Lattice Predictions for Bound Heavy Tetraquarks

Anthony Francis Renwick James Hudspith Randy Lewis Kim Maltman

9th International Workshop on Charm Physics 23.05.2017

afranc@yorku.ca 1/20

The observed heavy hadron spectrum suggests a phenomenological binding mechanism from "good" diquark configurations for tetraquarks containing heavy quarks, e.g. $qq'\bar{b}\bar{b}$ and $qq'\bar{c}\bar{b}$.

Assumptions and observations:

- ▶ HQS \rightarrow heavy quark spin decouples and $(\bar{h}\bar{h})_3 \leftrightarrow h$
- ▶ Good approx. in $(B^* B)/(\Xi_{bb}^* \Xi_{bb})$ and $(B_s^* B_s)/(\Omega_{bb}^* \Omega_{bb})$

Naive binding using the spin average $B_{sp} = \frac{1}{4}[3(spin0) + (spin1)]$:

- ho $\Sigma_b \Lambda_b pprox 194 {
 m MeV}$ vs. $B_{sp} \Sigma_b \sim -145 {
 m MeV}$
- lacksquare $\Xi_b' \Xi_b pprox 162 {
 m MeV}$ vs. $B_{sp} \Xi_b' \sim -106 {
 m MeV}$

Predictions:

- ▶ Deeper binding with heavier quarks, $\sim 1/m_Q$
- lacktriangle Binding set by the reduced mass of ar Q and ar Q' in the ar Q' ar Q diquark
- Deeper binding for lighter quarks in the qq' diquark
- ⇒ Great opportunity for ab initio theory prediction.

afranc@yorku.ca 2/20

Direct calculation PhysRevLett.118.142001

Diquark-Diquark operator:

$$D(x) = \left((q_a^{\alpha}(x))^T (C\gamma_5)^{\alpha\beta} q_b^{\prime\beta}(x) \right) \times \\ \left[(\bar{Q}_a^{\kappa}(x) (C\gamma_i)^{\kappa\rho} (\bar{Q}_b^{\prime\rho}(x))^T - (\bar{Q}_b^{\kappa}(x) (C\gamma_i)^{\kappa\rho} (\bar{Q}_a^{\prime\rho}(x))^T \right].$$

Dimeson-Dimeson operator:

$$M(x) = \bar{b}_a^{\alpha}(x)\gamma_5^{\alpha\beta}u_a^{\beta}(x) \; \bar{b}_b^{\kappa}(x)\gamma_i^{\kappa\rho}d_b^{\rho}(x) \; - \bar{b}_a^{\alpha}(x)\gamma_5^{\alpha\beta}d_a^{\beta}(x) \; \bar{b}_b^{\kappa}(x)\gamma_i^{\kappa\rho}u_b^{\rho}(x) \; .$$

Compute the energies from the 2×2 GEVP

$$F(t) = egin{pmatrix} G_{DD}(t) & G_{DM}(t) \ G_{MD}(t) & G_{MM}(t) \end{pmatrix}, \quad F(t)
u = egin{pmatrix} \lambda(t)F(t_0)
u \ , \end{cases}$$

$$G_{\mathcal{O}_1\mathcal{O}_2} = \frac{C_{\mathcal{O}_1\mathcal{O}_2}(t)}{C_{PP}(t)C_{VV}(t)} \; , \; \lambda(t) = Ae^{-\Delta E(t-t_0)} \; .$$

Tetraquarks with $\bar{Q}'\bar{Q}$: 3 × 3 GEVP via second two-meson threshold.

Physical point: $\Delta E_{ud\bar{b}\bar{b}} = 189(10)(3)$ MeV and $\Delta E_{ls\bar{b}\bar{b}} = 98(7)(3)$ MeV

PACS-CS,'09	$32^{3} \times 64$	$a^{-1} = 2.194[\text{GeV}]$	$m_{s,lat}=m_{s,phys}$
Label	E _H	E_{M}	E_L
$m_{\pi}[MeV]$	415	299	163
$m_{\pi}L$	6.1	4.4	2.4

New results: Heavy quark mass dependence and $ud\bar{c}\bar{b}$

Predictions:

- ▶ Deeper binding with heavier quarks, $\sim 1/m_Q$
- ▶ Binding set by the reduced mass of \bar{Q} and \bar{Q}' in the $\bar{Q}'\bar{Q}$ diquark
- ▶ Deeper binding for lighter quarks in the qq' diquark \checkmark

The direct calculation of $ud\bar{b}\bar{b}$ and $\ell s\bar{b}\bar{b}$ validates the prediction of deeper binding with lighter qq' diquarks.

