9th International Workshop on Charm Physics

Budker Institute of Nuclear Physics, Novosibirsk, Russia May 21-25, 2018.

http://charm18.inp.nsk.su/

Experimental Status of Conventional Charmonium Spectroscopy

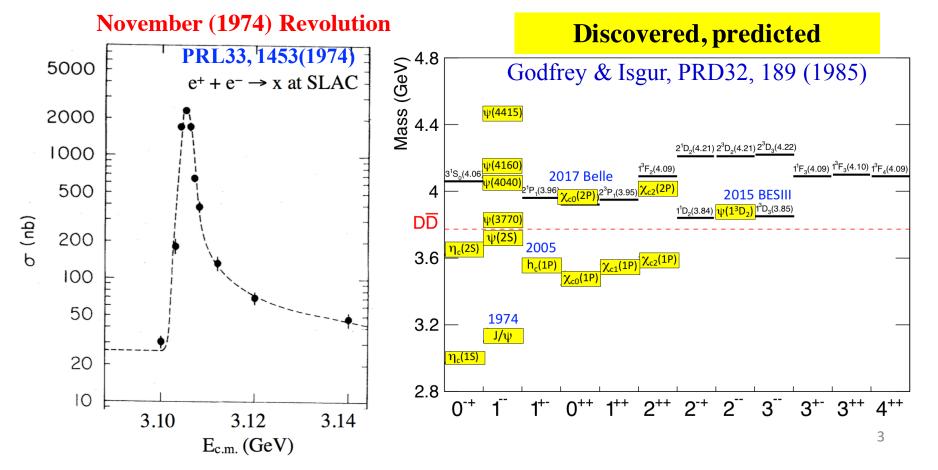
Xiongfei Wang(王雄飞), Xinchou Lou IHEP, CAS

May 22, 2018, Novosibirsk, Russia

Outline

■ Introduction

- > Conventional charmonium spectroscopy (CCS)
- > Experimental apparatus


■ Recent CCS results

- $> J/\psi$ and $\psi(2S)$ resonance parameters
- $\succ \chi_{cl}(1P)$ resonance parameters
- $> \eta_c(1S)$ resonance parameters
- \triangleright Observations of X(3823) and $X^*(3860)$

■ Summary

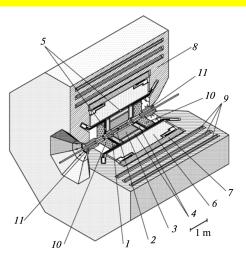
Conventional Charmonium Spectroscopy

- Nonrelativistic $c\bar{c}$ bound states
- J/ψ (1³ S_1) is the first member with $J^{PC} = 1^{--}$, other shown in right plots like $\psi(2S)$, $\psi(1D)$, etc...
- Observations are consistent with predictions from potential models and L-QCD in describing spectra & onium properties!

Experimental apparatus

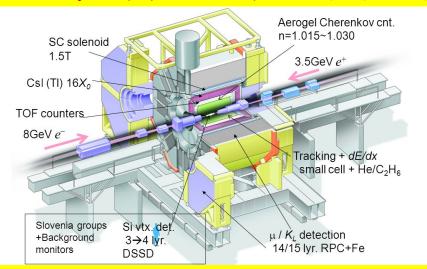
BESIII experiment designed for studying in tau-c physics region (NIMA614 (2010) 345-399)

Magnet yoke

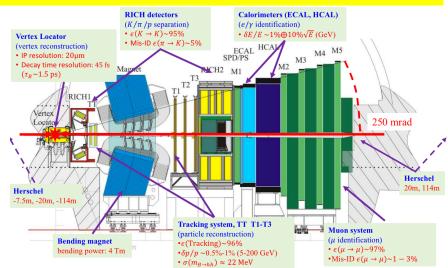

TOF

Be beam pipe

MDC, 120 μm

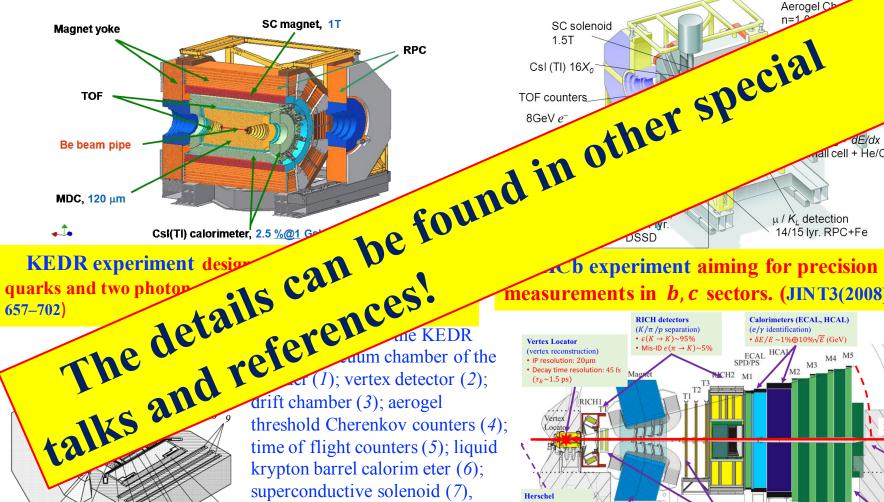

Csl(Tl) calorimeter, 2.5 %@1 GeV

KEDR experiment designed for studying the *c*, *b* quarks and two photon physics (PPN, 2013, Vol. 44, No. 4, pp. 657–702)



The central part of the KEDR detector: vacuum chamber of the collider (1); vertex detector (2); drift chamber (3); aerogel threshold Cherenkov counters (4); time of flight counters (5); liquid krypton barrel calorim eter (6); superconductive solenoid (7), magnet yoke (8); muon chambers (9); endcap CsI calorimeter (10); com pensating coil (11).

Belle experiment designed for studying rare Bmeson decay at Y(4S) resonance (NIMA 479(2002) 117-232)



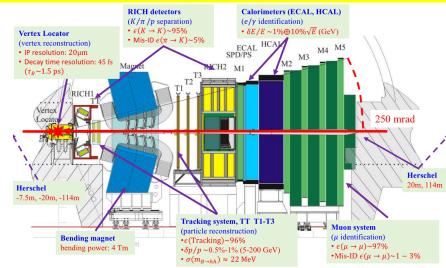
LHCb experiment aiming for precision measurements in *b*, *c* sectors. (JINT3(2008)S08005)

Experimental apparatus

BESIII experiment designed for studying in tau-c physics region (NIMA614 (2010) 345-399)

1m

magnet yoke (8); muon chambers


(9); endcap CsI calorimeter (10);

com pensating coil (11).

