

A project of SUPER CHARM-TAU FACTORY in Novosibirsk

E. Levichev

21-25 May, CHARM2018, BINP, Novosibirsk,

Outline

- History
- Technical aspects
- Status
- Perspectives
- Conclusion

Long time ago...

- 1993, Dubna JINR (E_{cm}= 2 GeV, L=9.4×10³² cm⁻² sec⁻¹)
- 1994, Argonne National Laboratory (E_{cm}=3-5 GeV, L= 10³³ cm⁻² sec⁻¹)
- 1995, BINP, round beams (E_{cm}= 2.0-4.2 GeV, L= 10³³ cm⁻² sec⁻¹)
- 1996, Spain & France (E_{cm}= 4 GeV, L= 10³³ cm⁻² sec⁻¹)
- 1997, Beijing IHEP (E_{cm}= 2.0-4.2 GeV, L= 10³³ cm⁻² sec⁻¹)

First Novosibirsk project

- E = 700 2500 MeV
- Round beams L = 10³⁴ cm⁻²s⁻¹
- Monochromatization L ~ 10³² cm⁻²s⁻¹
- Long. Polarization L ~ 10³⁴ cm⁻²s⁻¹
- Transverse polarization for precise energy calibration

Second Novosibirsk project (SCTF)

Kick-off meeting held on 7 November 2006.

Main specs:

- 2E = 3÷4.5 GeV
- Crab Waist collision
- Peak luminosity at 2 GeV of 10³⁵ cm⁻²s⁻¹
- Longitudinal polarization of electron beam
- No transverse polarization. Energy calibration by Compton backscattering (~3.10⁻⁵)
- Symmetric beam energy at collision
- No collision monochromatization
- Positron production rate $\geq 1.10^{11} \text{ e}^+/\text{c}$

Layout (not in scale)

SS SS SS W Legend: RF SS W W – damping wiggler RF SS – Siberian Snake SS RF – accelerating cavity W DR e⁻ pol DR – damping ring (1-1.5 GeV) RF e⁻ – electron source e⁻ pol – polarized e source e e⁻/e⁺ e^{-}/e^{+} – conversion system

W

SCTF location

Basic parameters

Energy	1.0 GeV	1.5 GeV	2.0 GeV	2.5 GeV	
Circumference	780 m				
Emittance hor/ver	8 nm/0.04 nm @ 0.5% coupling				
Damping time hor/ver/long	30/30/15 ms				
Bunch length	16 mm	11 mm	10 mm	10 mm	
Energy spread	10.1·10 ⁻⁴	9.96·10 ⁻⁴	8.44·10 ⁻⁴	7.38·10 ⁻⁴	
Momentum compaction	1.00·10 ⁻³	1.06·10 ⁻³	1.06·10 ⁻³	1.06·10 ⁻³	
Synchrotron tune	0.007	0.010	0.009	0.008	
RF frequency	508 MHz				
Harmonic number	1300				
Particles in bunch	7·10 ¹⁰				
Number of bunches	390 (10% gap)				
Bunch current	4.4 mA				
Total beam current	1.7 A				
Beam-beam parameter	0.15	0.15	0.12	0.095	
Luminosity	0.63·10 ³⁵	0.95·10 ³⁵	1.00·10 ³⁵	1.00·10 ³⁵	

IP: $\beta_y=0.8 \text{ mm}$, $\beta_x=40 \text{ mm}$

Construction

FF region

Technical reg. (RF and injection) Damping wiggler sections

Status

- SCTF was approved by Russian Government as one of the six mega-sciences projects.
- The Government requested final documents by the end of 2019 for the project financing (we hope).
- Preliminary Design Report, Conceptual Design Report, Civil Construction Design Report and Road Map are ready.
- SCTF officially supported by ECFA.
- European Commission Expert Group has supported SCTF (Russian Mega Science projects evaluation of the potential for cooperation with Europe Experts meeting in Brussels 19 June 2013).
- MoUs with CERN, KEK, INFN, JINR, John Adams Institute, etc. are signed.

