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Outline
• Motivation


• Difficulties and efforts in understanding 
D-Dbar mixing in theory 


• D-Dbar Mixing in the FAT approach


• Handle flavor SU(3) breaking effects


• Summary and Outlook
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Description of meson Mixing
• The time evolution of two flavor eigenstates  

• Mass eigenstates

• Diagonalise the Hamiltonian matrix
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Theoretical study of B Mixing

4

heavy quark

expansion •  Wilson coefficients


• matrix elements of high-
dimension operators

 Wilson coefficients are calculated perturbatively up to 
N…NLO-QCD

Hadronic matrix elements of operators are calculated by 
nonperturbative approaches like Lattice or Sum Rule

➭ expanded by 1/mb [Lenz, Nierste, 06’; Lenz Rauh, 17’]

Learn some lesson from B mixing Before going to D



Theoretical study of B Mixing

5

[Lenz, Nierste, 06’]
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Match perfectly!

[PDG, 2016]



D mixing: Theory vs Exp.

• Current world average results
[HFLAV, 16’]

✴ If CP is conserved 

✴ If CP violation is allowed

6

• Including corrections up to 1/mc and 
NLO-QCD, yD can only reach order 
of 10-6. [Bobrowski, Lenz, Riedl, Rohrwild, 10’]
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3-order difference! [See Prof. Alan Schwartz’s talk for the update]



Problem on dynamics 
•  mc ~ 1.3 GeV


 neither heavy enough for heavy quark 
expansion, 1/mc


nor light enough for chiral perturbation 
theory
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Exclusive Approaches
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Sum up all the intermediate (final) states
➭ To measure or predict branching fractions
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Assuming no CPVphase space mass eigenstates

y =
∑

n

η (n)η (n) δn
√
B(D0 → n)B(D0 → n̄),

δn D0 → n D0 → n̄ η =

(−1)ns ns s s̄

D

T C W

E W A

D

SU(3)

y

W E D0 W A

D+ D+
s D0 D

0

D0

A

D → PP PV
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q = 0.056± 0.002, φE

q = 5.03± 0.06, χE
s = 0.130± 0.008, φE

s = 4.37± 0.10,

D0 → PP

Sπ = −1.88± 0.12, χC
P = 0.63± 0.03, φC

P = 1.57± 0.11,
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V = 0.71± 0.03, φC
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strong phase difference



Exclusive Approaches
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Effort 1. SU(3) breaking effects from 
phase space

ππππ v.s. KKKK

[Falk,Grossman,Ligeti,Petrov, 01’]

y vanishes in the 
SU(3) limit
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Promising SU(3) breaking effects from PS, e.g.,

➭ This is qualitative. What about quantitative?
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Effort 2. Try PP & PV (best measured)
Exclusive Approaches

vanish in the SU(3) symmetry limit

[Cheng,Chiang, 10’]
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Effort 2. Try PP & PV (best measured)
Exclusive Approaches

[Cheng,Chiang, 10’]
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Effort 2. Try PP & PV (best measured)
• Take branching ratios from exp (fit for unmeasured 

channels) and assume no strong phase difference

The explicit parametrizations of the D ! PP and PV amplitudes in the FAT approach can

be found in [19] and [20], respectively, which have been extracted from the measured branching

ratios. It is noticed that the W -exchange diagram E appears only in D

0 meson decays, while

the W -annihilation diagram A contributes only to D

+ and D

+

s meson decays. For the study of

the D

0-D
0

mixing, we focus on the D

0 meson decay modes, so that the irrelevant strong param-

eters associated with the amplitudes A can be removed from global fits. Below we update the

corresponding sets of strong parameters determined by the latest data:

�

C
nf

= �0.81± 0.01, �

C
nf

= 0.22± 0.14, S⇡ = �0.92± 0.07,

�

E
q = 0.056± 0.002, �

E
q = 5.03± 0.06, �

E
s = 0.130± 0.008, �

E
s = 4.37± 0.10, (7)

for the D

0 ! PP decays, and

S⇡ = �1.88± 0.12, �

C
P = 0.63± 0.03, �

C
P = 1.57± 0.11,

�

C
V = 0.71± 0.03, �

C
V = 2.77± 0.10, �

E
q = 0.49± 0.03, (8)

�

E
q = 1.61± 0.07, �

E
s = 0.54± 0.03, �

E
s = 2.23± 0.08

for the D0 ! PV decays. In both the PP and PV modes, the parameter ⇤ related to the soft scale

in D meson decays is fixed to be 0.5 GeV. The decay constants of the vector mesons are from [28],

and other theoretical inputs are the same as in [19, 20]. The minimal �2’s per degree of freedom

are 1.1 for the PP modes with 13 data, and 1.8 for the PV modes with 19 data. As observed in

Table I, the predictions for the D

0 ! PP and PV branching fractions agree well with the data.

Based on Eqs. (7) and (8), we calculate the D ! PP and D ! PV contributions to y by means

of Eq. (5), obtaining

yPP = (1.00± 0.19)⇥ 10�3

, (9)

yPV = (1.12± 0.72)⇥ 10�3

, (10)

respectively. Our results are consistent with those derived in [18]: yPP = (0.86 ± 0.41) ⇥ 10�3,

yPV = (2.69 ± 2.53) ⇥ 10�3 (A,A1) and yPV = (1.52 ± 2.20) ⇥ 10�3 (S, S1) from two di↵erent

solutions, but with much smaller uncertainties. Actually, the predictions for yPP and yPV in this

work are the most precise ones up to now. The uncertainties of the parameters in Eqs. (7) and (8)

are basically controlled by those most precisely measured channels, explaining why yPP , with the

more precise PP data, is more certain than yPV . Besides, the branching ratios are correlated to

each other by the strong parameters in the FAT approach, so the uncertainties are greatly reduced.
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vs

Same order, but large uncertainties! Why?
• Contributions to y may cancel between different modes, but 

uncertainties always add together (assuming independent, but 
not true).