Belle experiment designed for studying rare Bmeson decay at $\Upsilon(4S)$ resonance (NIMA 479(2002) 117-232)

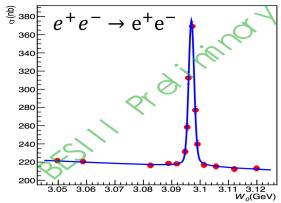
nents in b, c sectors. (JINT3(2008)S08005)

Outline

- Introduction
 - > Conventional charmonium spectroscopy(CCS)
 - Experimental apparatus

■ Recent CCS results

- $> J/\psi$ and $\psi(2S)$ resonance parameters
- $\succ \chi_{cl}(1P)$ resonance parameters
- $> \eta_c(1S)$ resonance parameters
- \triangleright Observations of X(3823) and $X^*(3860)$
- **■** Summary

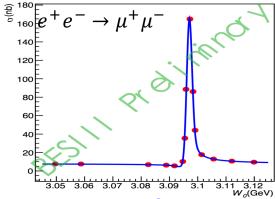

J/ψ and $\psi(2S)$ resonance parameters

Precise measurement of J/ψ decay width

- Precise measurements of I/ψ decay widths provide a better understanding of the underlying physics.
- Updated with processes $e^+e^- \rightarrow e^+e^-$ and $e^+e^- \rightarrow \mu^+\mu^-$ at 15 c.m. energy points in the vicinity of the J/ψ resonance.

Simultaneous fit

Numerical Results

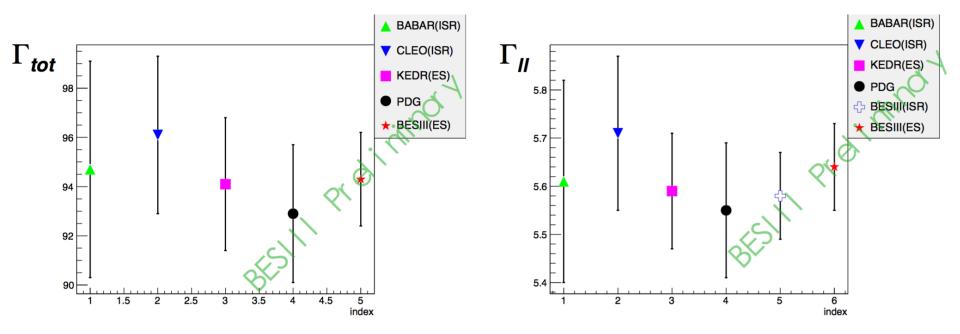

Parameters and their covariance matrix from fitting

Symbol	Value (keV)	V_{i1} (keV 2)	V_{i2} (keV 2)
$\Gamma_{ee}\Gamma_{ee}/\Gamma_{tot}$	0.348	0.0000684	0.0000373
$\Gamma_{ee}\Gamma_{\mu\mu}/\Gamma_{tot}$	0.339	0.0000373	0.0000300

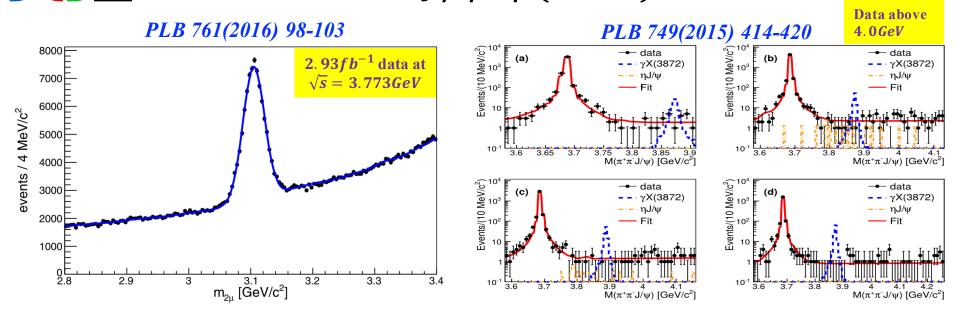
PRD88 (2013) 032007

Combined with $B(J/\psi \rightarrow I^+I^-) = \Gamma_{II}/\Gamma_{tot} = (5.978 \pm 0.040)\%$

Symbol	Result
$\Gamma_{ee}/\Gamma_{\mu\mu}$	1.025 ± 0.014
Γ_{tot}	$(94.3\pm1.9)~{ m keV}$
Γ_{II}	$(5.64 \pm 0.09)~ ext{keV}$



A global χ^2 function for decay width extraction: $\chi^2 = \Delta \sigma^T \cdot V^{-1} \cdot \Delta \sigma$ (See the details for backup page)


Precise measurement of J/ψ decay width

Comparison with results from others

- **BESIII** result is consistent with those from others.
- Together with BESIII result using ISR, this result achieves the best accuracy in the world by far.

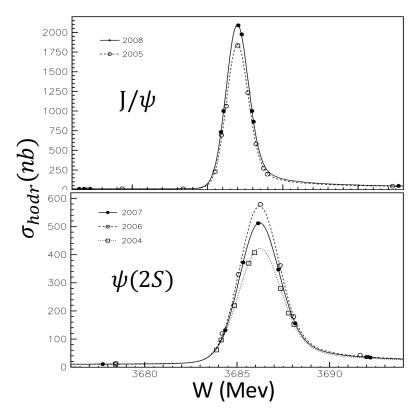
ESII Measurement of J/ψ , ψ (3686) electronic width

The process $e^+e^- \rightarrow J/\psi\gamma \rightarrow \mu^+\mu^-\gamma$ applied for J/ψ electronic width

Measurement	$\Gamma_{ee}\cdot {\cal B}_{\mu\mu}$ [eV]	Used $\mathcal{B}_{\mu\mu}$ value [%]	Γ_{ee} [keV]
BaBar	$330.1 \pm 7.7_{\rm stat} \pm 7.3_{\rm sys}$	5.88 ± 0.10 [20]	5.61 ± 0.20
CLEO-c	$338.4 \pm 5.8_{\rm stat} \pm 7.1_{\rm sys}$	$5.953 \pm 0.056_{\text{stat}} \pm 0.042_{\text{sys}}$ [21]	$5.68 \pm 0.11_{\rm stat} \pm 0.13_{\rm sys}$
KEDR	$331.8 \pm 5.2_{\rm stat} \pm 6.3_{\rm sys}$	5.94 ± 0.06 [22]	5.59 ± 0.12
This work	$333.4 \pm 2.5_{\rm stat} \pm 4.4_{\rm sys}$	$5.973 \pm 0.007_{\text{stat}} \pm 0.037_{\text{sys}}$ [4]	$5.58 \pm 0.05_{stat} \pm 0.08_{sys}$

