D mixing parameter y in the factorisation-assisted topological-amplitude approach

Qin Qin

Uni. Siegen

Collaboration with: H.-Y. Jiang, F.-S. Yu, H.-n. Li & C.-D. Lu

arXiv: 1705.07335

The 9th International Workshop on Charm Physics Budker INP, 25.05.2018

Outline

- Motivation
 - Difficulties and efforts in understanding
 D-Dbar mixing in theory
- D-Dbar Mixing in the FAT approach
 - Handle flavor SU(3) breaking effects
- Summary and Outlook

Description of meson Mixing

The time evolution of two flavor eigenstates

$$i\frac{\partial}{\partial t} \begin{pmatrix} M^0(t) \\ \overline{M}^0(t) \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} M^0(t) \\ \overline{M}^0(t) \end{pmatrix} \qquad \qquad \boxed{M^0 = (q)} \\ \overline{M}^0 = (\bar{q})$$

$$M^0 = (q_1 \bar{q}_2)$$
$$\overline{M}^0 = (\bar{q}_1 q_2)$$

• Mass eigenstates

$$|M_{L,H}\rangle = p|M^0\rangle \pm q|\overline{M}^0\rangle$$

Diagonalise the Hamiltonian matrix

$$\Delta m - \frac{i}{2} \Delta \Gamma = 2 \sqrt{\left(\mathbf{M}_{12} - \frac{i}{2} \mathbf{\Gamma}_{12}\right) \left(\mathbf{M}_{12}^* - \frac{i}{2} \mathbf{\Gamma}_{12}^*\right)}$$

physical observables

$$y_D \equiv \frac{\Delta \Gamma_D}{2\Gamma_D}$$

 $\left(\frac{q}{p}\right)^2 = \frac{\mathbf{M}_{12}^* - \frac{i}{2}\Gamma_{12}^*}{\mathbf{M}_{12} - \frac{i}{2}\Gamma_{12}}$

Learn some lesson from B mixing Before going to D

Theoretical study of B Mixing

Wilson coefficients are calculated perturbatively up to N...NLO-QCD

Hadronic matrix elements of operators are calculated by nonperturbative approaches like Lattice or Sum Rule

$$Q = \overline{s}_{\alpha} \gamma_{\mu} (1 - \gamma_5) b_{\alpha} \, \overline{s}_{\beta} \gamma^{\mu} (1 - \gamma_5) b_{\beta}$$
$$\langle B_s | Q | \overline{B}_s \rangle = \frac{8}{3} M_{B_s}^2 \, f_{B_s}^2 B$$

expanded by 1/mb

[Lenz, Nierste, 06'; Lenz Rauh, 17']

Theoretical study of B Mixing

 $\Delta M_s^{\text{th}} = (19.30 \pm 6.68) \text{ps}^{-1}$ $\Delta \Gamma_s^{\text{th}} = (0.096 \pm 0.039) \text{ps}^{-1}$ $\Delta M_d^{\text{th}} = (0.53 \pm 0.02) \text{ps}^{-1}$

 $\Delta M_s^{\text{exp}} = (17.757 \pm 0.021) \text{ps}^{-1}$ $\Delta \Gamma_s^{\text{exp}} = (0.082 \pm 0.007) \text{ps}^{-1}$ $\Delta M_d^{\text{exp}} = (0.5096 \pm 0.0034) \text{ps}^{-1}$

[PDG, 2016]

[Lenz, Nierste, 06']

Match perfectly!

Apply it to D mixing?

D mixing: Theory vs Exp.

 Including corrections up to 1/m_c and NLO-QCD, y_D can only reach order of 10⁻⁶. [Bobrowski, Lenz, Riedl, Rohrwild, 10']

* If CP is conserved

 $y = (0.62 \pm 0.08)\%$

* If CP violation is allowed $y = (0.69^{+0.06}_{-0.07})\%$

3-order difference!