• The uncertainties of y are determined by the worst channels 
(with largest uncertainties).

[Cheng,Chiang, 10’]
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Effort 2. Try PP & PV (best measured)

The explicit parametrizations of the D ! PP and PV amplitudes in the FAT approach can

be found in [19] and [20], respectively, which have been extracted from the measured branching

ratios. It is noticed that the W -exchange diagram E appears only in D

0 meson decays, while

the W -annihilation diagram A contributes only to D

+ and D

+

s meson decays. For the study of

the D

0-D
0

mixing, we focus on the D

0 meson decay modes, so that the irrelevant strong param-

eters associated with the amplitudes A can be removed from global fits. Below we update the

corresponding sets of strong parameters determined by the latest data:

�

C
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0 ! PP decays, and
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P = 1.57± 0.11,
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V = 2.77± 0.10, �

E
q = 0.49± 0.03, (8)

�

E
q = 1.61± 0.07, �

E
s = 0.54± 0.03, �

E
s = 2.23± 0.08

for the D0 ! PV decays. In both the PP and PV modes, the parameter ⇤ related to the soft scale

in D meson decays is fixed to be 0.5 GeV. The decay constants of the vector mesons are from [28],

and other theoretical inputs are the same as in [19, 20]. The minimal �2’s per degree of freedom

are 1.1 for the PP modes with 13 data, and 1.8 for the PV modes with 19 data. As observed in

Table I, the predictions for the D

0 ! PP and PV branching fractions agree well with the data.

Based on Eqs. (7) and (8), we calculate the D ! PP and D ! PV contributions to y by means

of Eq. (5), obtaining

yPP = (1.00± 0.19)⇥ 10�3

, (9)

yPV = (1.12± 0.72)⇥ 10�3

, (10)

respectively. Our results are consistent with those derived in [18]: yPP = (0.86 ± 0.41) ⇥ 10�3,

yPV = (2.69 ± 2.53) ⇥ 10�3 (A,A1) and yPV = (1.52 ± 2.20) ⇥ 10�3 (S, S1) from two di↵erent

solutions, but with much smaller uncertainties. Actually, the predictions for yPP and yPV in this

work are the most precise ones up to now. The uncertainties of the parameters in Eqs. (7) and (8)

are basically controlled by those most precisely measured channels, explaining why yPP , with the

more precise PP data, is more certain than yPV . Besides, the branching ratios are correlated to

each other by the strong parameters in the FAT approach, so the uncertainties are greatly reduced.
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Exclusive Approaches

• To reduce uncertainties, we need to find correlations between 
the modes.

[Cheng,Chiang, 10’]
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Factorization-Assisted 
Topological-Amplitude Approach

• Factorize each 
topological amplitude:


• Short-distance 
dynamics: Wilson 
coefficients


• Long-distance 
dynamics: hadronic 
matrix elements

[Li, Lu, Yu, 1203.3120] 
[QQ, Li, Lu, Yu, 1305.7021]14

[Cheng, Chiang, 10']
[Bhattacharya, Rosner, 08’,10’]



Emission Amplitudes (PP)
• Color-favored Tree (T) 

• Color-suppressed (C)

Non-factorizable

15
[Li, Lu, Yu, 1203.3120]

SU(3) breaking 
effects in 
amplitudes
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Annihilation Amplitude (PP)

• W-exchange (E) 

16[Li, Lu, Yu, 1203.3120]

SU(3) breaking 
effects in 
amplitudesGlauber strong phase for pions:

1. Nambu-Goldstone boson 
2. qqbar bound statepion=

sq χχ ≠

b

E
q,s(µ) = C

2

(µ)�E
q,se

i�E
q,s (1)

I. INTRODUCTION

Studies of neutral meson mixings have marked glorious progress in particle physics: the kaon

mixing accounts for the first CP violation observed in the KL ! ⇡⇡ decays [1]; the masses of a

charm quark [2] and of a top quark [3, 4] were, before their discoveries, estimated through the GIM

mechanism involved in the kaon and Bd meson mixings, respectively. The neutral meson mixings

are still a potential regime for searching new physics nowadays, because the relevant flavor-changing

amplitudes are loop-suppressed in the Standard Model. To get closer to this goal, it is crucial to

make sure that the mixing dynamics is understood to high precision. It has been known that the

Bd(s) meson mixing is well described in the heavy quark e↵ective theory [5, 6], indicating that both

the power expansion parameter 1/mb and the strong coupling ↵s(mb) at the scale of the bottom

quark mass mb are small enough for justifying a perturbative analysis. However, the understanding

of the D

0-D
0

mixing has remained a challenge since its first observation [7–9]. It is suspected that

1/mc and ↵s(mc) with mc being the charm quark mass may be too large to allow perturbation

expansion.

The products VibV
⇤

id of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements, i = u, c, and

t, which appear in the box diagram responsible for the Bd meson mixing, are of the same order. In

the Bs meson mixing, VtbV
⇤

ts and VcbV
⇤

cs are of the same order, and both much larger than VubV
⇤

us.

