

Measurements of charmed mesons and baryons in pp and p-Pb collisions with ALICE at the LHC

Syaefudin Jaelani Utrecht University On behalf of the ALICE Collaboration

Netherlands Organisation for Scientific Research

- Heavy quarks (charm & beauty) produced in hard parton scattering processes (in the early stage of collision)
- Charmed hadrons (D mesons, Λ_c, Ξ_c baryons), measured in pp collisions:
 - useful test of perturbative QCD calculations
 - reference for p-Pb and Pb-Pb measurements
 - ▷ baryon production → insight on charm quark hadronisation mechanism

[1] (Phys.Rev.D36 (1987) 2019; Nucl.Phys.Proc.Suppl.214 (2011) 181–184)

- Heavy quarks (charm & beauty) produced in hard parton scattering processes (in the early stage of collision)
- Charmed hadrons (D mesons, Λ_c, Ξ_c baryons), measured in pp collisions:
 - useful test of perturbative QCD calculations
 - reference for p-Pb and Pb-Pb measurements

In p-Pb collisions:

- study the cold nuclear matter effects:
 - energy loss in the initial and final state of the collisions
 - *k*_T broadening ^[1]
 - shadowing
- study possible collective effects in small systems

21-25 May 2018

Hadronic decay reconstruction

Universiteit Utrecht

$D^0 \rightarrow K^- \pi^+$	BR ~ 3.93%	cτ ~ 123 μm
$D^+ \rightarrow K^- \pi^+ \pi^+$	BR ~ 9.46%	cτ ~ 312 μm
$D^{*_+} \rightarrow D^0 (K^- \pi^+) \pi^+$	BR ~ 2.66%	-
$D_{s^+} \rightarrow \phi (K^- K^+) \pi^+$	BR ~ 2.27%	cτ ~ 150 μm
Λ _c +→p K- π+	BR ~ 6.35%	<i>cτ</i> ~ 60 μm
Λ _c +→p K _s ₀	BR ~ 1.58%	63

- Decay topology via secondary vertex reconstruction and PID to reduce combinatorial background
 - $\land \Lambda_{c^+}$ in p-Pb : apply multivariate approach (BDTs)
- Invariant mass analysis
- Using FONLL-based method to subtract feed-down from b-hadron decays

secondary vertex

D'flight line

impact parameters $\sim 100 \,\mu$ m

primary vertex

Κ

Semileptonic decay reconstruction

$\Lambda_{c^+} \rightarrow e^+ \wedge v_e$	BR ~ 3.6%
$\Xi_{c^{0}} \rightarrow e^{+} \Xi^{-} \mathbf{v}_{e}$	BR unkown

- PID is used to reduce combinatorial background
- Wrong-sign e-Λ (e-Ξ-) pairs subtracted from right-sign spectra e+Λ (e+Ξ-)
- Correct for Λ_{b^0} and $\Xi_{b^0} (\Xi_{c^{0,+}})$ in wrong-sign (right-sign) spectra
- Unfold $e^+\Lambda$ ($e^+ \Xi^-$) p_T spectra to obtain Λ_{c^+} (Ξ_{c^0}) spectra
- Subtraction of feed-down from Λ_b^0 decay (Λ_c^+ measurement only)

21-25 May 2018

 p_T -differential cross section of D mesons described within uncertainties by pQCD calculations (FONLL)

D*+ 13 TeV e.g.: D_s⁺ 7 TeV D+8 TeV ত¹⁰ $d^{2}\sigma/(d\rho_{T}dy)$ (µb GeV⁻¹ c) 1 0 0 010 ALICE Preliminary GeV⁻¹ **ALICE** Preliminary **ALICE** Preliminary Prompt D⁺, pp $\sqrt{s} = 8 \text{ TeV}^{\frac{1}{2}}$ Prompt D^{+} , pp \sqrt{s} =13 TeV Prompt D_s^+ , pp, $\sqrt{s}=7$ TeV ි 10² $L_{\rm int} = 1.9 \text{ nb}^{-1}, |y| < 0.5$ |y| < 0.5|y| < 0.5 $d^2\sigma/(d
ho_T dy)$ (µb GeV 0 • qn) $d^2 \sigma / (d \rho_T d y)$ (+ stat. unc. 10^{-1} + stat. unc. 10⁻¹ 🕂 stat. unc.]syst. unc. syst. unc. syst. unc. FONLL **POWHEG+PYTHIA6** FONLL 10^{-2} 10^{-2} 10⁻² 5% L_{int}, ± 1.3% BR uncertainty (not shown 3.5% L_{int} , ± 3.5% BR uncertainty (not shown) \pm 5% L_{int}, \pm 2.5% BR uncertainty (not shown) Data POWHEG <u>Data</u> FONLL <u>FONLL</u> ╔╋┨ ----ρ_T (GeV/c) $p_{_{_{_{_{}}}}}^{30}$ (GeV/c) 10 12 10 15 20 25 ²⁰ ²⁵ *p*_{_} (GeV/*c*) 10 15 ALI-PREL-137604 ALI-PREL-130985