The process $e^+e^- \rightarrow \gamma_{ISR}\pi^+\pi^-J/\psi$ for $\psi(3686)$ electronic width with ISR method

$$\Gamma_{ee}^{\psi(3686)} = (2213 \pm 18_{\text{stat}} \pm 99_{\text{sys}}) \text{ eV}$$


$$\Gamma_{ee}^{X(3872)}\mathcal{B}(X(3872) \to \pi^+\pi^-J/\psi) < 0.13 \text{ eV} \ \ @ 90\% \ C.L.$$

Measurements are consistent with the PDG values

Measurement of J/ψ and $\psi(2S)$ masses

- Based on six high precision scans of the J/ ψ region and seven high precision scans of $\psi(2S)$ in KEDR detector.
- Determined by fitting the inclusive hadronic cross sections.
- Beam energy was determined using the resonance depolarization method.

PLB 749(2015) 50-56

■ Weighting of results on masses

$$\langle M \rangle = \sum w_i \cdot M_i,$$

$$\sigma_{\text{stat}}^2 = \sum w_i^2 \cdot \sigma_{\text{stat},i}^2,$$

$$\sigma_{\text{syst}}^2 = \sum w_i^2 \cdot (\sigma_{\text{syst},i}^2 - \sigma_{\text{syst},0}^2) + \sigma_{\text{syst},0}^2,$$

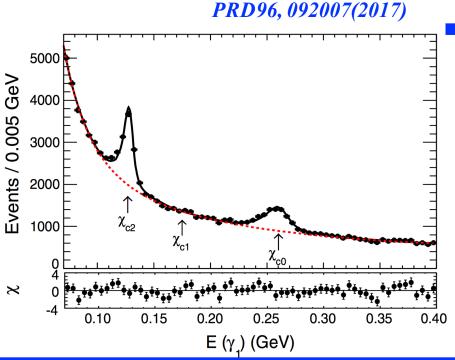
$$w_i = 1/(\sigma_{\text{stat},i}^2 + \sigma_{\text{syst},i}^2 - \sigma_{\text{syst},0}^2),$$

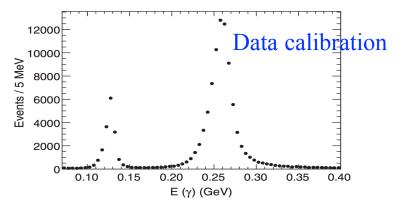
Here $\sigma_{syst,0}^2$ denotes a common part of systematic uncertainty

Resonance parameters on masses $M_{J/\psi} = 3096.900 \pm 0.002 \pm 0.006 \, \text{MeV} \\ M_{\psi(2S)} = 3686.099 \pm 0.004 \pm 0.009 \, \text{MeV}$

Consistent with PDG values within 1σ

$\chi_{cl}(1P)$ resonance parameters





Improvement measurement of $\Gamma_{\gamma\gamma}(\chi_{c0,2})$

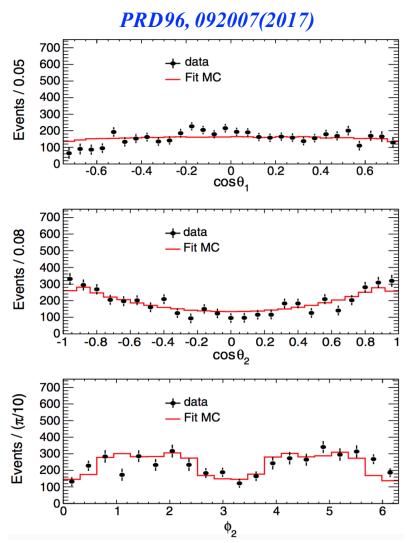
■ Updated with the process $\chi_{c0,2} \rightarrow \gamma \gamma$ based on $\psi(2S)$ radiative decay.

The $\chi_{c0,2}$ shape modeled and fixed in the fit by the control sample $\psi(3686) \rightarrow \gamma \chi_{c0,2}, \chi_{c0,2} \rightarrow K^+K^-$

$$\mathcal{B}_{1} = \mathcal{B}(\psi(3686) \to \gamma \chi_{c0,2}) \cdot \mathcal{B}_{2} = \mathcal{B}(\chi_{c0,2} \to \gamma \gamma)$$
$$\Gamma_{\gamma \gamma}(\chi_{c0,2} \to \gamma \gamma) = \mathcal{B}(\chi_{c0,2} \to \gamma \gamma) \times \Gamma(\chi_{c0,2}),$$

Quantity	PDG average values ^a	CLEO-c ^b	BESIII ^b	This measurement ^b
$\mathcal{B}_1 \times \mathcal{B}_2(10^{-5})(\chi_{c0})^{c}$	2.23 ± 0.14	$2.17 \pm 0.32 \pm 0.10$	$2.17 \pm 0.17 \pm 0.12$	$1.93 \pm 0.08 \pm 0.05$
$\mathcal{B}_1 \times \mathcal{B}_2(10^{-5})(\chi_{c2})^{c}$	2.50 ± 0.15	$2.68 \pm 0.28 \pm 0.15$	$2.81 \pm 0.17 \pm 0.15$	$2.83 \pm 0.08 \pm 0.06$
$\mathcal{B}_{2}(10^{-4})(\chi_{c0})^{c}$	2.23 ± 0.13	$2.31 \pm 0.34 \pm 0.15$	$2.24 \pm 0.19 \pm 0.15$	$1.93 \pm 0.08 \pm 0.07$
$\mathcal{B}_2(10^{-4})(\chi_{c2})^{c}$	2.74 ± 0.14	$3.23 \pm 0.34 \pm 0.24$	$3.21 \pm 0.18 \pm 0.22$	$3.10 \pm 0.09 \pm 0.13$
$\Gamma_{\gamma\gamma}(\chi_{c0})$ keV	2.24 ± 0.19	$2.36 \pm 0.35 \pm 0.22$	$2.33 \pm 0.20 \pm 0.22$	$2.03 \pm 0.08 \pm 0.14$
$\Gamma_{\gamma\gamma}(\chi_{c2})$ keV	0.53 ± 0.03	$0.66 \pm 0.07 \pm 0.06$	$0.63 \pm 0.04 \pm 0.06$	$0.60 \pm 0.02 \pm 0.04$
$\mathcal{R}^{\prime\prime}$	0.236 ± 0.024	$0.278 \pm 0.050 \pm 0.036$	$0.271 \pm 0.029 \pm 0.030$	$0.295 \pm 0.014 \pm 0.028$

$$\mathcal{R} = \frac{\Gamma_{\gamma\gamma}(\chi_{c2} \to \gamma\gamma)}{\Gamma_{\gamma\gamma}(\chi_{c0} \to \gamma\gamma)}$$


