approx \frac{2\pi}{2} \langle \theta | \alpha_s \Theta^{\text{HV}} \Theta_{\text{HV}} | \theta \rangle$ $\delta_{\mathrm{NB}} \approx \frac{-1}{2\pi i} \oint_{|x|=1} dx \quad (1 = 3x^2 \pm 2x^3) \sum_{n>2} \frac{\mathcal{C}_{3n}(\mathcal{O}_{3n})}{(-xm^2)^n} = -3 \frac{\mathcal{C}_{6}(\mathcal{O}_{6})}{m^6} = 2 \frac{\mathcal{C}_{8}(\mathcal{O}_{8})}{m^8}$ Suppressed by m_{τ}^{6} [additional chiral suppression in $C_6 \langle O_6 \rangle^{\ell^+ A}$]

α_s determination with ALEPH-like fit

Rodríguez-Sánchez, A.P.

$$\omega_{kl}(s) = \left(1 - \frac{s}{m_{\tau}^2}\right)^{2+k} \left(\frac{s}{m_{\tau}^2}\right)^l \left(1 + \frac{2s}{m_{\tau}^2}\right)$$

$$\begin{aligned} & (k,l) = (0,0) \quad \rightarrow \quad \alpha_{s}, \mathcal{O}_{6\,V/A}, \mathcal{O}_{8\,V/A} \\ & (k,l) = (1,0) \quad \rightarrow \quad \alpha_{s}, \langle a_{s}GG \rangle, \mathcal{O}_{6\,V/A}, \mathcal{O}_{8\,V/A}, \mathcal{O}_{10\,V/A} \\ & (k,l) = (1,1) \quad \rightarrow \quad \alpha_{s}, \langle a_{s}GG \rangle, \mathcal{O}_{6\,V/A}, \mathcal{O}_{8\,V/A}, \mathcal{O}_{10\,V/A}, \mathcal{O}_{12\,V/A} \\ & (k,l) = (1,2) \quad \rightarrow \quad \alpha_{s}, \mathcal{O}_{6\,V/A}, \mathcal{O}_{8\,V/A}, \mathcal{O}_{10\,V/A}, \mathcal{O}_{12\,V/A}, \mathcal{O}_{14\,V/A} \\ & (k,l) = (1,3) \quad \rightarrow \quad \alpha_{s}, \mathcal{O}_{8\,V/A}, \mathcal{O}_{10\,V/A}, \mathcal{O}_{12\,V/A}, \mathcal{O}_{14\,V/A}, \mathcal{O}_{16\,V/A} \end{aligned}$$

Channel	$lpha_s(m_{ au}^2)/\pi$	$\langle \frac{\alpha_s}{\pi} GG \rangle$	\mathcal{O}_6	\mathcal{O}_8
		$(10^{-3} { m GeV}^4)$	$(10^{-3} { m GeV^6})$	$10^{-3} { m GeV^8})$
V (FOPT)	$0.328 {}^{+ 0.013}_{- 0.007}$	8^{+7}_{-14}	$-3.2^{+0.8}_{-0.5}$	$5.0^{+0.4}_{-0.7}$
V (CIPT)	$0.352{}^{+0.013}_{-0.011}$	-8^{+7}_{-7}	$-3.5^{+0.3}_{-0.3}$	$4.9^{+0.4}_{-0.5}$
A (FOPT)	$0.304{}^{+0.010}_{-0.007}$	-15^{+5}_{-8}	$4.4^{+0.5}_{-0.4}$	$-5.8^{+0.3}_{-0.4}$
A (CIPT)	$0.320{}^{+0.011}_{-0.010}$	$-25{+5\atop-5}$	$4.3^{+0.2}_{-0.2}$	$-5.8^{+0.3}_{-0.3}$
V+A (FOPT)	$0.319 {}^{+ 0.010}_{- 0.006}$	-3^{+6}_{-11}	$1.3^{+1.4}_{-0.8}$	$-0.8^{+0.4}_{-0.7}$
V+A (CIPT)	$0.339 {}^{+ 0.011}_{- 0.009}$	-16^{+5}_{-5}	$0.9^{+0.3}_{-0.4}$	$-1.0^{+0.5}_{-0.7}$

Good agreement with Davier et al. (arXiv:1312.1501)

QCD Tests with τ Data

• Fit one more condensate to test stability/uncertainties

Channel	$lpha_s(m_{ au}^2)/\pi$	$\langle \frac{\alpha_s}{\pi} GG \rangle$	\mathcal{O}_6	\mathcal{O}_8	\mathcal{O}_{10}
		$(10^{-3} { m GeV}^4)$	$(10^{-3} \; {\rm GeV}^6)$	$10^{-3} { m GeV}^8)$	$(10^{-3}~{\rm GeV^{10}})$
V (FOPT)	$0.320{}^{+0.016}_{-0.014}$	10^{+9}_{-17}	-4^{+3}_{-2}	6^{+2}_{-2}	-2^{+5}_{-5}
V (CIPT)	$0.337 {}^{+ 0.020}_{- 0.019}$	-1^{+10}_{-10}	-5^{+2}_{-2}	6^{+2}_{-2}	-4^{+4}_{-4}
A (FOPT)	$0.347^{+0.022}_{-0.021}$	-31^{+16}_{-33}	11^{+5}_{-4}	-12^{+4}_{-4}	$15{+9\atop-9}$
A (CIPT)	$0.373^{+0.029}_{-0.029}$	-50^{+18}_{-16}	10^{+3}_{-3}	-11^{+3}_{-3}	14^{+7}_{-7}
V+A (FOPT)	$0.333^{+0.013}_{-0.012}$	-8^{+10}_{-24}	7^{+7}_{-4}	-5^{+4}_{-6}	12^{+12}_{-9}
V+A (CIPT)	$0.355{}^{+0.016}_{-0.015}$	-23^{+10}_{-8}	5^{+3}_{-3}	-5^{+3}_{-3}	10^{+8}_{-8}