Hence, an intermediate top quark with a much higher mass moderates the GIM cancellation, giving

a dominant contribution to the bottom mixing. In theD0-D
0

mixing an intermediate bottom quark

does not play an important role due to the tiny product VcbV
⇤

ub. The charm mixing is then governed

by the di↵erence between the other two intermediate quarks s and d, namely, by SU(3) symmetry

breaking e↵ects, to which nonperturbative contribution is expected to be significant.
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• Color-favored Tree (T) 

• Color-suppressed (C)

4

⟨V P |Heff |D⟩T,C =
GF√
2
VCKMaV1,2(µ)fPmV A

DV
0 (m2

P )2(εV · pD), (8)

where fP is the decay constant of the pseudoscalar meson and ADV
0 is the D → V transition form factor. The

associated scale-dependent Wilson coefficients a1 and aP,V
2 are given by

a1(µ) = C2(µ) +
C1(µ)

NC
,

aP (V )
2 (µ) = C1(µ) + C2(µ)

(
1

NC
+ χC

P (V )e
iφC

P (V )

)
, (9)

with NC being the number of colors. The parameters χC
P,V and φC

P,V describe the magnitudes and the strong phases of
the nonfactorizable contributions in the color-suppressed amplitudes, since final-state interaction (FSI) and resonance
effects cannot be neglected in D meson decays. We set the scale of the Wilson coefficients to the energy release in
individual decay modes as suggested by the perturbative QCD (PQCD) approach [27]: it depends on masses of final
states and on the scale Λ that characterizes the soft degrees of freedom in the D meson [19],

µ =
√
ΛmD(1− r2V (P )), (10)

rV (P ) = mV (P )/mD being the mass ratio of the vector (pseudoscalar) meson emitted from the weak vertex over the
D meson. The evolution of the Wilson coefficients for c quark decays can be found in Ref. [19].
Because the factorizable contributions to the annihilation-type amplitudes are down by helicity suppression[28], only

the nonfactorizable contributions are considered. The W -exchange and W -annihilation amplitudes are parametrized
as

EP,V =
GF√
2
VCKMC2(µ)χ

E
q(s)e

iφE
q(s)fDmD

fP
fπ

fV
fρ

(εV · pD), (11)

AP,V =
GF√
2
VCKMC1(µ)χ

A
q(s)e

iφA
q(s)fDmD

fP
fπ

fV
fρ

(εV · pD), (12)

⟨PV |Heff |D⟩E =
GF√
2
VCKMC2(µ)χ

E
q,se

iφE
q,sfDmD

fP
fπ

fV
fρ

(εV · pD) (13)

where fD, fπ, and fρ are the decay constants of the D meson, π meson, and ρ meson, respectively. The parameters
χE,A
q,s and φE,A

q,s characterize the strengths and the strong phases of the corresponding amplitudes, with the subscripts
q and s differentiating the strongly produced light-quark (u or d) and strange-quark pair. The ratios over fπ and fρ
in Eqs. (11) and (12) take into account the SU(3) breaking effects from the decay constants. As in the emission-type
amplitudes, the scale of the Wilson coefficients,

µ =
√
ΛmD(1− r2P )(1− r2V ), (14)

also depends on the initial- and final-state masses.
As shown above, we have followed the parametrization for the D → PP decays [19] by considering the nonfac-

torizable amplitudes χq and χs in this work. Note that χP and χV were adopted in Ref. [24], which describe the
nonfactorizable contributions with the spectator antiquark going into the P and V mesons, respectively. However,
as χP and χV appear together in some D → PV modes, such as D+ → π+ω, their difference reflects the isospin
symmetry breaking, which ought to be tiny. Certainly, they do not always appear together. For example, only χP

appears in the D0 → π+ρ− decay. Viewing that χP and χV may violate the isospin symmetry, we prefer χq and
χs, for which the difference reflects the SU(3) symmetry breaking that could be significant. It turns out that the
parametrization with χq and χs has a lower χ2 in the global fit than the parametrization with χP and χV does. That
is, the SU(3) symmetry breaking is more crucial than the isospin symmetry breaking in D-meson decays.
It was proposed in Ref. [29] that a kind of soft gluons, named the Glauber gluons, exist in two-body heavy meson

decays, which may lead to additional strong phases in the nonfactorizable amplitudes. The multiple Fock states of a
pion have been proposed to reconcile its simultaneous roles as a qq̄ bound state and a Nambu-Goldstone boson [30].
It was then speculated that the Glauber effect becomes significant due to the huge soft cloud formed by higher Fock
states of a pion [29]. According to Ref. [19], we multiply a phase factor exp(iSπ) to the nonfactorizable annihilation-
type amplitudes, as a pion is involved in the final state, while leaving the emission-type amplitudes unchanged, in
which the factorizable contributions usually dominate. In summary, our parametrization of the D → PV decays is
composed of 14 global free parameters: the soft scale Λ; the magnitudes of the nonfactorizable amplitudes, χC

P,V and

χE,A
q,s ; the strong phases of the nonfactorizable amplitudes, φC

P,V and φE,A
q,s ; and the Glauber phase Sπ. Compared to

the D → PP analysis [19], there are only two more free parameters.