Upper limits for χ_{c1} : $T_{\gamma\gamma}(\chi_{c1}) < 5.3 \text{ eV}@90\%\text{C.L.}$ $\mathcal{B}(\chi_{c1} \to \gamma\gamma) < 6.3 \times 10^{-6}$

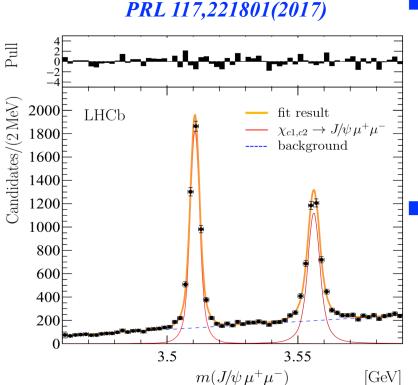
- More precise measurement, consistent with the previous experimental results!
- lacksquare Precisely measured ${\cal R}$ calibrates the different theoretical potential models.

Improvement measurement of $\Gamma_{\gamma\gamma}(\chi_{c0,2})$

A helicity amplitude analysis is performed for superposition of helicity-zero ($\lambda = 0$) and helicity-two ($\lambda = 2$) components for $\chi_{c2} \rightarrow \gamma \gamma$ decay.

- Variables definition:
 - \checkmark θ_1 : polar angle of radiative photon, with respect to the direction of positron beam;
 - \checkmark θ_2/ϕ_2 : polar/azimuthal angle of one of photons in $\chi_{c2} \rightarrow \gamma\gamma$ process at χ_{c2} rest frame, with respect to the direction of radiative photon direction;

Two photon width ratio for $\chi_{c2} \rightarrow \gamma \gamma$ $\Gamma_{c2}^{\lambda=0}(\chi_{c2})$


$$f_{0/2} = \frac{\Gamma_{\gamma\gamma}^{\lambda=0}(\chi_{c2})}{\Gamma_{\gamma\gamma}^{\lambda=2}(\chi_{c2})} = (0.0 \pm 0.6 \pm 1.2) \times 10^{-2}$$

- More precise measurement, consistent with the previous experimental results.
- **Confirmed helicity-zero component highly suppressed.**

Measurement of $\chi_{c1,2}$ resonance parameters

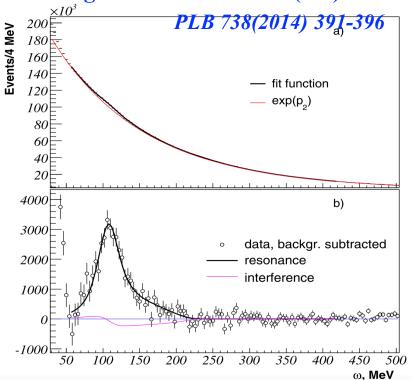
■ Performed based on observation of $\chi_{c1,2} \rightarrow J/\psi \mu^+ \mu^-$.

- An extended unbinned maximum likelihood fit
- ✓ The $\chi_{c1,2}$ signals are modeled by **relativistic Breit-Wigner functions with Blatt-Weisskopf form** factors with a meson radius parameter of 3 GeV^{-1} .
- ✓ The orbital angular momentum between the J/ ψ meson and the $\mu^+\mu^-$ pair is assumed to be 0 (1) for the $\chi_{c1}(\chi_{c2})$ cases.

Numerical results for resonance parameters:

Quantity [MeV]	LHCb measurement	Best previous measurement	World average
$m(\chi_{c1})$	3510.71 ± 0.10	3510.72 ± 0.05	3510.66 ± 0.07
$m(\chi_{c2})$	3556.10 ± 0.13	3556.16 ± 0.12	3556.20 ± 0.09
$\Gamma(\chi_{c2})$	2.10 ± 0.20	1.92 ± 0.19	1.93 ± 0.11

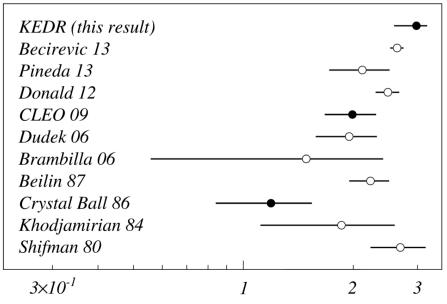
 $m(\chi_{c2}) - m(\chi_{c0}) = 45.39 \pm 0.07 \pm 0.03 \text{ MeV}$


- Observations presented here open up a new avenue for hadron spectroscopy at the LHC.
 - \checkmark To measure production of $\chi_{c1,2}$ states
 - \checkmark To extend measurements to low $p_t(\chi_{c1.2})$
 - **√** ...

$\eta_c(1S)$ resonance parameters

Measurement of $\eta_c(1S)$ resonance parameters

- Measured using inclusive photon spectrum in process $J/\psi \rightarrow \gamma \eta_c$ in KEDR detector.
- Inclusive photon spectrum before/after background subtraction (a/b)

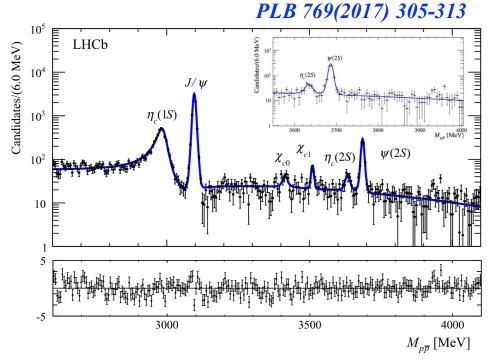


$$egin{aligned} \mathbf{M}_{\eta_c} &= \mathbf{2983.5} \pm \mathbf{1.4^{+1.6}_{-3.6}~MeV} \ \mathbf{\Gamma}_{\eta_c} &= \mathbf{27.2} \pm \mathbf{3.1^{+5.4}_{-2.6}MeV} \end{aligned}$$

Consistent with PDG values within 1σ

■ Taking into account an asymmetric photon lineshape.

$$\Gamma^0_{\gamma\eta_c} = \frac{\mathcal{B}(J/\psi \to \gamma\eta_c)\Gamma_{J/\psi}}{f_{cor}} = 2.98 \pm 0.18^{+0.15}_{-0.33}~keV$$
 f_{cor} correction factor



Consistent with other measurements (close circles) and theoretical predictions (open circles) within the errors.