• Good stability of $\alpha_{\rm s}$ with respect to previous fit

• Larger variation in condensates values and increased errors

② Take central values from first fit, adding differences as errors

α_s determination with ALEPH-like fit

Rodríguez-Sánchez, A.P.

 $\omega_{kl}(x) = (1-x)^{2+k} x^{l} (1+2x) \quad , \quad x = s/m_{\tau}^{2} \quad , \quad (k,l) = (0,0), (1,0), (1,1), (1,2), (1,3)$

Channel	$\alpha_{s}(m_{\tau}^{2})/\pi$	$\left< \frac{\alpha_s}{\pi} GG \right>$	\mathcal{O}_6	\mathcal{O}_8
		$(10^{-3} { m GeV}^4)$	$(10^{-3} { m GeV}^6)$	$10^{-3} { m GeV^8})$
V (FOPT)	$0.328 {}^{+ 0.013}_{- 0.007}$	8^{+7}_{-14}	$-3.2^{+0.8}_{-0.5}$	$5.0^{+0.4}_{-0.7}$
V (CIPT)	$0.352{}^{+0.013}_{-0.011}$	-8^{+7}_{-7}	$-3.5{}^{+0.3}_{-0.3}$	$4.9^{+0.4}_{-0.5}$
A (FOPT)	$0.304{}^{+0.010}_{-0.007}$	$-15{}^{+5}_{-8}$	$4.4^{+0.5}_{-0.4}$	$-5.8^{+0.3}_{-0.4}$
A (CIPT)	$0.320{}^{+0.011}_{-0.010}$	$-25{}^{+5}_{-5}$	$4.3^{+0.2}_{-0.2}$	$-5.8^{+0.3}_{-0.3}$
V+A (FOPT)	$0.319 {}^{+ 0.010}_{- 0.006}$	-3^{+6}_{-11}	$1.3^{+1.4}_{-0.8}$	$-0.8^{+0.4}_{-0.7}$
V+A (CIPT)	$0.339^{+0.011}_{-0.009}$	-16^{+5}_{-5}	$0.9^{+0.3}_{-0.4}$	$-1.0^{+0.5}_{-0.7}$

- High sensitivity to α_s . Bad sensitivity to power corrections
- Cancellation in $\mathcal{O}_{6,V+A}$ confirmed. V + A more reliable
- $K_5 = 275 \pm 400$, $\mu^2 = (0.5, 2) m_{\tau}^2$
- Best values taken from V + A. Errors increased with sensitivity to \mathcal{O}_{10}

 $\begin{aligned} \alpha_s(m_\tau^2)^{\text{CIPT}} &= 0.339^{+0.019}_{-0.017} \\ \alpha_s(m_\tau^2)^{\text{FOPT}} &= 0.319^{+0.017}_{-0.015} \end{aligned}$

 $\alpha_s(m_\tau^2) = 0.329^{+0.020}_{-0.018}$

Good agreement with Davier et al.: $\alpha_s(m_{\tau}^2) = 0.332 \pm 0.012$ (arXiv:1312.1501) A. Pich QCD Tests with τ Data

$$A^{(n)}(a_{\tau}) \equiv \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} (1 - 2x + 2x^3 - x^4) a_{\tau} (-x m_{\tau}^2)^n = a_{\tau}^n + \cdots ; \qquad a_{\tau} \equiv \alpha_s(m_{\tau})/\pi$$

$$\boldsymbol{A^{(1)}(\boldsymbol{a}_{\tau})} = a_{\tau} - \frac{19}{24} \beta_1 a_{\tau}^2 + \left[\beta_1^2 \left(\frac{265}{288} - \frac{\pi^2}{12}\right) - \frac{19}{24} \beta_2\right] a_{\tau}^3 + \cdots$$

$$a(-s) \simeq \frac{a_{\tau}}{1 - \frac{\beta_{1}}{2}a_{\tau}\log\left(-s/m_{\tau}^{2}\right)} = \frac{a_{\tau}}{1 - i\frac{\beta_{1}}{2}a_{\tau}\phi} = a_{\tau}\sum_{n}\left(i\frac{\beta_{1}}{2}a_{\tau}\phi\right)^{n} \qquad ; \qquad \phi \in [0, 2\pi]$$
FOPT expansion only convergent if $\alpha_{\tau} < 0.14$ (0.11) [at 1 (3) loops]
Experimentally $\alpha_{\tau} \approx 0.11$ FOPT should not be used (divergent series)
FOPT suffers a large renormalization-scale dependence (Le Diberder-Pich, Menke)
The difference between FOPT and CIPT grows at higher orders