3

A. Parametrization of tree amplitudes

In this subsection we parametrize the tree contributions which dominate the D → PV branching ratios. The
relevant effective weak Hamiltonian is given by

Heff =
GF√
2
VCKM [C1(µ)O1(µ) + C2(µ)O2(µ)], (3)

where GF is the Fermi coupling constant, VCKM represents the product of the corresponding CKM matrix elements,
and C1,2 are the Wilson coefficients. The current-current operators are defined by

O1 = (uαq2β)V−A(q1βcα)V−A,

O2 = (uαq2α)V−A(q1βcβ)V−A,
(4)

with q1,2 being the d or s quark, α,β being the color indices, and (qq′)V−A representing qγµ(1− γ5)q′. The relevant
eight topological diagrams are displayed in Fig. 1, where TP (V ) represents the color-favored tree amplitude with the
D → P (V ) transition, CP (V ) represents the color-suppressed tree amplitude with the D → P (V ) transition, EP (V )

represents the W -exchange amplitude with the pseudoscalar (vector) meson containing the antiquark from the weak
vertex, and AP (V ) represents the W -annihilation amplitude with the pseudoscalar (vector) meson containing the
antiquark from the weak vertex.
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FIG. 1: Eight topological diagrams contributing to the D → PV decays with (a) the color-favored tree amplitude TP (V ), (b) the
color-suppressed tree amplitude CP (V ), (c) the W -exchange amplitude EP (V ), and (d) the W -annihilation amplitude AP (V ).

For the emission type, we ignore the nonfactorizable contributions to the color-favored amplitudes because the
factorizable ones dominate. The amplitudes TP and CP are formulated as [19]

TP (CP ) =
GF√
2
VCKMa1(µ)

(
aP2 (µ)

)
fV mV F

DP
1 (m2

V )2(εV · pD), (5)
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GF√
2
VCKMaP1,2(µ)fV mV F

DP
1 (m2

V )2(εV · pD), (6)

where fV (mV , εV ) is the decay constant (mass, polarization vector) of the vector meson, FDP
1 is theD → P transition

form factor, and pD is the D meson momentum. The amplitudes TV and CV are formulated as

TV (CV ) =
GF√
2
VCKMa1(µ)

(
aV2 (µ)

)
fPmV A

DV
0 (m2

P )2(εV · pD), (7)
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with NC being the number of colors. The parameters χC
P,V and φC

P,V describe the magnitudes and the strong phases of
the nonfactorizable contributions in the color-suppressed amplitudes, since final-state interaction (FSI) and resonance
effects cannot be neglected in D meson decays. We set the scale of the Wilson coefficients to the energy release in
individual decay modes as suggested by the perturbative QCD (PQCD) approach [27]: it depends on masses of final
states and on the scale Λ that characterizes the soft degrees of freedom in the D meson [19],

µ =
√
ΛmD(1− r2V (P )), (10)

rV (P ) = mV (P )/mD being the mass ratio of the vector (pseudoscalar) meson emitted from the weak vertex over the
D meson. The evolution of the Wilson coefficients for c quark decays can be found in Ref. [19].
Because the factorizable contributions to the annihilation-type amplitudes are down by helicity suppression[28], only
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where fD, fπ, and fρ are the decay constants of the D meson, π meson, and ρ meson, respectively. The parameters
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q,s characterize the strengths and the strong phases of the corresponding amplitudes, with the subscripts
q and s differentiating the strongly produced light-quark (u or d) and strange-quark pair. The ratios over fπ and fρ
in Eqs. (11) and (12) take into account the SU(3) breaking effects from the decay constants. As in the emission-type
amplitudes, the scale of the Wilson coefficients,

µ =
√
ΛmD(1− r2P )(1− r2V ), (14)

also depends on the initial- and final-state masses.
As shown above, we have followed the parametrization for the D → PP decays [19] by considering the nonfac-

torizable amplitudes χq and χs in this work. Note that χP and χV were adopted in Ref. [24], which describe the
nonfactorizable contributions with the spectator antiquark going into the P and V mesons, respectively. However,
as χP and χV appear together in some D → PV modes, such as D+ → π+ω, their difference reflects the isospin
symmetry breaking, which ought to be tiny. Certainly, they do not always appear together. For example, only χP

appears in the D0 → π+ρ− decay. Viewing that χP and χV may violate the isospin symmetry, we prefer χq and
χs, for which the difference reflects the SU(3) symmetry breaking that could be significant. It turns out that the
parametrization with χq and χs has a lower χ2 in the global fit than the parametrization with χP and χV does. That
is, the SU(3) symmetry breaking is more crucial than the isospin symmetry breaking in D-meson decays.
It was proposed in Ref. [29] that a kind of soft gluons, named the Glauber gluons, exist in two-body heavy meson

decays, which may lead to additional strong phases in the nonfactorizable amplitudes. The multiple Fock states of a
pion have been proposed to reconcile its simultaneous roles as a qq̄ bound state and a Nambu-Goldstone boson [30].
It was then speculated that the Glauber effect becomes significant due to the huge soft cloud formed by higher Fock
states of a pion [29]. According to Ref. [19], we multiply a phase factor exp(iSπ) to the nonfactorizable annihilation-
type amplitudes, as a pion is involved in the final state, while leaving the emission-type amplitudes unchanged, in
which the factorizable contributions usually dominate. In summary, our parametrization of the D → PV decays is
composed of 14 global free parameters: the soft scale Λ; the magnitudes of the nonfactorizable amplitudes, χC

P,V and
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the W -annihilation diagram A contributes only to D

+ and D

+

s meson decays. For the study of

the D
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mixing, we focus on the D

0 meson decay modes, so that the irrelevant strong param-

eters associated with the amplitudes A can be removed from global fits. Below we update the

corresponding sets of strong parameters determined by the latest data:

�

C
nf

= �0.81± 0.01, �

C
nf

= 0.22± 0.14, S⇡ = �0.92± 0.07,

�

E
q = 0.056± 0.002, �

E
q = 5.03± 0.06, �

E
s = 0.130± 0.008, �

E
s = 4.37± 0.10, (6)

for the D

0 ! PP decays, and

S⇡ = �1.88± 0.12, �

C
P = 0.63± 0.03, �

C
P = 1.57± 0.11,

�

C
V = 0.71± 0.03, �

C
V = 2.77± 0.10, �

E
q = 0.49± 0.03, (7)

�

E
q = 1.61± 0.07, �

E
s = 0.54± 0.03, �

E
s = 2.23± 0.08,

for the D0 ! PV decays. In both the PP and PV modes, the parameter ⇤ related to the soft scale

in D meson decays is fixed to be 0.5 GeV. The decay constants of the vector mesons are from [28],

and other theoretical inputs are the same as in [19, 20]. The minimal �2’s per degree of freedom

are 1.1 for the PP modes with 13 data, and 1.8 for the PV modes with 19 data. As observed in

Table I, the predictions for the D
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Based on Eqs. (6) and (7), we calculate the D ! PP and D ! PV contributions to y by means

of Eq. (4), obtaining
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are basically controlled by those most precisely measured channels, explaining why yPP , with the

more precise PP data, is more certain than yPV . Besides, the branching ratios are correlated to

each other by the strong parameters in the FAT approach, so the uncertainties are greatly reduced.
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TABLE I: Branching ratios for the D

0 ! PP and PV decays in units of 10�3. Predictions in the FAT

approach are compared with the experimental data [29].

Modes B(exp) B(FAT) Modes B(exp) B(FAT) Modes B(exp) B(FAT)

⇡

0

K

0

24.0± 0.8 24.2± 0.8 ⇡

0

K

⇤0
37.5± 2.9 35.9± 2.2 K

0

⇢

0 12.8+1.4
�1.6 13.5± 1.4

⇡

+

K

� 39.3± 0.4 39.2± 0.4 ⇡

+

K

⇤� 54.3± 4.4 62.5± 2.7 K

�
⇢

+ 111.0± 9.0 105.0± 5.2

⌘K

0

9.70± 0.6 9.6± 0.6 ⌘K

⇤0
9.6± 3.0 6.1± 1.0 K

0

! 22.2± 1.2 22.3± 1.1

⌘

0
K

0

19.0± 1.0 19.5± 1.0 ⌘

0
K

⇤0
< 1.10 0.19± 0.01 K

0

� 8.47+0.66
�0.34 8.2± 0.6

⇡

+

⇡

� 1.421± 0.025 1.44± 0.02 ⇡

+

⇢

� 5.09± 0.34 4.5± 0.2 ⇡

�
⇢

+ 10.0± 0.6 9.2± 0.3

K

+

K

� 4.01± 0.07 4.05± 0.07 K

+

K

⇤� 1.62± 0.15 1.8± 0.1 K

�
K

⇤+ 4.50± 0.30 4.3± 0.2

K

0

K

0

0.36± 0.08 0.29± 0.07 K

0

K

⇤0
0.18± 0.04 0.19± 0.03 K

0

K

⇤0 0.21± 0.04 0.19± 0.03

⇡

0

⌘ 0.69± 0.07 0.74± 0.03 ⌘⇢

0 1.4± 0.2 ⇡

0

! 0.117± 0.035 0.10± 0.03

⇡

0

⌘

0 0.91± 0.14 1.08±0.05 ⌘

0
⇢

0 0.25± 0.01 ⇡

0

� 1.35± 0.10 1.4± 0.1

⌘⌘ 1.70± 0.20 1.86±0.06 ⌘! 2.21± 0.23 2.0± 0.1 ⌘� 0.14± 0.05 0.18± 0.04

⌘⌘

0 1.07± 0.26 1.05±0.08 ⌘

0
! 0.044± 0.004

⇡

0

⇡

0 0.826± 0.035 0.78± 0.03 ⇡

0

⇢

0 3.82± 0.29 4.1± 0.2

⇡

0

K

0 0.069±0.002 ⇡

0

K

⇤0 0.103± 0.006 K

0

⇢

0 0.039± 0.004

⇡

�
K

+ 0.133± 0.009 0.133±0.001 ⇡

�
K

⇤+ 0.345+0.180
�0.102 0.40± 0.02 K

+

⇢

� 0.144± 0.009

⌘K

0 0.027±0.002 ⌘K

⇤0 0.017± 0.003 K

0

! 0.064± 0.003

⌘

0
K

0 0.056±0.003 ⌘

0
K

⇤0 0.00055± 0.00004 K

0

� 0.024± 0.002

were directly input into Eq. (5) by taking cos �n = 1 [18], such that the uncertainties of the data

are summed up in the evaluation of y. Some other e↵orts have been devoted to global fits of the

PP or PV data recently [30–32]. However, it is unlikely to make a precise prediction for y without

thorough exploration of the SU(3) breaking e↵ects in the relevant D meson decays.

III. yV V

There exist three di↵erent polarizations in the final state of a D ! V V channel, whose corre-

sponding amplitudes can be expressed in the transversity basis (A
0

, A
||

, A
?