Documents I

BUDKER INSTITUTE OF NUCLEAR PHYSICS

PRELIMINARY DESIGN REPORT

Preliminary Design Report 2010, 178 p. (Russian/English)

Novosibirsk - 2010

A PROJECT OF SUPER C-T FACTORY IN NOVOSIBIRSK

Conceptual Design Report 2011, 202 p. (Russian/English)

> Budker Institute of Nuclear Physics Novosibirsk - 2011

Documents II

Ten years after/Tempura mutantur

- At BES III and LHCb experiments are in progress.
- Super KEKB has commissioned.
- Chinese project HIEPA is under consideration.
- Extremely low emittance light sources are in construction.
- New Crab Waist projects (FCC-ee, CEPC) are under way.

Super KEKB experience, new projects (FCC-ee, CEPC, HIEPA) with well developed light source technology give a basis for improvement of Novosibirsk SCTF performance.

Motivations for modernization

- Beam energy increase at least up to 3 GeV according to request from experimentalists. (HIEPA promises 3.5 GeV)
- Realistic design of the FF/MDI area $L^* = 0.6 \text{ m} \rightarrow 0.9 \text{ m}$.
- Short chromatic correction section (designed by Katsunobu Oide for FCC-ee).
- Damping wigglers removing (or reduction of their number).
- Slightly strengthen parameters and additionally increase luminosity.

SCTF configuration

E = 1-3 GeV $\varepsilon_x \approx 2 \div 3$ nm (w/o IBS) C ≤ 800 m 6 straights of ~5 м long

Typical 3rd generation light source

By configuration each ring of SCTF is a synchrotron light source with a long straight section for collision. For the last decades many useful accelerator technologies were developed for synchrotron light sources (low emittance, chromaticity correction, DA optimization, effective injection, coupling correction, etc.) and all of them can be applied to SCTF.