Measurement of $\eta_c(1S)$ width parameter

■ Performed with process $B^+ o p\overline{p}K^+$ using 3. 0 fb^{-1} $p\overline{p}$ collision data


```
\begin{split} Numerical\ results\ on\ masses \\ M_{J/\psi} - M_{\eta_c(1S)} &= 110.2 \pm 0.5 \pm 0.9\ MeV, \\ M_{\psi(2S)} - M_{\eta_c(2S)} &= 52.5 \pm 1.7 \pm 0.6\ MeV, \\ \Gamma_{\eta_c(1S)} &= 34.0 \pm 1.9 \pm 1.3\ MeV. \end{split}
```

- Consistent with PDG value $\Gamma_{n_c(1S)}^{PDG} = 31.8 \pm 0.8$ MeV.
 - Compared with radiative decays, these mass and width determinations do not depend on the knowledge of the line shapes of the magnetic dipole transition.

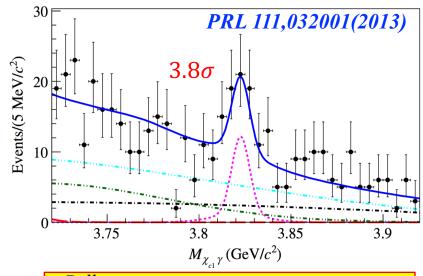
■ Observation of $\eta_c(2S) \to p\overline{p}$ (6.0 σ) and search for $\psi(3770)$, $X(3872) \to p\overline{p}$

Relative branching fractions: $R_{\eta_c(2S)} = (1.58 \pm 0.33 \pm 0.09) \times 10^{-2},$ $R_{\psi(3770)} < 9(10) \times 10^{-2} @ 90(95)\% \text{ C.L.},$ $R_{X(3872)} < 0.20(0.25) \times 10^{-2} @ 90(95)\% \text{ C.L.}.$

Observations of X(3823) and $X^*(3860)$

Observation of X(3823) or $\psi(3823)$

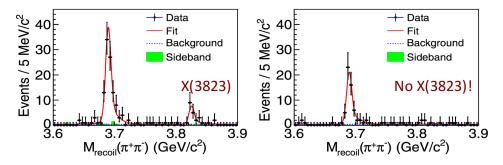
Status:


 $c \; \overline{c} \;$ MESONS

 $\psi(3823)$ was X(3823)

$$I^G(J^{PC}) = ??(2^{--})$$

 $\psi(3823)$ MASS $3822.2 \pm 1.2 \text{ MeV}$ $\psi(3823)$ WIDTH < 16 MeV CL=90.0%


process $B \to \gamma \chi_{c1} K$, but not observed in $\gamma \chi_{c2}$ final state.

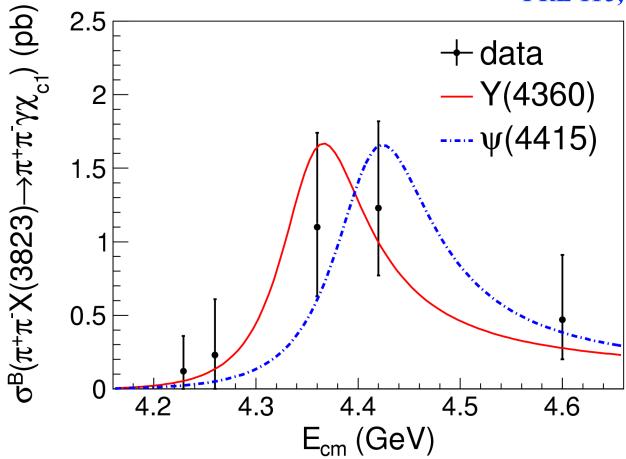
$$M_{X(3823)}^{Belle} = 3823.1 \pm 1.8 \pm 0.7 \text{ MeV}$$

 $\Gamma_{X(3823)}^{Belle} < 24 \text{ MeV } @ 90\% \text{ C. L.}$

- Good candidate for $\psi(1^3D_2c\bar{c})$ charmonium state suggested.
- Production of X(3823)'s C-odd partner.

An evidence by Belle for the first time in \blacksquare Observed by BESIII in process $e^+e^- \rightarrow$ $\pi^+\pi^-\gamma\chi_{c1}$ with 6.2 σ statistical significance. PRL 115,011803(2015)

- Simultaneous fit to data at 4.23, 4.26, 4.36, 4.42, 4.60 GeV
- $\checkmark \psi(2S)$ signal for calibration


$$M_{X(3823)}^{BESIII} = 3821.7 \pm 1.3 \pm 0.7 \text{ MeV}$$

 $\Gamma_{X(3823)}^{BESIII} \le 16 \text{ MeV} @ 90\% \text{ C.L.}$

These measurements are in good agreement with the assignment of the X(3823) state as the $\psi(1^3D_2)$ charmonium state. 20

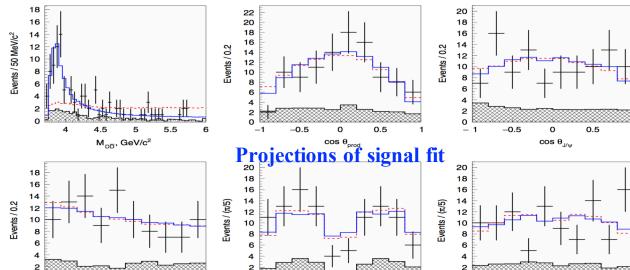
BESII Production cross section

PRL 115,011803(2015)

- Energy dependent cross section of $e^+e^- \rightarrow \pi^+\pi^- X(3823)$.
- Both Y(4360) and Y(4415) line shape give reasonable description.

