Double heavy tri-hadron bound state via delocalized π bond

Li Ma

Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, Germany

23/05/2018

- Introduction
- 2 The delocalized π bond in the DD^*K and $D\bar{D}^*K$
- 3 Born-Oppenheimer (BO) Approximation
- Three-body factorized wave functions
- 5 Three-body Schrödinger equation
- 6 Numerical results
- Discussion and Summary

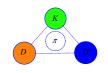
What's the delocalized π bond?

A simplified illustration of a benzene ring as a hexagon with a circle describing the delocalized π bond inside.

 $DD^*K \rightarrow DDK^* \rightarrow D^*DK \rightarrow DD^*K$

 DDK^* .

Two channels: DD^*K and

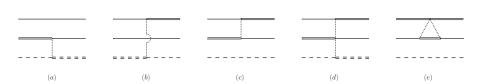


Delocalized π bond

Localized σ bond

4D + 4B + 4B + B + 900

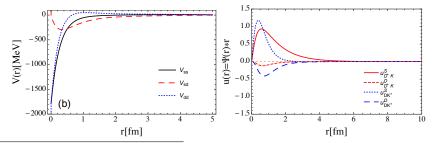
The delocalized π bond in the DD^*K and $D\bar{D}^*K$



- Diagrams (a), (b) and (c) are the leading OPE diagrams for the transitions among the relevant three-body channels, i.e. DD*K, DDK* and D*DK channels. The TPE diagrams, i.e. (d) and (e), are the next-to-leading order contributions.
- The diagrams (a), (b), (c) indicate the transition potentials V_{12} , V_{23} and V_{13} , in order. The (double) solid, dashed lines represent the $D^{(*)}$, $K^{(*)}$ fields. Dotted lines denote pion fields.
- Monopole form factor $\mathcal{F}(q) = \frac{\Lambda^2 m_\pi^2}{\Lambda^2 q^2}$, with q the four-momentum of the pion and Λ the cutoff parameter. Λ_{D^*K} , Λ_{DD^*} .

Fix Λ_{D^*K} by reproducing the mass of $D_{s1}(2460)$

- SU(2) flavor symmetry. To the order $\mathcal{O}(\frac{P_K}{m_K})$. S-D wave mixing, and the coupled channels D^*K and DK^* . With $\Lambda_{D^*K}=803.2~\mathrm{MeV}$, we find a D^*K bound state with mass at $D_{s1}(2460)$.
- G-parity rule, i.e., $V_{A\bar{B}}=(-1)^{I_G}V_{AB}^{1}$. $V_{D^*K}=V_{\bar{D}^*K}$.
- $B^*\bar{K}$ with the mass 5772 MeV ². $\Lambda_{B^*\bar{K}}=1451.0$ MeV.



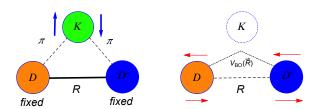
¹E. Klempt, F. Bradamante, A. Martin and J. M. Richard, Phys. Rept. **368**, 119 (2002).

²F. K. Guo, P. N. Shen and H. C. Chiang, Phys. Lett. B **647** 133 (2007)

Born-Oppenheimer (BO) Approximation

Born-Oppenheimer (BO) approximation with an uncertainty of the order $\mathcal{O}(m_K/m_{D^{(*)}})$.

- Firstly, we keep the two heavy mesons, i.e. D and D^* , at a given fixed location R and study the dynamical behaviour of the light kaon.
- Then, we solve Schrödinger equation of the DD* system with the effective BO potential created from the interaction with the kaon.

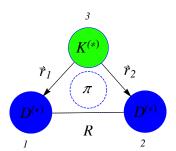


The factorized wave functions

The BO approximation is based on the factorized wave function

$$|\Psi_{\mathcal{T}}(\vec{R},\vec{r})\rangle = |\Phi(\vec{R})\Psi(\vec{r_1},\vec{r_2})\rangle$$
,

with the two charmed mesons and the light kaon located at $\pm \vec{R}/2$ and \vec{r} . Here, $\vec{r_1} = \vec{r} + \vec{R}/2$ and $\vec{r_2} = \vec{r} - \vec{R}/2$ are the coordinates of the kaon relative to the first and second interacting D^* .