Machine-detector interface

Short FF chromatic correction section

New config/first attempt

Lattice and parameters

E (MeV)100020003000Π (m) 634 F_{RF} (MHz) 354.1 q 750 θ (mrad) ± 30 κ (%) 0.5 β_x^* (cm) 5 β_y^* (mm) 0.5 I (A)2.182 2.2 $N_e/bunch \times 10^{10}$ 8Nb360390 $0.$ (keV)10160 $0.$ (keV)10160 $0.3/2.3$ 0.6/1.10.97/0.97 σ_s (mm) $3/14.5$ $6/11.3$ σ_s (nm) $0.3/14$ 1.1/3.3 $2.6/2.6$ $L_{HG} \times 10^{35}$ (cm ⁻² s ⁻¹) 0.8 1.6 74 89 90 $\xi_x \times 10^{-3}$ 4.8 3.4 4.1 ξ_{y} 0.110.13 ϕ 1626 22 τ_L (s)2610 960 630	4					
Π (m)634 F_{RF} (MHz)354.1q750θ (mrad) ± 30 κ (%)0.5 β_x^* (cm)5 β_x^* (cm)2.18 β_y^* (mm)0.5I (A)2.182 $N_{e/bunch} \times 10^{10}$ 8Nb360 360 390 U_0 (keV)1010160808 ∇_{RF} (kV)5604.052.52.9 δ_{RF} (%)4.321.6 $\sigma_E \times 10^{-3}$ 0.3/2.30.3/141.1/3.32.6/2.6 $L_{HG} \times 10^{35}$ (cm ⁻² s ⁻¹)0.81.93.3HG (%)748990 $\xi_x \times 10^{-3}$ 4.83.44.1 ξ_y 0.110.130.12 ϕ 162610960630	E (MeV)	1000	2000	3000		
$\begin{array}{c c c c c c } F_{RF}(MHz) & 354.1 \\ \hline q & 750 \\ \hline q & 750 \\ \hline \theta (mrad) & \pm 30 \\ \hline \kappa (\%) & 0.5 \\ \hline \beta_x^* (cm) & 5 \\ \hline \beta_y^* (cm) & 0.5 \\ \hline \beta_y^* (mm) & 0.5 \\ \hline l (A) & 2.18 & 2 & 2.2 \\ \hline N_{e/bunch} \times 10^{10} & 8 & 7 & 6.5 \\ \hline N_b & 360 & 390 & 450 \\ \hline U_0 (keV) & 10 & 160 & 808 \\ \hline V_{RF} (kV) & 560 & 460 & 1200 \\ \hline v_s \times 10^{-3} & 4.05 & 2.5 & 2.9 \\ \hline \delta_{RF} (\%) & 4.3 & 2 & 1.6 \\ \hline \sigma_E \times 10^{-3} & 0.3/2.3 & 0.6/1.1 & 0.97/0.97 \\ \hline \sigma_s (mm) & 3/14.5 & 6/11.3 & 7.2/8.2 \\ \hline \epsilon_x (nm) & 0.3/14 & 1.1/3.3 & 2.6/2.6 \\ \hline L_{HG} \times 10^{-3} & 4.8 & 3.4 & 4.1 \\ \hline \xi_y & 0.11 & 0.13 & 0.12 \\ \hline \varphi & 16 & 26 & 22 \\ \hline \tau_L (s) & 2610 & 960 & 630 \\ \end{array}$	П (m)	634				
q 750 θ (mrad) ± 30 κ (%) 0.5 β_x^* (cm) 5 β_x^* (cm) 0.5 β_y^* (mm) 0.5 I (A)2.182Ne/bunch×10 ¹⁰ 87876.5Nb360390U_0 (keV)10160 V_{RF} (kV)560460 $v_s \times 10^{-3}$ 4.052.5 $\sigma_E \times 10^{-3}$ 0.3/2.30.6/1.1 σ_{F} (%)3/14.56/11.3 σ_s (mm)3/14.56/11.3 z_n (mm)0.3/141.1/3.3 z_n (h)7489 $\beta_X \times 10^{-3}$ 4.83.4 4.11 ξ_y 0.11 ϕ 1626 z_y 2610960630	F _{RF} (MHz)	354.1				
$\begin{array}{c c c c c c } \theta \mbox{ (mrad)} & & & & & & & & & & & & & & & & & & &$	q	750				
$\begin{array}{c c c c c c c c } \hline \kappa (\%) & 0.5 & 0.5 \\ \hline \beta_x^* (cm) & 5 \\ \hline \beta_y^* (mm) & 0.5 \\ \hline l (A) & 2.18 & 2 & 2.2 \\ \hline N_{e/bunch} \times 10^{10} & 8 & 7 & 6.5 \\ \hline N_b & 360 & 390 & 450 \\ \hline U_0 (keV) & 10 & 160 & 808 \\ \hline V_{RF} (kV) & 560 & 460 & 1200 \\ \hline v_s \times 10^{-3} & 4.05 & 2.5 & 2.9 \\ \hline \delta_{RF} (\%) & 4.3 & 2 & 1.6 \\ \hline \sigma_E \times 10^{-3} & 0.3/2.3 & 0.6/1.1 & 0.97/0.97 \\ \hline \sigma_s (mm) & 3/14.5 & 6/11.3 & 7.2/8.2 \\ \hline \epsilon_x (nm) & 0.3/14 & 1.1/3.3 & 2.6/2.6 \\ \hline L_{HG} \times 10^{35} (cm^{-2}s^{-1}) & 0.8 & 1.9 & 3.3 \\ \hline HG (\%) & 74 & 89 & 90 \\ \hline \xi_x \times 10^{-3} & 4.8 & 3.4 & 4.1 \\ \hline \xi_y & 0.11 & 0.13 & 0.12 \\ \hline \varphi & 16 & 26 & 22 \\ \hline \tau_L (s) & 2610 & 960 & 630 \\ \hline \end{array}$	θ (mrad)	±30				