), or equivalently in the

partial-wave basis (S, P , D). The decay amplitudes for di↵erent polarizations are independent,

and should be described by di↵erent sets of strong parameters in the FAT approach. At least six

strong parameters are required for the longitudinal amplitude A

0

alone, but only one channel has

been observed with the longitudinal branching ratio B
0

(D0 ! ⇢

0

⇢

0) =(1.25±0.10)⇥10�3 [29]. The

situation for the transverse amplitudes is even worse. Apparently, it is impossible to extract all

the D ! V V amplitudes in the FAT approach due to the lack of experimental data at present.
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ratios. It is noticed that the W -exchange diagram E appears only in D

0 meson decays, while

the W -annihilation diagram A contributes only to D

+ and D

+

s meson decays. For the study of

the D

0-D
0

mixing, we focus on the D

0 meson decay modes, so that the irrelevant strong param-

eters associated with the amplitudes A can be removed from global fits. Below we update the

corresponding sets of strong parameters determined by the latest data:

�

C
nf

= �0.81± 0.01, �

C
nf

= 0.22± 0.14, S⇡ = �0.92± 0.07,

�

E
q = 0.056± 0.002, �

E
q = 5.03± 0.06, �

E
s = 0.130± 0.008, �

E
s = 4.37± 0.10, (6)

for the D

0 ! PP decays, and

S⇡ = �1.88± 0.12, �

C
P = 0.63± 0.03, �

C
P = 1.57± 0.11,

�

C
V = 0.71± 0.03, �

C
V = 2.77± 0.10, �

E
q = 0.49± 0.03, (7)

�

E
q = 1.61± 0.07, �

E
s = 0.54± 0.03, �

E
s = 2.23± 0.08,

for the D0 ! PV decays. In both the PP and PV modes, the parameter ⇤ related to the soft scale

in D meson decays is fixed to be 0.5 GeV. The decay constants of the vector mesons are from [28],

and other theoretical inputs are the same as in [19, 20]. The minimal �2’s per degree of freedom

are 1.1 for the PP modes with 13 data, and 1.8 for the PV modes with 19 data. As observed in

Table I, the predictions for the D

0 ! PP and PV branching fractions agree well with the data.

Based on Eqs. (6) and (7), we calculate the D ! PP and D ! PV contributions to y by means

of Eq. (4), obtaining

yPP = (1.00± 0.19)⇥ 10�3

, (8)

yPV = (1.12± 0.72)⇥ 10�3

, (9)

respectively. Our results are consistent with those derived in [18]: yPP = (0.86 ± 0.41) ⇥ 10�3,

yPV = (2.69 ± 2.53) ⇥ 10�3 (A,A1) and yPV = (1.52 ± 2.20) ⇥ 10�3 (S, S1) from two di↵erent

solutions, but with much smaller uncertainties. Actually, the predictions for yPP and yPV in this

work are the most precise ones up to now. The uncertainties of the parameters in Eqs. (6) and (7)

are basically controlled by those most precisely measured channels, explaining why yPP , with the

more precise PP data, is more certain than yPV . Besides, the branching ratios are correlated to

each other by the strong parameters in the FAT approach, so the uncertainties are greatly reduced.

Since the SU(3) symmetry is assumed in the topological diagrammatic approach [18], the charm

mixing parameter y cannot be extracted in principle. Instead, the data of the branching ratios
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Abstract

We calculate the D

0-D
0

mixing parameter y in the factorization-assisted topological-amplitude (FAT)

approach, considering contributions from D

0 ! PP , PV , and V V modes, where P (V ) stands for a

pseudoscalar (vector) meson. The D

0 ! PP and PV decay amplitudes are extracted in the FAT approach,

and the D0 ! V V ones with final states in the longitudinal polarization are estimated via the parameter set

for D0 ! PV . It is found that the V V contribution to y, being of order of 10�4, is negligible, and that the

PP and PV contributions amount only up to yPP+PV = (0.21± 0.07)%, much lower than the experimental

data y

exp

= (0.61 ± 0.08)%. We conclude that D

0 meson decays into other two-body and multi-particle

final states are relevant to the evaluation of y, so it is di�cult to have its full understanding in an exclusive

approach.
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• In Cheng and Chiang’s work, uncertainties are summed up 
channel by channel.


• In our approach, uncertainties are controlled by most 
precisely measured channels.

[PDG]Two-body D0 decay branching fractions

The explicit parametrizations of the D ! PP and PV amplitudes in the FAT approach can

be found in [19] and [20], respectively, which have been extracted from the measured branching

ratios. It is noticed that the W -exchange diagram E appears only in D

0 meson decays, while

the W -annihilation diagram A contributes only to D

+ and D

+

s meson decays. For the study of

the D

0-D
0

mixing, we focus on the D

0 meson decay modes, so that the irrelevant strong param-

eters associated with the amplitudes A can be removed from global fits. Below we update the

corresponding sets of strong parameters determined by the latest data:

�

C
nf

= �0.81± 0.01, �

C
nf

= 0.22± 0.14, S⇡ = �0.92± 0.07,

�

E
q = 0.056± 0.002, �

E
q = 5.03± 0.06, �

E
s = 0.130± 0.008, �

E
s = 4.37± 0.10, (7)

for the D

0 ! PP decays, and

S⇡ = �1.88± 0.12, �

C
P = 0.63± 0.03, �

C
P = 1.57± 0.11,

�

C
V = 0.71± 0.03, �

C
V = 2.77± 0.10, �

E
q = 0.49± 0.03, (8)

�

E
q = 1.61± 0.07, �

E
s = 0.54± 0.03, �

E
s = 2.23± 0.08

for the D0 ! PV decays. In both the PP and PV modes, the parameter ⇤ related to the soft scale

in D meson decays is fixed to be 0.5 GeV. The decay constants of the vector mesons are from [28],

and other theoretical inputs are the same as in [19, 20]. The minimal �2’s per degree of freedom

are 1.1 for the PP modes with 13 data, and 1.8 for the PV modes with 19 data. As observed in

Table I, the predictions for the D

0 ! PP and PV branching fractions agree well with the data.