Observation of $X^*(3860)$ or $\chi_{c0}(2P)$

The experimental analysis prefers $J^{PC}=0^{++}$. However, a reanalysis presented in ZHOU 2015C shows that if helicity-2 dominance assumption is abandoned and a sizable helicity-0 component is allowed, a $J^{PC}=2^{++}$ assignment is possible. No $\chi_{c0}(2P)$ candidate now! $\chi(3915) \text{ MASS} \qquad 3918.4 \pm 1.9 \text{ MeV}$ $\chi(3915) \text{ WIDTH} \qquad 20 \pm 5 \text{ MeV (S = 1.1)}$


■ A full amplitude analysis performed to the $e^+e^- \to J/\psi D\overline{D}$ process (D∈ D^0 , D^+) in a six-dimensional parameters space:

$$\Phi = (M_{D\overline{D}}, \theta_{prod}, \theta_{l\psi}, \theta_{X*}, \varphi_{l^{-}}, \varphi_{D})$$

where, θ_{prod} production angle; $\theta_{I\psi}$, θ_{X*} helicity angles; φ_{l^-} , φ_{D} azimuthal angles.

■ Observation of a new charmonium-like state $X^*(3860)$ with 6.5σ statistical significance.

Resonance parameters

$$\begin{split} & M_{X^*(3860)} = 3862^{+26+40}_{-32-23} MeV \\ & \Gamma_{X^*(3860)} = 201^{+154+88}_{-67-82} \ MeV \end{split}$$

The $J^{PC} = 0^{++}$ hypothesis is favored over the $J^{PC} = 2^{++}$ hypothesis at the level of 2.5σ.

Observation of $X^*(3860)$ or $\chi_{c0}(2P)$

PRD 95,112003(2017)

■ Comparison of the X*(3860) and known charmonium-like states

		Nonresonant amplitude			
State	J^{PC}	Constant	NRQCD	M_{DD}^{-4}	
<i>X</i> (3915)	0++	5.2σ	4.3σ	3.3σ	
X(3915)	2^{++}	6.1σ	6.1σ	4.9σ	
$\chi_{c2}(2P)$	2^{++}	6.8σ	7.0σ	6.2σ	
X(3940)	2^{++}	6.0σ	5.6σ	5.2σ	
X(4160)	0_{++}	6.8σ	6.3σ	5.8σ	
X(4160)	2^{++}	10.7σ	11.0σ	13.5σ	
$\chi_{c0}(2P)$ (lattice)	0_{++}	4.3σ	3.6σ	2.7σ	

- \checkmark ~2.7 σ level difference from predicted $\chi_{c0}(2P)$.
- The X^* (3860) global significance for alternative models

Model	Significance
Default (constant nonresonant)	8.5σ
NRQCD nonresonant	7.6σ
$M_{D\bar{D}}^{-4}$ nonresonant	6.5σ
Background mass calculation	8.4σ
Optimization $(a = 4)$	8.1σ
Optimization $(a = 6)$	8.1σ

✓ Disagree with the NRQCD prediction.

■ A new conventional charmonium state

- ✓ A better candidate for $\chi_{c0}(2P)$ charmonium state than X(3915), well matched to expectation of $\chi_{c0}(2P)$ from potential model.
- ✓ Agree with $\chi_{c0}(2P)$ parameters determined from an alternative fit to Belle and BABAR:

$$M = 3837.6 \pm 11.5 \text{ MeV}$$

 $\Gamma = 221 \pm 19 \text{ MeV}$

 \checkmark A conventional charmonium state above $D\overline{D}$ threshold, coincide with $\chi_{c0}(2P)$.

■ Born cross section measurement

Data set	Energy, GeV	$\sigma_{e^+e^- o J/\psi X^*(3860)(o Dar{D})}^{ ext{(Bom)}}, ext{ fb}$
$\Upsilon(1S)$	9.46	$77^{+66}_{-66}^{+9}_{-7}$
$\Upsilon(2S)$	10.02	$6.9^{+12.6}_{-12.6}{}^{+0.9}_{-0.7}$
$\Upsilon(3S)$	10.36	$77^{+85}_{-85}{}^{+11}_{-8}$
Continuum	10.52	$5.5^{+5.7}_{-5.7}{}^{+0.7}_{-0.5}$
$\Upsilon(4S)$	10.58	$21.7^{+3.9}_{-4.3}{}^{+2.9}_{-2.1}$
$\Upsilon(5S)$	10.87	$17.9^{+7.2}_{-7.3}{}^{+2.4}_{-1.8}$

Summary of recent experimental status for CCS

CCS	Collab.	M(MeV)	$\Gamma_{tot}(keV)$	$\Gamma_{ll}(\text{keV})$	$\Gamma_{ee}({ m keV})$	COMMENT
	BESIII		94.3±1.9	5.64±0.09	5.58 ± 0.09	$e^+e^- ightarrow e^+e^-$, $\mu^+\mu^-$
7 / 1						$e^+e^- \rightarrow J/\psi \gamma \rightarrow \mu^+ \mu^- \gamma$
J/ψ	KEDR	3096.900±0.006				Inclusive hadronic mode
	PDG	3096.900±0.006	92.9 <u>+</u> 2.8			PDG AVERAGE
	BESIII				2.213 ±0.100	$e^+e^- o \gamma_{ISR}\pi^+\pi^-J/\psi$
$\psi(2S)$	KEDR	3686.009±0.098				Inclusive hadronic mode
	PDG	3686.009±0.098	296 ±8			PDG AVERAGE

	CCS	Collab.	M(MeV)	Γ(MeV)	Γ _{γγ}	(keV)	C	COMMENT	
		BESIII			2.03	±0.16	$\psi(3686)$	$\rightarrow \gamma \chi_{c0}, \chi_{c0} \rightarrow \gamma \gamma$	
	χ_{c0}	LHCb							
C		PDG	3414.75 ± 0.31	10. 5 ± 0 . 6			PD	G AVERAGE	
		BESIII			<5.3	×10 ⁻³	$\psi(3686)$	$\rightarrow \gamma \chi_{c0}, \chi_{c0} \rightarrow \gamma \gamma$	
	X _{c1}	LHCb	3510.71 ± 0.14				Xc1,	$_2 \rightarrow J/\psi \mu^+ \mu^-$	
η_c	η_c	PDG	3510.66 ± 0.07	0.84 ± 0.04			PD	G AVERAGE	E
		BESIII			2.03	±0.16	$\psi(3686)$	$\rightarrow \gamma \chi_{c0}, \chi_{c0} \rightarrow \gamma \gamma$	
X(3		LHCb	3556.10 ± 0.13	2.10 ± 0.20			Xc1,:	$_2 \rightarrow J/\psi \mu^+ \mu^-$	-1
Or ψ		PDG	3556.20 ± 0.09	1.93 ± 0.11			PD	G AVERAGE	<u>c1</u> E
•	3860)	Belle	3862+26+40	201+154+8	38			$e^+e^- \rightarrow J/\psi D$	D
Or χ	c0(2P)	PDG						PDG AVERA	GE