 $\frac{\Delta\Gamma_D}{2\Gamma_D}$

 $y_D \equiv$

[See Prof. Alan Schwartz's talk for the update]

What is the problem?

Problem on dynamics

- *m_c*~1.3 GeV
 - neither heavy enough for heavy quark expansion, 1/m_c
 might be large

$$y_D = y_D^{(0)} + \frac{\Lambda}{m_c} y_D^{(1)} + \mathcal{O}\left(\frac{\Lambda^2}{m_c^2}\right)$$

 nor light enough for chiral perturbation theory

Exclusive Approaches

Promising SU(3) breaking effects from PS, e.g., $\pi\pi\pi\pi\pi$ v.s. KKKK

This is qualitative. What about quantitative?

Exclusive Approaches Effort 2. Try PP & PV (best measured) [Cheng,Chiang, 10']

$$\mathcal{B}(\pi^{+}\pi^{-}) + \mathcal{B}(K^{+}K^{-}) - 2\cos\delta_{K^{+}\pi^{-}}\sqrt{\mathcal{B}(K^{-}\pi^{+})\mathcal{B}(K^{+}\pi^{-})}$$
$$+ \mathcal{B}(\pi^{0}\pi^{0}) + \mathcal{B}(K^{0}\bar{K}^{0}) - 2\cos\delta_{K^{0}\pi^{0}}\sqrt{\mathcal{B}(\bar{K}^{0}\pi^{0})\mathcal{B}(K^{0}\pi^{0})}$$
$$+ \mathcal{B}(\pi^{0}\eta) + \mathcal{B}(\pi^{0}\eta') + \mathcal{B}(\eta\eta) + \mathcal{B}(\eta\eta')$$
$$- 2\cos\delta_{K^{0}\eta}\sqrt{\mathcal{B}(\bar{K}^{0}\eta)\mathcal{B}(K^{0}\eta)} - 2\cos\delta_{K^{0}\eta'}\sqrt{\mathcal{B}(\bar{K}^{0}\eta')\mathcal{B}(K^{0}\eta')}$$

vanish in the SU(3) symmetry limit

10

 y_{PP}

Exclusive Approaches Effort 2. Try PP & PV (best measured) [Cheng,Chiang, 10']

$$\begin{aligned} Br(\pi^{0}\rho^{0}) + Br(\pi^{0}\omega) + Br(\pi^{0}\phi) + Br(\eta\omega) + Br(\eta'\omega) + Br(\eta\phi) + Br(\eta\rho) + Br(\eta\rho^{0}) + Br(\eta'\rho^{0}) \\ -2\cos\delta_{K^{*-}\pi^{+}}\sqrt{Br(K^{*-}\pi^{+})Br(K^{*+}\pi^{-})} - 2\cos\delta_{K^{*0}\pi^{0}}\sqrt{Br(K^{*0}\pi^{0})Br(\bar{K}^{*0}\pi^{0})} \\ -2\cos\delta_{K^{-}\rho^{+}}\sqrt{Br(K^{-}\rho^{+})Br(K^{+}\rho^{-})} - 2\cos\delta_{K^{0}\rho^{0}}\sqrt{Br(K^{0}\rho^{0})Br(\bar{K}^{0}\rho^{0})} \\ -2\cos\delta_{K^{*0}\eta}\sqrt{Br(K^{*0}\eta)Br(\bar{K}^{*0}\eta)} - 2\cos\delta_{K^{*0}\eta'}\sqrt{Br(K^{*0}\eta')Br(\bar{K}^{*0}\eta')} \\ -2\cos\delta_{K^{0}\omega}\sqrt{Br(K^{0}\omega)Br(\bar{K}^{0}\omega)} - 2\cos\delta_{K^{0}\phi}\sqrt{Br(K^{0}\phi)Br(\bar{K}^{0}\phi)} \\ +2\cos\delta_{K^{+}K^{*-}}\sqrt{Br(K^{+}K^{*-})Br(K^{-}K^{*+})} + 2\cos\delta_{K^{0}\bar{K}^{*0}}\sqrt{Br(K^{0}\bar{K}^{*0})Br(\bar{K}^{0}K^{*0})} \\ +2\cos\delta_{\pi^{+}\rho^{-}}\sqrt{Br(\pi^{+}\rho^{-})Br(\pi^{-}\rho^{+})} \end{aligned}$$