Based on Eqs. (7) and (8), we calculate the D ! PP and D ! PV contributions to y by means

of Eq. (5), obtaining

yPP = (1.00± 0.19)⇥ 10�3

, (9)

yPV = (1.12± 0.72)⇥ 10�3

, (10)

respectively. Our results are consistent with those derived in [18]: yPP = (0.86 ± 0.41) ⇥ 10�3,

yPV = (2.69 ± 2.53) ⇥ 10�3 (A,A1) and yPV = (1.52 ± 2.20) ⇥ 10�3 (S, S1) from two di↵erent

solutions, but with much smaller uncertainties. Actually, the predictions for yPP and yPV in this

work are the most precise ones up to now. The uncertainties of the parameters in Eqs. (7) and (8)

are basically controlled by those most precisely measured channels, explaining why yPP , with the

more precise PP data, is more certain than yPV . Besides, the branching ratios are correlated to

each other by the strong parameters in the FAT approach, so the uncertainties are greatly reduced.
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Summary and Outlook
• The inclusive approach based on heavy quark expansion can not explain the yD 

data.

• In the direction of exclusive approaches, considering the SU(3) breaking only 

from phase spaces, the order of a SM y is natural.

• Adding up the measured PP and PV branching ratios, the central value for y is 

consistent with data, but with very large uncertainties (from the worst measured 
channels).


• In our approach (FAT), SU(3) breaking is well described for PP and PV, and thus 
predict well the yD with uncertainties under control (determined by the most 
precisely measured channels).


• The PP and PV channels contribute about 1/3 of the D-Dbar mixing parameter y.

• We are looking forward to more data of branching ratios and angular distribution 

of the VV, PA, PS and multi-body modes.

Thank you for your attention!
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Estimation of VV contribution
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•  No enough data for fit

 only 4 channels with measured total 
decay rates (18 parameters)

only 1 channel with measured 
longitudinal decay rate (6 parameters)


• Apply PV parameters to longitudinal 
VV channels  



Neutral D0 decay rates of VV channels

 to see whether the estimation is acceptable

26

(×10-3)
TABLE II: Branching ratios for the D

0 ! V V decays in units of 10�3. Estimations of the longitudinal

branching ratios in the FAT approach are compared with the data of the total and longitudinal ones [29].

Modes B
tot

(exp) B
long

(exp) B
long

(FAT)

⇢

0

K

⇤0
15.9± 3.5 14.3±1.6

⇢

+

K

⇤� 65.0± 25.0 41.8±2.4

K

⇤0
! 11.0± 5.0 37.7±2.7

⇢

+

⇢

� 4.1±0.3

K

⇤+
K

⇤� 1.18±0.06

K

⇤0
K

⇤0
0.043±0.006

⇢

0

⇢

0 1.83± 0.13 1.25± 0.13 1.4±0.2

⇢

0

! 1.37±0.08

⇢

0

� 0.65±0.04

!! 0.53±0.08

!� 1.4±0.1

⇢

0

K

⇤0 0.041±0.005

⇢

�
K

⇤+ 0.143±0.008

K

⇤0
! 0.108±0.008

alone in an exclusive approach cannot account for the charm mixing, and that hadronic channels to

other two-body and multi-particle final states are relevant to the evaluation of y. However, it is very

di�cult, if not impossible, to gain full control of the SU(3) symmetry breaking e↵ects in all these

modes in an exclusive approach currently. As stated in the Introduction, the inclusive approach

leads to values of x and y two or three orders of magnitude lower than the data. Therefore, a

new strategy has to be proposed for complete understanding of the charm mixing dynamics in the

Standard Model. We will leave this subject to a future project.
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More efforts expected from experimentalists
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[PDG]

Two-body D0 decay branching fractions

ηCP : + + +, S,D + -
-, P wave

to measure VV, PA, PS and multi-body modes

(Longitudinal)Estimation:

Exp:

fractions. A general consistency with the data is seen, especially for the single observed longitu-

dinal branching ratio B
long

(D0 ! ⇢

0

⇢

0). For those channels with only measured total branching

ratios, most of our predictions for the longitudinal branching ratios do not exceed the data, after

considering the uncertainties. Our result for the D

0 ! K

⇤0

! mode is larger than the data, but

the measurement of this mode was performed in 1992 [34], and should be updated. It is thus a

fair claim that our simple estimates for the D

0 ! V V longitudinal amplitudes are satisfactory.

Certainly, more experimental e↵ort toward improved understanding of the D ! V V decays into

final states with di↵erent polarizations is encouraged.

A longitudinal amplitude A

0

is a linear combination of the partial waves S and D, namely, of

the L = 0 and 2 final states, leading to ⌘

CP

(n) = +1 in Eq. (4). Inserting the amplitudes estimated

above to Eq. (4), we obtain the longitudinal V V contribution

yV V = (0.28± 0.47)⇥ 10�3

. (16)

The central value of yV V is lower than those of yPP and yPV in Eq. (8) and (9), because the SU(3)

breaking e↵ects are much smaller in the V V modes. Even though Eq. (16) contains a relatively

larger uncertainty in our approach, and the contributions from the transverse polarizations have

not yet been included, it is reasonable to postulate that yV V represents a minor contribution to y.