$\begin{array}{c c c c c c c c } & & & & & & & & & & & & & \\ \hline \beta_{\gamma}^{*}(cm) & & & & & & & & & & \\ \hline \beta_{\gamma}^{*}(cm) & & & & & & & & & \\ \hline \beta_{\gamma}^{*}(cm) & & & & & & & & & \\ \hline 1(A) & & & & & & & & & & \\ \hline 1(A) & & & & & & & & & & \\ \hline 1(A) & & & & & & & & & & \\ \hline 1(A) & & & & & & & & & & \\ \hline 1(A) & & & & & & & & & & \\ \hline 1(A) & & & & & & & & & & \\ \hline 1(A) & & & & & & & & & \\ \hline 1(A) & & & & & & & & & \\ \hline 1(A) & & & & & & & & \\ \hline 1(A) & & & & & & & & \\ \hline 1(A) & & & & & & & & \\ \hline 1(A) & & & & & & & & \\ \hline 1(A) & & & & & & & & \\ \hline 1(A) & & & & & & & & \\ \hline 1(A) & & & & & & \\ \hline 1(A) & & & & & & \\ \hline 1(A) & & & & & & & \\ \hline 1(A) & & & & & & \\ \hline 1(A) & & & & & & & \\ \hline 1(A) & & & & & & \\ \hline 1(A) & & & & & & & \\ \hline 1(A) & & & & & & \\ \hline 1(A) & & & & & & \\ \hline 1(A) & & & & & & \\ \hline 1(A) & & & & & & \\ \hline 1(A) & & & & & & \\ \hline 1(A) & & & & & & \\ \hline 1(A) & & & & & & \\ \hline 1(A) & & & & & & \\ \hline 1(A) & & & & & & \\ \hline 1(A) & & & & & & \\ \hline 1(A) & & & & & & \\ \hline 1(A) & & & & & & \\ \hline 1(A) & & & & & & \\ \hline 1(A) & & & & & & \\ \hline 1(A) & & & & & \\ \hline 1(A) & & & & & \\ \hline 1(A) & & $	к (%)	0.5				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	β_{x}^{*} (cm)	5				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	β_{y}^{*} (mm)	0.5				
$\begin{array}{c c c c c c } N_{e/bunch} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	I (A)	2.18	2	2.2		
Nb360390450U_0 (keV)10160808V_RF (kV)5604601200v_s×10^34.052.52.9 δ_{RF} (%)4.321.6 $\sigma_E \times 10^{-3}$ 0.3/2.30.6/1.10.97/0.97 σ_s (mm)3/14.56/11.37.2/8.2 ϵ_x (nm)0.3/141.1/3.32.6/2.6LHG×10 ³⁵ (cm ⁻² s ⁻¹)0.81.93.3HG (%)748990 $\xi_x \times 10^{-3}$ 4.83.44.1 ξ_y 0.110.130.12 ϕ 162622 τ_L (s)2610960630	N _{e/bunch} ×10 ¹⁰	8	7	6.5		
U_0 (keV)10160808V_RF (kV)5604601200 $v_s \times 10^{-3}$ 4.052.52.9 δ_{RF} (%)4.321.6 $\sigma_E \times 10^{-3}$ 0.3/2.30.6/1.10.97/0.97 σ_s (mm)3/14.56/11.37.2/8.2 ϵ_x (nm)0.3/141.1/3.32.6/2.6LHG ×10 ³⁵ (cm ⁻² s ⁻¹)0.81.93.3HG (%)748990 $\xi_x \times 10^{-3}$ 4.83.44.1 ξ_Y 0.110.130.12 ϕ 162622 τ_L (s)2610960630	Nb	360	390	450		