Exclusive Approaches

Effort 2. Try PP & PV (best measured)

• Take branching ratios from exp (fit for unmeasured channels) and assume no strong phase difference

[Cheng, Chiang, 10']

$$y_{PP} = (0.86 \pm 0.41) \times 10^{-3}$$

 $y_{PV} = (2.69 \pm 2.53) \times 10^{-3} (A, A1)$ VS
 $y_{PV} = (1.52 \pm 2.20) \times 10^{-3} (S, S1)$

 $y_{\rm exp} = (0.62 \pm 0.08)\%$

Same order, but large uncertainties! Why?

- Contributions to y may cancel between different modes, but uncertainties always add together (assuming independent, but not true).
- The uncertainties of y are determined by the worst channels (with largest uncertainties).

Exclusive Approaches Effort 2. Try PP & PV (best measured)

$$y_{PP} = (0.86 \pm 0.41) \times 10^{-3}$$

$$y_{PV} = (2.69 \pm 2.53) \times 10^{-3} (A, A1)$$

$$y_{PV} = (1.52 \pm 2.20) \times 10^{-3} (S, S1)$$

[Cheng,Chiang, 10'

$$\mathcal{B}(\eta\eta)_{\exp} = (1.70 \pm 0.20) \times 10^{-3}$$

$$\mathcal{B}(\eta\eta')_{\exp} = (1.07 \pm 0.26) \times 10^{-3}$$

$$\mathcal{B}(\pi^{+}K^{*-})_{\exp} = (54.3 \pm 4.4) \times 10^{-3}$$

$$\mathcal{B}(\pi^{-}K^{*+})_{\exp} = (0.345^{+0.180}_{-0.102}) \times 10^{-3}$$

$$\sigma[B(\eta\eta) + B(\eta\eta')] = 0.33 \times 10^{-3}$$

one term in yPP

$$\sigma[-2\sqrt{\mathcal{B}(\pi^{+}K^{*-})\mathcal{B}(\pi^{-}K^{*+})] = 1.8 \times 10^{-3}$$

one term in yPV

 To reduce uncertainties, we need to find correlations between the modes.

Factorization-Assisted Topological-Amplitude Approach

[Bhattacharya, Rosner, 08',10'] [Cheng, Chiang, 10'] • Factorize each topological amplitude:

- Short-distance dynamics: Wilson coefficients
- Long-distance dynamics: hadronic matrix elements

[Li, Lu, Yu, 1203.3120] [QQ, Li, Lu, Yu, 1305.7021]

Emission Amplitudes (PP)

- Color-favored Tree (T)
- Color-suppressed (C)

(a) T

(b) C

$$\langle P_{1}P_{2}|\mathcal{H}_{\text{eff}}|D\rangle_{T,C} = \frac{G_{\text{F}}}{\sqrt{2}} V_{\text{CKM}} a_{1,2}(\mu) f_{P_{2}}(m_{D}^{2} - m_{P_{1}}^{2}) F_{0}^{DP_{1}}(m_{P_{2}}^{2})$$

$$a_{1}(\mu) = C_{2}(\mu) + \frac{C_{1}(\mu)}{N_{c}} \qquad \text{Non-factorizable} \\ a_{2}(\mu) = C_{1}(\mu) + C_{2}(\mu) \begin{bmatrix} \frac{1}{N_{c}} + \chi_{nf} e^{i\phi} \end{bmatrix} \qquad \text{SU(3) breaking} \\ a_{2}(\mu) = C_{1}(\mu) + C_{2}(\mu) \begin{bmatrix} \frac{1}{N_{c}} + \chi_{nf} e^{i\phi} \end{bmatrix} \qquad \text{amplitudes}$$

$$\mu = \sqrt{\Lambda m_{D}(1 - r_{2}^{2})}, \qquad r_{2} = m_{P_{2}}^{2}/m_{D}^{2} \qquad \text{[Li, Lu, Yu, 1203.3120]}$$