Can further insight into the binding mechanism be gained?

- lacktriangle To test the other two predictions we vary the ar Q' mass
- ► Channels investigated are: $ud\bar{Q}'\bar{Q}'$, $ls\bar{Q}'\bar{Q}'$, $ud\bar{Q}'\bar{b}$ and $ls\bar{Q}'\bar{b}$

afranc@yorku.ca 5/2

Heavy quark mass dependence

- ▶ $m_{\text{bare}}(Q')$ is varied at $m_{\pi}=299\text{MeV}$ and $m_{\pi}L=4.4$ to ensure small volume effects but significant chance of binding. ("lighter is better")
- ▶ For the ratio $m^{b'}/m^b$ we compare the spin averages $\frac{1}{4}[3\eta_b + \Upsilon](Q')$

$m_{bare}(Q')$	$m^{b'}/m^b := 1/r$
0.9	0.594(3)
1.0	0.636(2)
1.2	0.680(5)
1.6	0.846(7)
1.93	1
3.0	1.463(12)
4.0	1.928(17)
8.0	4.395(35)
10.0	6.287(48)
static	∞

▶ Static quarks are only used in $\bar{Q}'\bar{Q}$ -type channels.

afranc@yorku.ca 6/20

Heavy quark mass dependence

Predictions:

- ▶ Deeper binding with heavier quarks, $\sim 1/m_Q$ ✓
- ▶ Binding set by the reduced mass of \bar{Q} and \bar{Q}' in the $\bar{Q}'\bar{Q}$ diquark \checkmark
- ▶ Deeper binding for lighter quarks in the qq' diquark \checkmark

The calculation of $ud\bar{Q}'\bar{Q}'$, $ls\bar{Q}'\bar{Q}'$, $ud\bar{Q}'\bar{b}$ and $ls\bar{Q}'\bar{b}$ at unphysical heavy quark mass validates the remaining two predictions of the simple binding mechanism in mind.

- Is it possible to further quantify these findings in a model?
- ► Can we gain insight away from the HQS validity regime, e.g. in the charm quark region?

afranc@yorku.ca 8/20

Towards a phenomenological model description

Expected terms contributing to the tetraquark binding:

1. Coulomb attraction between two heavy antiquarks $\to \mathcal{O}(\mu)$

2. Mass independent term from the good light diquark $\rightarrow \mathcal{O}(const.)$

3. Residual heavy-light interaction (tetraquark state) $\rightarrow \mathcal{O}(1/m_{O_1} + 1/m_{O_2})$

4. Residual heavy-light interaction (two-meson threshold states) $\rightarrow \mathcal{O}(1/m_{Q_1}+1/m_{Q_2})$

Towards a phenomenological model description

- 4. Residual heavy-light interaction (two-meson threshold states)
 - ▶ Caveat: Correct two-meson threshold has to be chosen depending on $m_{b'} < m_b$ or $m_{b'} > m_b$, i.e. r < 1 or r > 1
 - ▶ In $ud\bar{Q}'\bar{b}$ one has B^*P' for r<1 and BV' for r>1
 - ▶ Can be determined from the observed $B^* B$, $B_s^* B_s$, $D^* D$ and $D_s^* D_s$ splittings and an additional dependence on m_{Q_1} and m_{Q_2} .

afranc@yorku.ca 10/20

Towards a phenomenological model description

$$\bar{Q}'\bar{Q}'$$
:

$$\Delta E_{ud\bar{Q}'\bar{Q}'} = \frac{C_0}{2r} + C_1^{ud} + C_2^{ud} (2r) + (23 \text{ MeV}) r,$$

$$\Delta E_{\ell s\bar{Q}'\bar{Q}'} = \frac{C_0}{2r} + C_1^{\ell s} + C_2^{\ell s} (2r) + (24 \text{ MeV}) r,$$