Tables summarize more precise measurement, consistent with PDG average! 24

Summary of recent experimental status for CCS

CCS	Collab.	M(MeV)	$\Gamma_{tot}(keV)$	$\Gamma_{ll}(\text{keV})$	$\Gamma_{ee}({ m keV})$	COMMENT
	BESIII		94.3±1.9	5.64 ±0.09	5.58 ± 0.09	$e^+e^- ightarrow e^+e^-, \mu^+\mu^- \ e^+e^- ightarrow J/\psi\gamma ightarrow \mu^+\mu^-\gamma$
J/ψ	KEDR	3096.900±0.006				Inclusive hadronic mode
	PDG	3096.900±0.006	92.9±2.8			PDG AVERAGE
	BESIII				2.213±0.100	$e^+e^- o \gamma_{ISR}\pi^+\pi^-J/\psi$
$\psi(2S)$	KEDR	3686.009±0.098				Inclusive hadronic mode
	PDG	3686.009±0.098	296±8			PDG AVERAGE

CCS	Collab.	M(MeV)	Γ(MeV)	$\Gamma_{\gamma\gamma}(\text{keV})$	COMMENT
	BESIII			2.03±0.16	$\psi(3686) \rightarrow \gamma \chi_{c0}, \chi_{c0} \rightarrow \gamma \gamma$
χ_{c0}	LHCb				

CCS	Collab.	M(MeV)	Γ(MeV)	$\Gamma^0_{\gamma\eta_c}({ m keV})$	COMMENT
$\eta_c(1S)$	KEDR	$2983.5 \pm 1.4 ^{+1.6}_{-3.6}$	$\mathbf{27.2 \pm 3.1 }^{+5.4}_{-2.6}$	$2.98 \pm 0.18^{+0.15}_{-0.33}$	$J/\psi o \gamma \eta_c$
	LHCb	_	34.0.±1.9±1.3	1	$B^+ \to p\overline{p}K^+$
	PDG	2983. 4 ± 0. 5	31.8.±0.8	1	PDG AVERAGE
$X(3823)$ Or $\psi(3823)$	Belle	$3823.1 \pm 1.8 \pm 0.7$	< 24	1	$B \to \gamma \chi_{c1} K$
	BESIII	$3821.7 \pm 1.3 \pm 0.7$	< 16	1	$e^+e^- \rightarrow \pi^+\pi^-\gamma\chi_{c1}$
	PDG	3822. 2 ± 1. 2	< 16	1	PDG AVERAGE
$X^*(3860)$ Or $\chi_{c0}(2P)$	Belle	3862 ⁺²⁶⁺⁴⁰ ₋₃₂₋₂₃	201 ⁺¹⁵⁴⁺⁸⁸		$e^+e^- \rightarrow J/\psi D\overline{D}$
	PDG				PDG AVERAGE

Tables summarize more precise measurement, consistent with PDG average! 25

Summary

- Lots of progress in the study of conventional charmonium states at BESIII, Belle, KEDR and LHCb, recently.
 - > Precise/improved measurements:
 - $\checkmark J/\psi$ and $\psi(2S)$ resonance parameters
 - $\checkmark \chi_{cl}(1P)$ resonance parameters
 - $\checkmark \eta_c(1S)$ resonance parameters
 - > Observations of $\psi(1^3D_2)=X(3823)$ and $\chi_{c2}(2P)=X*(3860)$
- ■BESIII/Belle/KEDR/LHCb will continue the study, Belle II at KEK will start data taking very soon.

Thanks for your attention!

Backup

Decay width extraction — Global χ^2

To consider:

- Correlations between measured cross sections of the same channel at different energy points;
- Correlations between measured cross sections of different channels at the same energy point, a global χ^2 function is constructed:

$$\chi^2 = \Delta \sigma^T \cdot V^{-1} \cdot \Delta \sigma$$

where

$$\Delta\sigma(i) = \left\{ egin{array}{ll} \sigma_{ee}^{exp}(i) - \sigma_{ee}^{the}(i) & i = 1-15 \ \sigma_{\mu\mu}^{exp}(i-15) - \sigma_{\mu\mu}^{the}(i-15) & i = 16-30 \end{array}
ight.$$

and

$$V(i,j) = \begin{cases} V_{\text{ee}}(i,j) + \delta(i-j) \left(\frac{d\sigma_{\text{ee}}^{\text{the}}}{dW_0}(i)\Delta W_0(i)\right)^2 & i = 1 - 15, j = 1 - 15 \\ \frac{\sigma_{\text{ee}}^{\text{exp}}(i)\sigma_{\mu\mu}^{\text{exp}}(j-15)}{L(i)L(j-15)} V_L(i,j-15) + \delta(i+15-j) \frac{d\sigma_{\text{ee}}^{\text{the}}}{dW_0}(i) \frac{d\sigma_{\mu\mu}^{\text{the}}}{dW_0}(i)(\Delta W_0(i))^2 & i = 1 - 15, j = 16 - 30 \\ \frac{\sigma_{\text{ee}}^{\text{exp}}(j)\sigma_{\mu\mu}^{\text{exp}}(i-15)}{L(i-15)L(j)} V_L(i-15,j) + \delta(i-j-15) \frac{d\sigma_{\text{ee}}^{\text{the}}}{dW_0}(j) \frac{d\sigma_{\mu\mu}^{\text{the}}}{dW_0}(j)(\Delta W_0(j))^2 & i = 16 - 30, j = 1 - 15 \\ V_{\mu\mu}(i-15,j-15) + \delta(i-j) \left(\frac{d\sigma_{\mu\mu}^{\text{the}}}{dW_0}(i-15)\Delta W_0(i-15)\right)^2 & i = 16 - 30, j = 16 - 30 \end{cases}$$

Decay width extraction — Formulas and parameters

• Analytical formulas for resonance terms and interference terms of cross sections of $e^+e^- \to e^+e^-$ and $e^+e^- \to \mu^+\mu^-$ with ISR considered are carefully derived ¹ with structure function method ²

$$\sigma(s,\cos\theta) = \int \bar{\sigma}(s(1-x),\cos\theta)F(s,x)dx$$

The energy spread effect is described by gauss distribution

$$\sigma'(W_0) = \int \sigma(W) \left(\frac{1}{\sqrt{2\pi}\sigma_W} \exp^{-\frac{(W-W_0)^2}{2\sigma_W^2}} \right) dW$$