Annihilation Amplitude (PP)

• W-exchange (E)

(d) E

$$\langle P_1 P_2 | \mathcal{H}_{\text{eff}} | D \rangle_E = \frac{G_F}{\sqrt{2}} V_{\text{CKM}} b_{q,s}^E(\mu) f_D m_D^2 \left(\frac{f_{P_1} f_{P_2}}{f_\pi^2} \right)$$

Dominated by non-factorizable contribution

$$b_{q,s}^{E}(\mu) = C_{2}(\mu)\chi_{q,s}^{E}e^{i\phi_{q,s}^{E}} + S_{\pi} -$$

Glauber strong phase for pions: [Li, Mishima, 11'] amplitudes

pion= 1. Nambu-Goldstone boson 2. qqbar bound state

[Li, Lu, Yu, 1203.3120]

$$\chi_q \neq \chi_s$$

effects in

SU(3) breaking

Amplitudes (PV)

- Color-favored Tree (T)
- Color-suppressed (C)

$$\langle PV|\mathcal{H}_{\text{eff}}|D\rangle_{T,C} = \frac{G_{\text{F}}}{\sqrt{2}} V_{\text{CKM}} a_{1,2}^{P}(\mu) f_{V} m_{V} F_{1}^{DP}(m_{V}^{2}) 2(\varepsilon_{V} \cdot p_{D})$$
$$\langle VP|\mathcal{H}_{\text{eff}}|D\rangle_{T,C} = \frac{G_{\text{F}}}{\sqrt{2}} V_{\text{CKM}} a_{1,2}^{V}(\mu) f_{P} m_{V} A_{0}^{DV}(m_{P}^{2}) 2(\varepsilon_{V} \cdot p_{D})$$

• W-exchange (E)

$$\langle PV|\mathcal{H}_{\text{eff}}|D\rangle_{E} = \frac{G_{\text{F}}}{\sqrt{2}} V_{\text{CKM}} C_{2}(\mu) \chi^{E}_{q,s} e^{i\phi^{E}_{q,s}} f_{D} m_{D} \frac{f_{P}}{f_{\pi}} \frac{f_{V}}{f_{\rho}} (\varepsilon_{V} \cdot p_{D})$$

[QQ, Li, Lu, Yu, 1305.7021]

To extract nonperturbative parameters from abundant and precise data

• **PP**

 $\chi_{\rm nf}^C = -0.81 \pm 0.01, \qquad \phi_{\rm nf}^C = 0.22 \pm 0.14, \qquad S_{\pi} = -0.92 \pm 0.07,$ $\chi_q^E = 0.056 \pm 0.002, \quad \phi_q^E = 5.03 \pm 0.06, \quad \chi_s^E = 0.130 \pm 0.008, \quad \phi_s^E = 4.37 \pm 0.10$

• PV

$$\begin{split} S_{\pi} &= -1.88 \pm 0.12, \quad \chi_P^C = 0.63 \pm 0.03, \quad \phi_P^C = 1.57 \pm 0.11, \\ \chi_V^C &= 0.71 \pm 0.03, \qquad \phi_V^C = 2.77 \pm 0.10, \qquad \chi_q^E = 0.49 \pm 0.03, \\ \phi_q^E &= 1.61 \pm 0.07, \qquad \chi_s^E = 0.54 \pm 0.03, \qquad \phi_s^E = 2.23 \pm 0.08 \end{split}$$

PP: 7 parameters for 13 data PV: 9 parameters for 19 data

18 [Jiang, Yu, QQ, Li, Lu, 1705.07335]