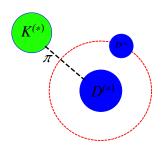


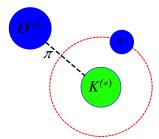
OPE means no hadronic shield effect.

• The wave function of kaon in the DD^*K system is the superposition of the two two-body subsystems

$$|\Psi(\vec{r}_1, \vec{r}_2)\rangle = C_0\{\psi(\vec{r}_2) |DD^*K\rangle + \psi(\vec{r}_1) |D^*DK\rangle + C[\psi'(\vec{r}_1) + \psi'(\vec{r}_2)]|DDK^*\rangle\}.$$
(1)

The constant C_0 can be fixed by the normalization constraint of the total wave function.





The separated three-body Schrödinger equation

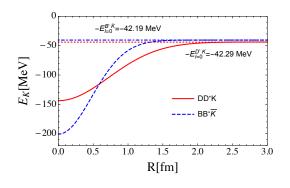
One is the equation for the kaon

$$H(\vec{r}_1, \vec{r}_2)|\Psi(\vec{r}_1, \vec{r}_2)\rangle = E_K(R)|\Psi(\vec{r}_1, \vec{r}_2)\rangle$$
 (2)

at any given \vec{R} with

$$H(\vec{r}_1, \vec{r}_2) = \begin{pmatrix} T_{11}(\vec{r}_1, \vec{r}_2) & V_{12}(\vec{r}_2) & 0 \\ V_{21}(\vec{r}_2) & \delta M + T_{22}(\vec{r}_1, \vec{r}_2) & V_{23}(\vec{r}_1) \\ 0 & V_{32}(\vec{r}_1) & T_{33}(\vec{r}_1, \vec{r}_2) \end{pmatrix}.$$

Here, T_{ii} is the relative kinetic energy for the K in the ith channel and $\delta M = M_D + M_{K*} - M_{D*} - M_K$ is the mass gap between the DDK^* and DD^*K (D^*DK) channels. The parameter C in the Eq. (1) can extracted from the variation principle $\partial E_K(R)/\partial C = 0$.



The red dotted and blue dot-dashed horizontal lines are the binding energies of the isosinglet D^*K and $B^*\bar{K}$ systems, respectively.

When the distance R is larger than a certain value, the kaon energy of the three-body system equal to the binding energy of the isosinglet D^*K or $B^*\bar{K}$ two-body system. The two-body binding energies are from the calculations 3 .

 The other one is the Schrödinger equation for the two heavy charmed mesons

$$H'(\vec{R})|\Phi(\vec{R})\rangle = -E_3|\Phi(\vec{R})\rangle$$
 (3)

with

$$H'(\vec{R}) = T_h(\vec{R}) + V_h(\vec{R}) + V_{BO}(\vec{R})$$

$$= \begin{pmatrix} T_{DD^*}(\vec{R}) & 0 & V_{13}(\vec{R}) \\ 0 & T_{DD}(\vec{R}) & 0 \\ V_{31}(\vec{R}) & 0 & T_{DD^*}(\vec{R}) \end{pmatrix} + V_{BO}(\vec{R}) \cdot I,$$

where $V_{BO}(\vec{R}) = E_K(\vec{R}) + E_B$ is the BO potential provided by the kaon and E_B is the binding energy of the isosinglet D^*K system. The total energy of the three-body system relative to the DD^*K threshold is $E = -(E_3 + E_B)$.

The binding energies of the DD^*K and $BB^*\bar{K}$

•

• Only the three-body DD^*K system with total isospin $\frac{1}{2}$ and isosinglet D^*K could form a bound state

$$|D(D^*K)_0\rangle_{\frac{1}{2},\frac{1}{2}} = \frac{1}{\sqrt{2}}[|D^+(D^{*+}K^0)_0\rangle + |D^+(D^{*0}K^+)_0\rangle],$$

$$|D(D^*K)_0\rangle_{\frac{1}{2},-\frac{1}{2}} = \frac{1}{\sqrt{2}}[-|D^0(D^{*+}K^0)_0\rangle - |D^0(D^{*0}K^+)_0\rangle],$$

$$E_{I=1/2}^{DD^*K} = 8.29^{+4.32}_{-3.66} \text{ MeV}, \quad E_{I=1/2}^{BB^*\bar{K}} = 41.76^{+8.84}_{-8.49} \text{ MeV},$$

where the uncertainties are estimated as $m_K/(2\mu_{DD^*})$ and $m_K/(2\mu_{BB^*})$ as discussed above.