• The FSR factor $R^{FSR}(W_0)$ are obtained via numerical method with the Babayaga generator as the ratio of the calculated cross sections with the FSR switch therein turned on and off. With it

$$\sigma^{the}(W_0) = \sigma'(W_0) \cdot R^{FSR}(W_0)$$

The final function form of the theoretical cross section formula:

$$\sigma_{II}^{the} = \sigma_{II}^{the}(W_0, M, \Gamma_{tot}, \Gamma_{ee}\Gamma_{II}/\Gamma_{tot}, \sqrt{\Gamma_{ee}\Gamma_{II}}, \sigma_W)$$
 with $II = \text{ee}$ or $\mu\mu$

- $\Gamma_{ee}\Gamma_{ee}/\Gamma_{tot}$ and $\Gamma_{ee}\Gamma_{\mu\mu}/\Gamma_{tot}$ can be obtained by measuring these cross sections and then fitting them.
- Combined $B(J/\psi \to l^+ l^-) = \Gamma_{ll}/\Gamma_{tot}$ measured by our BESIII collaboration in 2013 ³, Γ_{tot} and Γ_{ll} can be obtained from $\Gamma_{ee}\Gamma_{ee}/\Gamma_{tot}$ and $\Gamma_{ee}\Gamma_{\mu\mu}/\Gamma_{tot}$ by parameter transformation.

¹X.Y. Zhou, Y.D. Wang, L.G. Xia, Analytical Forms of Cross Sections of Di-lepton Production from e^+e^- Collision around the J/ψ Resonance, arXiv:1701.00218.

²E.A. Kuraev, V.S. Fadin, Sov. J. Nucl. Phys., 41 (1985) 466.

³M. Ablikim, et al., BESIII Collaboration, Phys. Rev. D 88 (2013) 032007□ ▶ ◀ 🗗 ▶ ◀ 臺 ▶ ◀ 臺 ▶ 🎍

Improvement measurement of $\chi_{c0,2}$ two-photon width Validate reliability of background function.

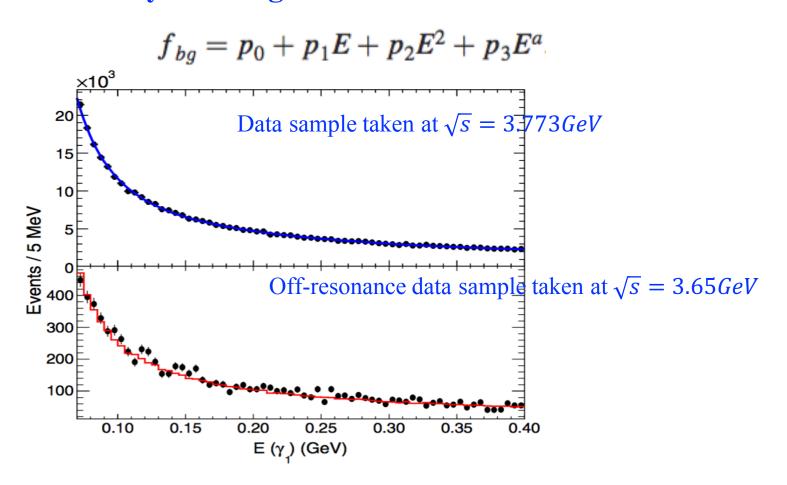


FIG. 2. Background $E(\gamma_1)$ spectrum. Upper plot: The best fit result (blue solid line) to $\psi(3770)$ data (dots with error bar) using Eq. (2). Lower plot: The comparison of $E(\gamma_1)$ spectrum between off- $\psi(3686)$ data (dots with error bar) and $\psi(3770)$ data (red histogram).

Measurement of $\chi_{c1,2}$ resonance parameters at LHCb

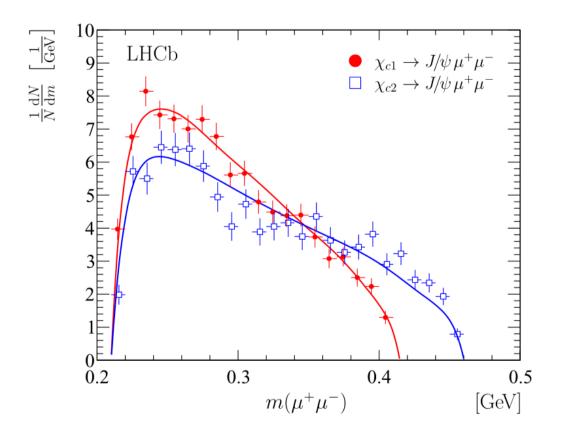


FIG. 2. Background-subtracted $m(\mu^+\mu^-)$ distribution for $\chi_{c1} \to J/\psi \ \mu^+\mu^-$ (solid red circles) and $\chi_{c2} \to J/\psi \ \mu^+\mu^-$ (open blue squares) decays. The distributions are normalized to the unit area. The curves show the expected distribution from the simulation, which uses the model described in Ref. [29].

Observation of $X^*(3860)$ or $\chi_{c0}(2P)$

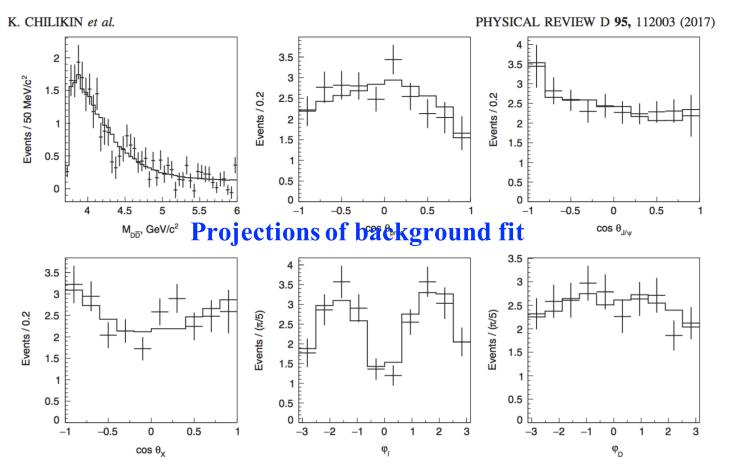


FIG. 5. Projections of the background fit results onto $M_{D\bar{D}}$ and angular variables. The points with error bars are data, and the solid line is the fit result.