D⁰ decay rates of PP and PV channels agree well with experiments

 $(\times 10^{-3})$

Modes	$\mathcal{B}(\exp)$	$\mathcal{B}(FAT)$	Modes	$\mathcal{B}(\exp)$	$\mathcal{B}(\mathrm{FAT})$	Modes	$\mathcal{B}(\exp)$	$\mathcal{B}(\mathrm{FAT})$
$\pi^0 \overline{K}^0$	24.0 ± 0.8	24.2 ± 0.8	$\pi^0 \overline{K}^{*0}$	37.5 ± 2.9	35.9 ± 2.2	$\overline{K}^0 \rho^0$	$12.8^{+1.4}_{-1.6}$	13.5 ± 1.4
$\pi^+ K^-$	39.3 ± 0.4	39.2 ± 0.4	$\pi^+ K^{*-}$	54.3 ± 4.4	62.5 ± 2.7	$K^-\rho^+$	111.0 ± 9.0	105.0 ± 5.2
$\eta \overline{K}^0$	9.70 ± 0.6	9.6 ± 0.6	$\eta \overline{K}^{*0}$	9.6 ± 3.0	6.1 ± 1.0	$\overline{K}^0 \omega$	22.2 ± 1.2	22.3 ± 1.1
$\eta' \overline{K}^0$	19.0 ± 1.0	19.5 ± 1.0	$\eta' \overline{K}^{*0}$	< 1.10	0.19 ± 0.01	$\overline{K}^0\phi$	$8.47\substack{+0.66 \\ -0.34}$	8.2 ± 0.6
$\pi^+\pi^-$	1.421 ± 0.025	1.44 ± 0.02	$\pi^+ \rho^-$	5.09 ± 0.34	4.5 ± 0.2	$\pi^- \rho^+$	10.0 ± 0.6	9.2 ± 0.3
K^+K^-	4.01 ± 0.07	4.05 ± 0.07	K^+K^{*-}	1.62 ± 0.15	1.8 ± 0.1	K^-K^{*+}	4.50 ± 0.30	4.3 ± 0.2
$K^0 \overline{K}^0$	0.36 ± 0.08	0.29 ± 0.07	$K^0 \overline{K}^{*0}$	0.18 ± 0.04	0.19 ± 0.03	$\overline{K}^0 K^{*0}$	0.21 ± 0.04	0.19 ± 0.03
$\pi^0\eta$	0.69 ± 0.07	0.74 ± 0.03	ηho^0		1.4 ± 0.2	$\pi^0 \omega$	0.117 ± 0.035	0.10 ± 0.03
$\pi^0\eta^\prime$	0.91 ± 0.14	$1.08 {\pm} 0.05$	$\eta' ho^0$		0.25 ± 0.01	$\pi^0 \phi$	1.35 ± 0.10	1.4 ± 0.1
$\eta\eta$	1.70 ± 0.20	$1.86 {\pm} 0.06$	$\eta\omega$	2.21 ± 0.23	2.0 ± 0.1	$\eta\phi$	0.14 ± 0.05	0.18 ± 0.04
$\eta\eta^\prime$	1.07 ± 0.26	$1.05{\pm}0.08$	$\eta'\omega$		0.044 ± 0.004			
$\pi^0\pi^0$	0.826 ± 0.035	0.78 ± 0.03	$\pi^0 ho^0$	3.82 ± 0.29	4.1 ± 0.2			
$\pi^0 K^0$		$0.069 {\pm} 0.002$	$\pi^{0}K^{*0}$		0.103 ± 0.006	$K^0 \rho^0$		0.039 ± 0.004
$\pi^- K^+$	0.133 ± 0.009	$0.133 {\pm} 0.001$	$\pi^{-}K^{*+}$	$0.345\substack{+0.180 \\ -0.102}$	0.40 ± 0.02	$K^+ \rho^-$		0.144 ± 0.009
ηK^0		$0.027 {\pm} 0.002$	ηK^{*0}		0.017 ± 0.003	$K^0\omega$		0.064 ± 0.003
$\eta' K^0$		$0.056 {\pm} 0.003$	$\eta' K^{*0}$		0.00055 ± 0.00004	$K^0\phi$		0.024 ± 0.002

