Experimental review of open charm in heavy-ion collisions

Xiaoming Zhang (Central China Normal University)

Personal biased collection

Introduction

Charm energy loss

Collectivity

Charmed-hadron production

Charmed jets

Conclusion and outlook

9th International Workshop on Charm Physics

Budker Institute of Nuclear Physics, Novosibirsk, Russia May 21-25, 2018.

Heavy quarks (charm and beauty): powerful probes of the

Quark-Gluon Plasma (QGP)

Total charm cross section in A–A collisions is expected to scale w. r. t. the number of binary collisions in pp-like collisions

		S. Radhakrishnan at QM'18
Charm Hadron		Cross Section dơ/dy (µb)
Au+Au 200 GeV (10-40%)	D^0	41 ± 1 ± 5
	D^{+}	18 ± 1 ± 3
	D_s^+	$15 \pm 1 \pm 5$
	Λ_c^+	78 ± 13 ± 28 *
	Total	152 ± 13 ± 29
p+p 200 GeV	Total	130 ± 30 ± 26

* derived using Λ_c^+ / D^0 ratio in 10-80% STAR Preliminary

- Produced in initial hard scatterings (high Q^2) at the early stage of heavy-ion collisions: $\tau_{c/b} \sim 0.01 0.1 \text{ fm/}c < \tau_{QGP}$ (~0.3 fm/c)
- Production cross section calculable with pQCD (m_c , $m_b \gg \Lambda_{QCD}$)
- Experience the entire evolution of the QCD medium probe transport properties of the deconfined medium

CHARM 2018

Heavy quarks (charm and beauty): powerful probes of the Quark-Gluon Plasma (QGP)

Nuclear modification factor (RAA): heavy quark in-medium energy loss

- Elastic (radiative) vs. inelastic (collisional) processes
- Color charge (Casimir factor) and mass (eg dead-cone effect) dependence

$$R_{AA}(p_{T}) = \frac{dN_{AA}/dp_{T}}{\langle T_{AA} \rangle d\sigma_{pp}/dp_{T}} QCD \text{ medium} QCD \text{ vacuum}$$

$$\Delta E_{g} > \Delta E_{q} > \Delta E_{c} > \Delta E_{b}$$

$$\Rightarrow R_{AA}(\text{light hadron}) < R_{AA}(D) < R_{AA}(B) ?$$
Medium modification of heavy-flavour hadron production
• Hadronization via quark coalescence may modify the D_s+

/ non-strange D and Λ_c / D ratios CHARM 2018 Open charm in heavy-ion collisions

Heavy quarks (charm and beauty): powerful probes of the

Azimuthal anisotropy: Fourier decomposition of particle azimuthal distribution relative $to_{d^3\vec{p}}^{d^3\vec{p}} = teaction plane (\Psi_R) v_n \cos n(\phi - \Psi_R)$]

• Elliptic flow (V₂): second order Fourier coefficient $v_2 = <\cos 2(\phi - \Psi_R) >$

Low and intermediate p_T : collective motion and possible heavy-quark thermalization in the QCD medium

High p_T: path-length dependence of heavy-quark in-medium energy loss
 CHARM 2018 Open charm in heavy-ion collisions X. Zhang

⁶ Charm energy loss in the QCD medium

⇒ $R_{AA}(e \leftarrow HF) \approx R_{AA}(light hadrons)$ at high p_T

Observed > 10 years ago

• Color-charge dependent parton in medium energy loss ?

 $\Rightarrow \Delta E_g > \Delta E_c$? — different parton p_T distribution and fragmentation

Collisional energy loss is important at RHIC energies Caveat: charm and beauty components are not separated

CHARM 2018

Charm energy loss in the QCD medium

- R_{AA} of D mesons at the LHC
- Similar as charged hadrons in (semi-)central collisions for $p_T > 5$ GeV/c
- Suppression exhibits a strong increase towards more central collisions
 - Reaching a factor of ~5 in the most central collisions at $p_T \sim 10$ GeV/c

CHARM 2018

⁸ Charm energy loss in the QCD medium

- Indication of $R_{AA}(D) < R_{AA}(J/\psi \leftarrow B)$ at the LHC
- R_{AA} of open heavy-flavour particles at the RHIC hint of $R_{AA}(D) < R_{AA}(B)$
 - Indication of mass dependence of heavy-quark energy loss: $\Delta E_c > \Delta E_b$

CHARM 2018

Charm energy loss in the QCD medium

- *R*_{AA}(e/µ←HF) at mid-rapidity is consistent with *R*_{AA}(µ←HF) at forward rapidity within uncertainties
 - Heavy quarks undergo strong interactions in the QCD medium in a wide rapidity window
- Xe–Xe vs. Pb–Pb collisions: may add sensitivity to probe the path-length dependence of energy loss