$$M_{I=1/2}^{DD^*K} = 4317.92^{+3.66}_{-4.32}~{\rm MeV}, \quad M_{I=1/2}^{BB^*\bar{K}} = 11013.65^{+8.49}_{-8.84}~{\rm MeV},$$

The binding energies of the $D\bar{D}^*K$ and $B\bar{B}^*\bar{K}$

• For the $I = 1/2 \ D\bar{D}^*K$ three-body bound state

$$\begin{split} |D(\bar{D}^*K)_0\rangle_{\frac{1}{2},\frac{1}{2}} &= \frac{1}{\sqrt{2}}[-|D^+(\bar{D}^{*0}K^0)_0\rangle + |D^+(D^{*-}K^+)_0\rangle], \\ |D(\bar{D}^*K)_0\rangle_{\frac{1}{2},-\frac{1}{2}} &= \frac{1}{\sqrt{2}}[|D^0(\bar{D}^{*0}K^0)_0\rangle - |D^0(D^{*-}K^+)_0\rangle], \end{split}$$

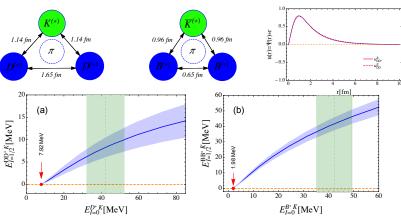
 \bullet For the $D\bar{D}^*K$ and $B\bar{B}^*\bar{K}$ system, the three-body binding energies are

$$E_{I=1/2}^{D\bar{D}^*K} = 8.29_{-6.13}^{+6.55} \text{ MeV}, \ E_{I=1/2}^{B\bar{B}^*\bar{K}} = 41.76_{-8.68}^{+9.02} \text{ MeV}$$

with the additional uncertainty from the missing short-distance interaction.

•

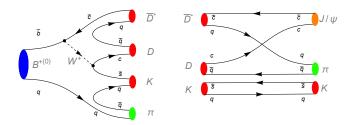
$$M_{I=1/2}^{D\bar{D}^*K} = 4317.92_{-6.55}^{+6.13} \text{ MeV}, \ M_{I=1/2}^{B\bar{B}^*\bar{K}} = 11013.65_{-9.02}^{+8.68} \text{ MeV}$$



The red point is the critical point which indicates the lower limit of the required binding energy of the isosinglet D^*K or $B^*\bar{K}$ to form a three-body bound state. The vertical dashed lines and bands are the central values and uncertainties of the binding energies of the two-body subsystems from the analysis 4 .

⁴F. K. Guo, P. N. Shen and H. C. Chiang, Phys. Lett. B **647** 133 (2007)

Detection from B meson decays in the $J/\psi\pi\pi K$ channel



Aiming at the X(3872), LHCb, Belle and BABAR have collected quite numerous data for B decays in the $J/\psi\pi\pi K$ channel. The existence of the $D\bar{D}^*K$ bound state could be checked from the experimental side by analyzing the current world data on the channels $J/\psi\pi^+K^0$, $J/\psi\pi^0K^+$, $J/\psi\pi^0K^0$, and $J/\psi\pi^-K^+$.

Summary

- Based on the attractive force of the isosinglet D^*K and $B^*\bar{K}$ systems, we predict that there exist two DD^*K and $BB^*\bar{K}$ bound states with I=1/2 and masses 4317.92 $^{+3.66}_{-4.32}$ MeV and 11013.65 $^{+8.49}_{-8.84}$ MeV, respectively.
- The $D\bar{D}^*K$ and $B\bar{B}^*\bar{K}$ systems are their analogues with masses 4317.92 $^{+6.13}_{-6.55}~{
 m MeV}$ and 11013.65 $^{+8.68}_{-9.02}~{
 m MeV}$, where the additional uncertainties stemming from the unknown short-distance interaction.
- The existence of the $D\bar{D}^*K$ bound state could be checked from the $B\to J/\psi\pi\pi K$ channel, by focusing on the $J/\psi\pi K$ channel.

Thank you very much!