Back to our topic in the end

$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \eta_{\rm CP}(n) (\langle D^0 | H_w | n \rangle \langle \bar{n} | H_w | D^0 \rangle + \langle D^0 | H_w | \bar{n} \rangle \langle n | H_w | D^0 \rangle)$$

$$= \sum_{n} \eta_{\rm CKM}(n) \eta_{\rm CP}(n) \cos \delta_n \sqrt{Br(D^0 \to n) Br(D^0 \to \bar{n})} ,$$

 $CP|M_1M_2\rangle = \eta_{\rm CP}(M_1)\eta_{\rm CP}(M_2)(-1)^L|M_1M_2\rangle = \eta_{\rm CP}(M_1M_2)|M_1M_2\rangle$

Our results

 $y_{PP} = (1.00 \pm 0.19) \times 10^{-3}$ $y_{PV} = (1.12 \pm 0.72) \times 10^{-3}$

 $y_{PP+PV} = (0.21 \pm 0.07)\%$

[Jiang, Yu, QQ, Li, Lu, 1705.07335]

$$y_{PP} = (0.86 \pm 0.41) \times 10^{-3}$$

 $y_{PV} = (2.69 \pm 2.53) \times 10^{-3} (A, A1)$
 $y_{PV} = (1.52 \pm 2.20) \times 10^{-3} (S, S1)$

[Cheng, Chiang, 10']

$$y_{\rm exp} = (0.62 \pm 0.08)\%$$
 [HFLAV, 16']

- In Cheng and Chiang's work, uncertainties are summed up channel by channel.
- In our approach, uncertainties are controlled by most precisely measured channels.

PP	\mathbf{PV}	VV	PA	\mathbf{PS}	\mathbf{PT}	semilep
10%	30~%	10~%	10~%	5~%	0.2%	15%

Two-body D⁰ decay branching fractions [PDG]

Summary and Outlook

- The inclusive approach based on heavy quark expansion can not explain the yD data. [Bobrowski, Lenz, Riedl, Rohrwild, 10']
- In the direction of exclusive approaches, considering the SU(3) breaking only from phase spaces, the order of a SM y is natural. [Falk,Grossman,Ligeti,Petrov, 01']
- Adding up the measured PP and PV branching ratios, the central value for y is consistent with data, but with very large uncertainties (from the worst measured channels). [Cheng,Chiang, 10']
- In our approach (FAT), SU(3) breaking is well described for PP and PV, and thus predict well the yD with uncertainties under control (determined by the most precisely measured channels).
- The PP and PV channels contribute about 1/3 of the D-Dbar mixing parameter **y**.
- We are looking forward to more data of branching ratios and angular distribution of the VV, PA, PS and multi-body modes.

[Li, Lu, Yu, 1203.3120] [QQ, Li, Lu, Yu, 1305.7021] [Jiang, Yu, QQ, Li, Lu, 1705.07335]

Thank you for your attention!

Topological-Amplitude Approach

[Bhattacharya, Rosner, 08',10'] [Cheng, Chiang, 10']

Estimation of VV contribution

- No enough data for fit
 - only 4 channels with measured total decay rates (18 parameters)
 - only 1 channel with measured longitudinal decay rate (6 parameters)
- Apply PV parameters to longitudinal VV channels

Neutral D⁰ decay rates of VV channels to see whether the estimation is acceptable