$\begin{array}{c c c c c c } V_{RF}\left(kV\right) & 560 & 460 & 1200 \\ \hline \nu_{s} \times 10^{-3} & 4.05 & 2.5 & 2.9 \\ \hline \delta_{RF}\left(\%\right) & 4.3 & 2 & 1.6 \\ \hline \sigma_{E} \times 10^{-3} & 0.3/2.3 & 0.6/1.1 & 0.97/0.97 \\ \hline \sigma_{s}\left(mm\right) & 3/14.5 & 6/11.3 & 7.2/8.2 \\ \hline \epsilon_{x}\left(nm\right) & 0.3/14 & 1.1/3.3 & 2.6/2.6 \\ \hline L_{HG} \times 10^{35}\left(cm^{-2}s^{-1}\right) & 0.8 & 1.9 & 3.3 \\ HG\left(\%\right) & 74 & 89 & 90 \\ \hline \xi_{x} \times 10^{-3} & 4.8 & 3.4 & 4.1 \\ \hline \xi_{\gamma} & 0.11 & 0.13 & 0.12 \\ \hline \phi & 16 & 26 & 22 \\ \hline \tau_{L}\left(s\right) & 2610 & 960 & 630 \\ \end{array}$	U ₀ (keV)	10	160	808		
$\begin{array}{c c c c c c c c } & 4.05 & 2.5 & 2.9 \\ \hline \delta_{RF}(\%) & 4.3 & 2 & 1.6 \\ \hline \sigma_E \times 10^{-3} & 0.3/2.3 & 0.6/1.1 & 0.97/0.97 \\ \hline \sigma_s (mm) & 3/14.5 & 6/11.3 & 7.2/8.2 \\ \hline \epsilon_x (nm) & 0.3/14 & 1.1/3.3 & 2.6/2.6 \\ \hline L_{HG} \times 10^{35} (cm^{-2}s^{-1}) & 0.8 & 1.9 & 3.3 \\ \hline HG(\%) & 74 & 89 & 90 \\ \hline \xi_x \times 10^{-3} & 4.8 & 3.4 & 4.1 \\ \hline \xi_y & 0.11 & 0.13 & 0.12 \\ \hline \phi & 16 & 26 & 22 \\ \hline \tau_L(s) & 2610 & 960 & 630 \\ \end{array}$	V _{RF} (kV)	560	460	1200		
$\begin{array}{c c c c c c c c } \hline \delta_{\text{RF}}(\%) & 4.3 & 2 & 1.6 \\ \hline \sigma_{\text{E}} \times 10^{-3} & 0.3/2.3 & 0.6/1.1 & 0.97/0.97 \\ \hline \sigma_{\text{s}}(\text{mm}) & 3/14.5 & 6/11.3 & 7.2/8.2 \\ \hline \epsilon_{\text{x}}(\text{nm}) & 0.3/14 & 1.1/3.3 & 2.6/2.6 \\ \hline \textbf{L}_{\text{HG}} \times 10^{35} (\text{cm}^{-2} \text{s}^{-1}) & 0.8 & 1.9 & 3.3 \\ \hline \text{HG}(\%) & 74 & 89 & 90 \\ \hline \xi_{\text{x}} \times 10^{-3} & 4.8 & 3.4 & 4.1 \\ \hline \xi_{\text{Y}} & 0.11 & 0.13 & 0.12 \\ \hline \phi & 16 & 26 & 22 \\ \hline \tau_{\text{L}}(\text{s}) & 2610 & 960 & 630 \\ \hline \end{array}$	ν _s ×10 ⁻³	4.05	2.5	2.9		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	δ _{RF} (%)	4.3	2	1.6		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	σ _E ×10 ⁻³	0.3/2.3	0.6/1.1	0.97/0.97		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	σ₅ (mm)	3/14.5	6/11.3	7.2/8.2		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ε _x (nm)	0.3/14	1.1/3.3	2.6/2.6		
HG (%)748990 $\xi_x \times 10^{-3}$ 4.83.44.1 ξ_y 0.110.130.12 ϕ 162622 τ_L (s)2610960630	L _{HG} ×10 ³⁵ (cm ⁻² s ⁻¹)	0.8	1.9	3.3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HG (%)	74	89	90		
$\begin{array}{c ccccc} \xi_{\gamma} & 0.11 & 0.13 & 0.12 \\ \varphi & 16 & 26 & 22 \\ \tau_L(s) & 2610 & 960 & 630 \end{array}$	ξ _x ×10 ⁻³	4.8	3.4	4.1		
φ162622τ_L (s)2610960630	ξy	0.11	0.13	0.12		
τ _L (s) 2610 960 630	φ	16	26	22		
	$\tau_{L}(s)$	2610	960	630		

Conclusion

- The Novosibirsk Super Charm Tau Factory project is rather mature.
- We hope that funding of the project will start in 2020.
- Internationalization of the project is essential requirement from Russian Government.
- Modernization of the collider which promise higher performance is ongoing.