- p_{T} -differential cross section of D mesons described within uncertainties by pQCD calculations (FONLL)
- D_s⁺ cross section reproduced by POWHEG+PYTHIA6 within uncertainties

ALI-PREL-112173

ALI-PREL-151360

Improved measurement in terms of uncertainties reduction using minimum-bias data sample collected 2017

New results compatible with scaled reference at 7 TeV

21-25 May 2018

D-meson species ratios well described by models: sensitive to fragmentation functions

Results reproduced within uncertainties by FONLL theoretical predictions

D-meson R_{pPb}

Yul>
 EGC: arXiv:1706.06728

- 👺 FONLL (JHEP 1210 (2012) 137, arXiv:1205.6344) with EPPS16 nPDFs (Eur. Phys. J. C77 no. 3, (2017) 163, arXiv:1612.05741)
- 警 Vitev et al: Phys.Rev. C80 (2009) 054902, arXiv:0904.0032.

👺 Kang et al.: Phys. Lett. B740 (2015) 23–29, arXiv:1409.2494.

警 Duke: Nucl. xPart. Phys. Proc. 276-278 (2016) 225–228, arXiv:1510.07520.

POWLANG: JHEP 03 (2016) 123, arXiv:1512.05186.

 D_{s^+} -meson R_{pPb} compatible with non-strange D-meson one, both compatible with unity Provide stringent constraints to the model predictions

21-25 May 2018

D-meson Q_{pPb}

- Q_{pPb} consistent with unity in both centrality ranges
- Hint of $Q_{CP} > 1$ in $3 < p_T < 8$ GeV/c, 1.5 σ effect

21-25 May 2018

D-meson Q_{pPb}

D-meson Q_{pPb} compatible with that of charged particles within uncertainties both in central and peripheral events

D-meson Q_{CP} compatible with that of charged particles

CHARM18 - S. Jaelani

ALI-PREL-136823

$\Lambda_{c}^{+} p_{T}$ -differential cross section

- Combination of 3 decay channels in pp (hadronic + semileptonic) and 2 decay channels in p-Pb (hadronic)
- The theoretical predictions underestimate $\Lambda_c p_T$ -differential cross section both in pp and p-Pb
- In the models, the fragmentation function is tuned to reproduce the results from lower energy e⁺e⁻ collisions

Λ_c^+/D^0 baryon-to-meson ratio in pp and p-Pb

 \land Λ_{c^+}/D^0 ratios in pp and p-Pb collisions are compatible within uncertainties

- All theoretical predictions underestimated our measurements:
 - PYTHIA8 tune with the Monash tune (enhanced color reconnection)
 - Shao et al. model (tuned on LHCb pp data)
- New preliminary results in p-Pb collisions at 5.02 TeV (improved measurements in terms of p_T reach and precision): similar trend as baryon-to-meson ratio in the light-flavour sector

- $\Lambda_{c^+} R_{pPb}$ is consistent with unity as D-meson R_{pPb} and with model predictions within uncertainties:
 - POWHEG+PYTHIA6 with CT10NLO+EPS09 PDF: Cold Nuclear Matter effects
 - POWLANG with "small-size" QGP formation: hot medium effects, collisional energy loss

21-25 May 2018

- First Ξ_c^0 production measurement at the LHC (BR unknown)
 - Baryon-to-meson ratio $\Xi_c^0 \rightarrow e^+\Xi^- v_e/D^0$ larger than model predictions

21-25 May 2018

- D-meson p_T -differential cross section measured in pp collisions at 2.76, 5.02, 7, 8 and 13 TeV compatible with pQCD predictions
- R_{PPb} of D mesons compatible with unity
- Q_{pPb} consistent with unity and compatible with charged particles in 0-10% and 60-100% centrality classes
- → Hint of $Q_{CP} > 1$ in 3 < p_T < 8 GeV/c, 1.5σ effect
 </p>
- Λ_{c^+} production in pp and p-Pb collisions underestimated by models
- Λ_{c^+}/D^0 in p-Pb collisions higher than MC predictions: similar trend as the baryon-to-meson ratio in the light-flavour sector
- $= \Xi_c^0/D^0$ production underestimated by the theoretical predictions

ALICE

Thank you! Спасибо!

Netherlands Organisation for Scientific Research

Nikhef

21-25 May 2018

BACK UP

21-25 May 2018

CHARM18 - S. Jaelani

20

D-meson cross sections at 2.76 TeV

§ JHEP 1207 (2012) 191

D-meson cross sections at 7 TeV

D-meson cross sections at 8 TeV

ALI-PREL-130977

D-meson cross sections at 13 TeV

21-25 May 2018