 $(\times 10^{-3})$

=				
	Modes	$\mathcal{B}_{\mathrm{tot}}(\mathrm{exp})$	$\mathcal{B}_{\mathrm{long}}(\mathrm{exp})$	$\mathcal{B}_{long}(FAT)$
_	$ ho^0 \overline{K}^{*0}$	15.9 ± 3.5		14.3 ± 1.6
	$\rho^+ K^{*-}$	65.0 ± 25.0		41.8 ± 2.4
	$\overline{K}^{*0}\omega$	11.0 ± 5.0		37.7 ± 2.7
	$ ho^+ ho^-$			$4.1 {\pm} 0.3$
	$K^{*+}K^{*-}$			$1.18 {\pm} 0.06$
	$K^{*0}\overline{K}^{*0}$			$0.043 {\pm} 0.006$
	$ ho^0 ho^0$	1.83 ± 0.13	1.25 ± 0.13	$1.4{\pm}0.2$
	$ ho^0\omega$			$1.37{\pm}0.08$
	$ ho^0\phi$			$0.65 {\pm} 0.04$
	$\omega\omega$			$0.53{\pm}0.08$
	$\omega\phi$			$1.4{\pm}0.1$
	$ ho^0 K^{*0}$			$0.041 {\pm} 0.005$
	$\rho^- K^{*+}$			$0.143 {\pm} 0.008$
	$K^{*0}\omega$			$0.108 {\pm} 0.008$

Estimation: $y_{VV} = (0.28 \pm 0.47) \times 10^{-3}$ (Longitudinal) $y_{PP+PV+VV} = 0.24\%$

Exp:
$$y_D = (0.62 \pm 0.08)\%$$

Two-body D⁰ decay branching fractions

	PP 10%	PV 30 %	VV 10 %	PA 10 %	$\begin{array}{c} \mathrm{PS} \\ 5 \ \% \end{array}$	$\begin{array}{c} \mathrm{PT} \\ 0.2\% \end{array}$	$\begin{array}{c} \text{semilep} \\ 15\% \end{array}$	[PDG]
<i></i> Пср:	+	+	+, S,C) +	_			
			-, P w	vave				

More efforts expected from experimentalists to measure VV, PA, PS and multi-body modes

x from dispersion relation

$$Ref(s) = \frac{1}{\pi} P \int_0^\infty \frac{ds'}{s' - s} Imf(s')$$

In the heavy quark limit

$$\Delta m = -\frac{1}{2\pi} P \int_{2m_{\pi}}^{\infty} dE \left[\frac{\Delta \Gamma(E)}{E - m_D} + \mathcal{O} \left(\frac{\Lambda_{QCD}}{E} \right) \right]$$

[Falk,Grossman,Ligeti,Nir,Petrov,2004]

x from dispersion relation

$$Ref(s) = \frac{1}{\pi} P \int_0^\infty \frac{ds'}{s' - s} Imf(s')$$

$$\Delta m = 2M_{12} = 2Re[\Pi(m_D^2)]$$

$$\Delta \Gamma = 2\Gamma_{12} = 2Im[\Pi(m_D^2)]$$

$$D^0$$

$$\overline{D}^0$$

$$\overline{D}^0$$

$$\Delta m(m_D^2) = \frac{2}{\pi} P \int_{(2m_\pi^2)^2}^{\infty} \frac{\Delta \Gamma(s)}{s - m_D^2} ds$$

x from dispersion relation

$$D^0 \to \pi^+ \pi^- v.s. \ D^0 \to K^+ K^-$$

$$\begin{split} \mathcal{A}(D^{0} \to \pi^{+}\pi^{-}) &= \frac{G_{F}}{\sqrt{2}} \lambda_{d} \left(T^{\pi\pi} + E^{\pi\pi} \right) & \text{Glauber phase} \\ &= \frac{G_{F}}{\sqrt{2}} V_{cd}^{*} V_{ud} \left[a_{1}(\mu) (m_{D}^{2} - m_{\pi}^{2}) f_{\pi} F_{0}^{D\pi}(m_{\pi}^{2}) + C_{2}(\mu) e^{i(\phi_{q}^{E} + 2S_{\pi})} \chi_{q}^{E} f_{D} m_{D}^{2} \right] \\ \mathcal{A}(D^{0} \to K^{+} K^{-}) &= \frac{G_{F}}{\sqrt{2}} \lambda_{s} \left(T^{KK} + E^{KK} \right) & \text{Main difference} \\ &= \frac{G_{F}}{\sqrt{2}} V_{cs}^{*} V_{us} \left[a_{1}(\mu) (m_{D}^{2} - m_{K}^{2}) f_{K} F_{0}^{DK}(m_{K}^{2}) + C_{2}(\mu) e^{i\phi_{q}^{E}} \chi_{q}^{E} f_{D} m_{D}^{2} \frac{f_{K}^{2}}{f_{\pi}^{2}} \right] \end{split}$$