IV. SUMMARY

In this paper we have calculated the D

0-D
0

mixing parameter y in the FAT approach, con-

sidering the D

0 ! PP , PV , and V V channels. The D

0 ! PP and PV decay amplitudes were

extracted in the FAT approach from the latest data, and the D

0 ! V V ones for the longitudinal

polarization were estimated via the parameter set for the PV modes. It has been confirmed that

the PV -inspired amplitudes work well for explaining the observed D

0 ! V V branching ratios. We

then derived the contribution from the PP and PV modes as

yPP+PV = (0.21± 0.07)%, (17)

which is much more precise than those in the literature, and far below the data y

exp

= (0.61 ±

0.08)%. It has been also found that the contribution from the longitudinal V V modes, being of

order of 10�4, is negligible. We conjecture that considering the above two-body D meson decays

alone in an exclusive approach cannot account for the charm mixing, and that hadronic channels to

other two-body and multi-particle final states are relevant to the evaluation of y. However, it is very

8

PV -inspired amplitudes are reasonable. The D

0 ! V V longitudinal branching ratios in the FAT

approach are listed in Table II, and compared with the data of the total and longitudinal branching

fractions. A general consistency with the data is seen, especially for the single observed longitu-

dinal branching ratio B
long

(D0 ! ⇢

0

⇢

0). For those channels with only measured total branching

ratios, most of our predictions for the longitudinal branching ratios do not exceed the data, after

considering the uncertainties. Our result for the D

0 ! K

⇤0

! mode is larger than the data, but

the measurement of this mode was performed in 1992 [34], and should be updated. It is thus a

fair claim that our simple estimates for the D

0 ! V V longitudinal amplitudes are satisfactory.

Certainly, more experimental e↵ort toward improved understanding of the D ! V V decays into

final states with di↵erent polarizations is encouraged.

A longitudinal amplitude A

0

is a linear combination of the partial waves S and D, namely, of

the L = 0 and 2 final states, leading to ⌘

CP

(n) = +1 in Eq. (5). Inserting the amplitudes estimated

above to Eq. (5), we obtain the longitudinal V V contribution

yV V = (0.28± 0.47)⇥ 10�3

. (17)

The central value of yV V is lower than those of yPP and yPV in Eq. (9) and (10), because the SU(3)

breaking e↵ects are much smaller in the V V modes. Even though Eq. (17) contains a relatively

larger uncertainty in our approach, and the contributions from the transverse polarizations have

not yet been included, it is reasonable to postulate that yV V represents a minor contribution to y.

IV. SUMMARY

In this paper we have calculated the D

0-D
0

mixing parameter y in the FAT approach, con-

sidering the D

0 ! PP , PV , and V V channels. The D

0 ! PP and PV decay amplitudes were

extracted in the FAT approach from the latest data, and the D

0 ! V V ones for the longitudinal

polarization were estimated via the parameter set for the PV modes. It has been confirmed that

the PV -inspired amplitudes work well for explaining the observed D

0 ! V V branching ratios. We

then derived the contribution from the PP and PV modes as

yPP+PV = (0.21± 0.07)%, (18)

yPP+PV+V V = 0.24% (19)

which is much more precise than those in the literature, and far below the data y

exp

= (0.61 ±

0.08)%. It has been also found that the contribution from the longitudinal V V modes, being of
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x from dispersion relation

28

In the heavy quark limit

[Falk,Grossman,Ligeti,Nir,Petrov,2004]



x from dispersion relation
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x from dispersion relation

30

0

mD

mB vanishes due to SU(3) symmetry

dynamics required

Simulate nearby mD

√s



Glauber phase

31

Main difference



Result of CP asymmetries
• Difference of CPV in D->KK and D-> pipi  


• Our prediction:

310)87.1~57.0( −×−−=Δ CPA

32

[Li, Lu, Yu,12’]

[HFAG2014]

• After our prediction, the world average value 
is lowered down by the LHCb results

Exp:



Measurements of ΔACP

Measurements ΔACP Publication World Average

2011LHCb (D*) (-0.82±0.24)% PRL108,111602 ICHEP2012:
(-0.74±0.15)%

HFAG2012:
(-0.68±0.15)%

2012 CDF (-0.62±0.23)% PRL109,111801

2012 Belle (-0.87±0.41)% 1212,1975

2013LHCb (D*) (-0.34±0.18)% LHCb-
CONF-2013-03 HFAG2013:

(-0.33±0.12)%2013LHCb (B) (+0.49±0.33)% PLB723(2013)33

2014LHCb (B) (+0.14±0.18)% JHEP07(2014)041 HFAG2014:
(-0.25±0.10)%

2016LHCb (D*) (-0.10±0.09)% PRL116,191601 (-0.14±0.07)%
33



Measurements of ΔACP

Measurements ΔACP Publication World Average

2011LHCb (D*) (-0.82±0.24)% PRL108,111602 ICHEP2012:
(-0.74±0.15)%

HFAG2012:
(-0.68±0.15)%

2012 CDF (-0.62±0.23)% PRL109,111801

2012 Belle (-0.87±0.41)% 1212,1975

2013LHCb (D*) (-0.34±0.18)% LHCb-
CONF-2013-03 HFAG2013:

(-0.33±0.12)%2013LHCb (B) (+0.49±0.33)% PLB723(2013)33

2014LHCb (B) (+0.14±0.18)% JHEP07(2014)041 HFAG2014:
(-0.25±0.10)%

2016LHCb (D*) (-0.10±0.09)% PRL116,191601 (-0.14±0.07)%

Prediction in 2012 
[Li,Lu,FSY,PRD86,036012]

ΔACP=(-0.06 ~ -0.19)%

(-0.14±0.07)%
34


