

Institute of Particle Physics, University of Valência, Spain. Institute of Physics, University of São Paulo, Brazil.

Jorgivan M. Dias

In collaboration with: E. Oset LiangRong Dai

São Paulo Research Foundation

Both states also couple to $J/\psi\,\omega$

 $dM^{D^*\bar{D}^*}_{\cdot}$

 $= \overline{(2\pi)^3} \, \overline{4M_B^2}$

Production

Results: $J/\psi \omega$ distribution

Results: $J/\psi \omega$ distribution

Results: $J/\psi \omega$ distribution

 $\frac{d\Gamma}{dM_{inv}^{J/\psi\omega}}(cusp)$ R $\frac{d\Gamma}{dM_{inv}^{D^*\bar{D}^*}}(peak)$

Summary and conclusions

- We have looked at $B^-_c
ightarrow J/\psi\,\omega$ decay

 $\frac{d\Gamma}{dM_{inv}^{J/\psi\omega}}$ is influenced by the X(3940) and X(3930) states PRD 80, 114013 (2017) $0^+(0^{++}) = 0^+(2^{++})$

- Both states couple mostly to $D^* \bar{D}^*$
- In order to find support for this nature of these states:

1) $J/\psi\,\omega$ is not the main channel, but D^*D^* . As consequence, a cusp appears!

2) The states influence the $D^*\bar{D}^*$ distribution

Thank you for your altention!