Modes	Br(FSI)	Br(diagram)	Br(pole)	Br(exp)	Br(this work)
$D^0 o \pi^+ \pi^-$	1.59	2.24 ± 0.10	2.2 ± 0.5	1.45 ± 0.05	1.43 🗲
$D^0 \rightarrow K^+ K^-$	4.56	1.92 ± 0.08	3.0 ± 0.8	4.07 ± 0.10	4.19 🚄

$$T^{\pi\pi} = 2.73, \qquad E^{\pi\pi} = 0.82e^{-i142^{\circ}},$$

 $T^{KK} = 3.65, \qquad E^{KK} = 1.2e^{-i85^{\circ}},$

Result of CP asymmetries

Difference of CPV in D->KK and D-> pipi

$$\Delta A_{CP}^{\rm dir} = A_{CP}(D^0 \to K^- K^+) - A_{CP}(D^0 \to \pi^- \pi^+)$$

• Our prediction:

$$\Delta A_{CP} = (-0.57 \sim -1.87) \times 10^{-3}$$
 [Li, Lu, Yu, 12']

 After our prediction, the world average value is lowered down by the LHCb results

Exp: $\Delta A_{CP} = (-2.53 \pm 1.04) \times 10^{-3}$ [HFAG2014]

Measurements of ΔA_{CP}

 $\Delta A_{CP}^{\rm dir} = A_{CP}(D^0 \to K^- K^+) - A_{CP}(D^0 \to \pi^- \pi^+)$

Measurements	ΔΑ _{CP}	Publication	World Average
2011LHCb (D*)	(-0.82±0.24)%	PRL108,111602	ICHEP2012:
2012 CDF	(-0.62±0.23)%	PRL109,111801	(-0.74±0.15)% HFAG2012:
2012 Belle	(-0.87±0.41)%	1212,1975	(-0.68±0.15)%
2013LHCb (D*)	(-0.34±0.18)%	LHCb- CONF-2013-03	HFAG2013:
2013LHCb (B)	(+0.49±0.33)%	PLB723(2013)33	(-0.33±0.12)%
2014LHCb (B)	(+0.14±0.18)%	JHEP07(2014)041	HFAG2014: (-0.25±0.10)%
2016LHCb (D*)	(-0.10±0.09)%	PRL116,191601	(-0.14±0.07)%

Measurements of ΔA_{CP}

 $\Delta A_{CP}^{\rm dir} = A_{CP}(D^0 \to K^- K^+) - A_{CP}(D^0 \to \pi^- \pi^+)$

Measurements	ΔΑ _{CP}	Publication	World Average	
2011LHCb (D*)	(-0.82±0.24)%	Dredicti	ion in 2012 PRD86,036012]	
2012 CDF	(-0.62±0.23)%	[Li,Lu, FSY ,		
2012 Belle	(-0.87±0.41)%	ΔA _{CP} =(-0	.06 ~ -0.19)%	
2013LHCb (D*)	(-0.34±0.18)%	LHCb- CONF-2013-03	HFAG2013:	
2013LHCb (B)	(+0.49±0.33)%	PLB723(2013)33	(-0.33±0.12)%	
2014LHCb (B)	(+0.14±0.18)%	JHEP07(2014)041	HFAG2014: (-0.25±0.10)%	
2016LHCb (D*)	(-0.10±0.09)%	PRL116,191601	(-0.14±0.07)%	

34