CHARM 2018

Elliptic flow of open charm

• Positive v_2 of open charm hadron decay electrons and D mesons at low / intermediate p_T observed at the RHIC and LHC, respectively

➡ Participation of charm quarks in the collective motion of the medium

- At the LHC: $v_2(D) \approx v_2(\pi^{\pm})$ at high p_T
 - Suggests a similar path-length dependent in-medium energy loss

CHARM 2018

Open charm in heavy-ion collisions

Elliptic flow of open charm

- D mesons seem to follow the same number of constituent quarks (NCQ) and kE_T scaling as light hadrons observed at both RHIC and LHC
- Similar collective motion of charm quarks and light quarks (?) charm thermalization (?)
- Strong interaction of charm quarks with the medium consistent with the R_{AA} measurement

CHARM 2018

Event-shape engineering

- Event eccentricity quantified by q₂:
 - $\Rightarrow <(q_2)^2 > \approx 1 + < M 1 > <(v_2)^2 >$
- Opportunity to study the charm-quark coupling to the light-hadron bulk by measuring v₂ at different q₂ values

CHARM 2018

- Significant separation of D-meson v_2 in events with large and small q_2
- Charm quarks sensitive to the lighthadron bulk collectivity and event-byevent initial condition fluctuations

Autocorrelation and non-flow effects between q₂ determination and D-meson reconstruction are present

Open charm in heavy-ion collisions

Directed flow of open charm

Triangular flow of open heavy flavours

- v₃ of open heavy-flavour hadron decay muons
 - Generally decreases with increasing p_T , weak variation with centrality
- \rightarrow Limited by statistics at high p_T

CHARM 2018

Open charm in heavy-ion collisions

X. Zhang

D_s production in heavy-ion collisions

- Hint of R_{AA}(D_s) > R_{AA}(D) in central Pb–Pb collisions at √s_{NN} = 5.02 TeV (still large uncertainty to draw conclusion)
- Hint for a higher D_s / D⁰ ratio in Pb–Pb collisions compared to pp collisions, no centrality dependence with current uncertainties

More statistics needed to draw conclusions on the contribution from coalescence mechanism on D_s hadronization

CHARM 2018

D_s production in heavy-ion collisions

- RHIC: D_s / D⁰ ratio in Au+Au collisions is enhanced w. r. t. PYTHIA
 - \blacksquare Larger than model predictions, particularly at higher p_T
- LHC: D_s / D⁰ ratio expected from models
 - coalescence + strangeness enhancement (?)

 More statistics needed to draw conclusions on the contribution from coalescence mechanism

 on D_s hadronization

 CHARM 2018
 Open charm in heavy-ion collisions

 X. Zhang

Λ_c production in heavy-ion collisions

- Λ_c measured in Pb–Pb collisions at 5.02 TeV for 0–80% centrality class
- \Rightarrow Hint of larger R_{AA} than D mesons in 0–10% centrality class
- Hint of Λ_c / D⁰ ratio enhanced in Pb–Pb collisions w. r. t. pp and p–Pb collisions

Ac production in heavy-ion collisions $\int_{-1}^{0} \int_{-1}^{0} \int_{$

- Λ_c measured in Pb–Pb collisions at 5.02 TeV for 0–80% centrality class
- \Rightarrow Hint of larger R_{AA} than D mesons in 0–10% centrality class
- Hint of Λ_c / D⁰ ratio enhanced in Pb–Pb collisions w. r. t. pp and p–Pb collisions
- RHIC data: Λ_c / D⁰ ratio is strongly enhanced compared to PYTHIA enhancement increases towards low p_T

CHARM 2018

D-meson tagged jets

- Observed strong suppression of D⁰-tagged jets in Pb–Pb collisions compared to p–Pb collisions
- Data suggest a wider D⁰-meson radial profile in Pb–Pb collisions than in pp collisions for D⁰ mesons in $4 < p_T < 20$ GeV/c

First seminal measurements! Will provide new constraints on charm quark energy loss

and diffusion

CHARM 2018

Conclusion

Heavy quark diffusion coefficient

- RHIC: (4 6) / 2πT
 for 0.2 < T < 0.4 GeV
- LHC: $(1.5 7) / 2\pi T$ for $T = T_c$

- New channels: charmed meson and baryon production, charmed jets
- Further constraints on transport properties and degree of thermalization of charm quarks in the QCD medium

Backup

R_{AA} of HFm: model comparison

Open charm in heavy-ion collisions

v_2 and v_3 of HFm: model comparison

Open charm in heavy-ion collisions

X. Zhang