 $\bar{Q}'\bar{b}$. r < 1:

$$\Delta E_{ud\bar{Q}'\bar{b}} = \frac{C_0}{1+r} + C_1^{ud} + C_2^{ud} (1+r) + (34 \text{ MeV} - 11 \text{ MeV} r),$$

$$\Delta E_{\ell s \bar{Q}' \bar{b}} = \frac{C_0}{1+r} + C_1^{\ell s} + C_2^{\ell s} (1+r) + (34 \text{ MeV} - 12 \text{ MeV} r),$$

 $\bar{Q}'\bar{b}, r > 1$:

$$\Delta E_{ud\bar{Q}'\bar{b}} = \frac{C_0}{1+r} + C_1^{ud} + C_2^{ud} (1+r) + (34 \text{ MeV } r - 11 \text{ MeV}),$$

$$\Delta E_{\ell s \bar{Q}' \bar{b}} = \frac{C_0}{1 + r} + C_1^{\ell s} + C_2^{\ell s} (1 + r) + (36 \text{ MeV} r - 11 \text{ MeV}).$$

- ▶ Most likely additional bound tetraquark in charm quark region: $ud\bar{c}\bar{b}$
- ► Excellent candidate for direct calculation at physical quark masses!

afranc@yorku.ca 12/20

Direct calculation of $ud\bar{c}\bar{b}$ **tetraquarks** - at $m_{\pi}=299 \text{MeV}$

Rising exponential hints at state below two-meson threshold

afranc@yorku.ca 13/20

Energies at $m_{\pi}=299 \mathrm{MeV}$

▶ Effective energy reveals (bound?) state below two-meson threshold

afranc@yorku.ca 14/20

Energies at $m_{\pi}=163 \mathrm{MeV}$

▶ Effective energy also reveals state below two-meson threshold

afranc@yorku.ca 15/20

Future work

At $m_\pi=299,163$ MeV we can identify a state below the two-meson threshold.

We find evidence of binding in the $ud\bar{c}\bar{b}$ channel at the level of 15 - 65 MeV, close to the electro-stable threshold.

Extrapolate to physical point?

- Expect naive volume effects for our lightest ensemble ($m_{\pi}L=2.4$) around $\Delta E_L^{V, \rm exp} \approx (0.1) \Delta E^{binding}$
- Possibe binding induced by FV scattering at the level of $\Delta E_I^{V,\text{scatt}} \approx (0.3-0.5) \Delta E^{binding}$
- ⇒ Need proper study of volume effects!

Ongoing effort:

- ▶ Increase number of points in the extrapolation to m_{π}^{phys}
- Add more lattice volumes, in particular at $m_{\pi}=163 {\rm MeV}$

afranc@yorku.ca 16/20

Conclusions

- ▶ Studying $ud\bar{Q}'\bar{Q}'$, $ls\bar{Q}'\bar{Q}'$, $ud\bar{Q}'\bar{b}$ and $ls\bar{Q}'\bar{b}$ for unphysically heavy quarks we find excellent agreement with phenomenological considerations based on a binding mechanism induced from the observed spectrum.
- ► The study suggests the $ud\bar{c}\bar{b}$ is the most likely bound tetraquark of this kind in the charm quark region
- ▶ In a direct lattice calculation in the charm quark region we indeed find evidence of a $ud\bar{c}\bar{b}$ tetraquark state, close to the electro-stable threshold.
- ▶ With future, running, calculations the binding energy dependence on the lattice volume will be pinned down and the extrapolation to the physical point performed

afranc@yorku.ca 17/20

Backup

Backup: Energy of $ud \bar{Q}' \bar{b}$ on E_M

Backup: Ensembles in preparation

κ_l	L	T	$m_{\pi}[MeV]$	$m_{\pi}L$	status
0.13781	32	64	163	2.4	avail.
	48	64		3.6	config.
	64	64		4.8	therm.
0.13779	32	64	\sim 185	2.7	config.
0.13777	32	64	\sim 205	3.0	config.
	48	64		4.5	config.
	64	64		6.0	therm.
0.13770	32	64	299	4.4	avail.
0.13754	32	64	415	6.1	avail.

Table: Throughout $a^{-1}=2.194 {\rm GeV}^{-1}$ and $\kappa_{s,sea}=0.13640$