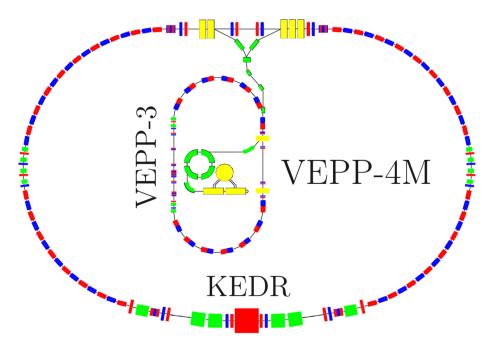
### Charmonium at KEDR

Kharlamova Tatyana for KEDR Collaboration

BINP, NSU

9<sup>th</sup> International workshop on Charm Physics

22.05.2018






### Outline

- VEPP-4M / KEDR
- New results on  $J/\psi$  leptonic width
- New result on  $\psi(2S)$  leptonic width
- New R measurement
- Summary

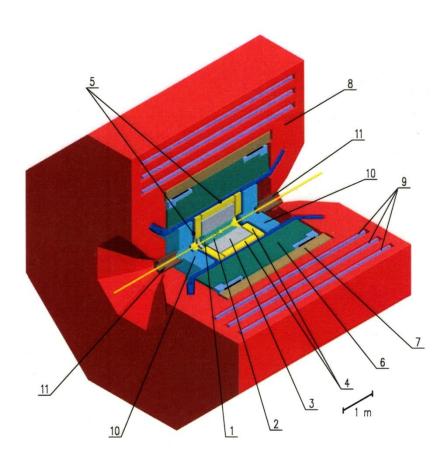
#### Collider VEPP-4M



Circumference 366 m

Beam energy 1 - 5 GeV

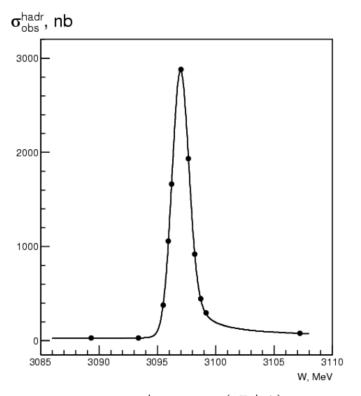
Number of bunches 2 x 2

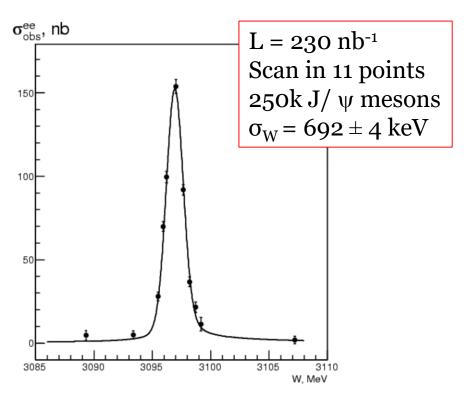

Luminosity at 1.5 GeV 2.10<sup>30</sup> cm<sup>-2</sup> s<sup>-1</sup>

Luminosity at 5.0 GeV 2·10<sup>31</sup> cm<sup>-2</sup> s<sup>-1</sup>

#### Beam energy measurement:

- Resonant depolarization method
   Instant measurement accuracy ~1·10<sup>-6</sup>
   Energy interpolation accuracy (5 15) ·10<sup>-6</sup> (10-30 keV)
- Infrared light Compton backscattering Monitoring with accuracy < 100 keV</li>

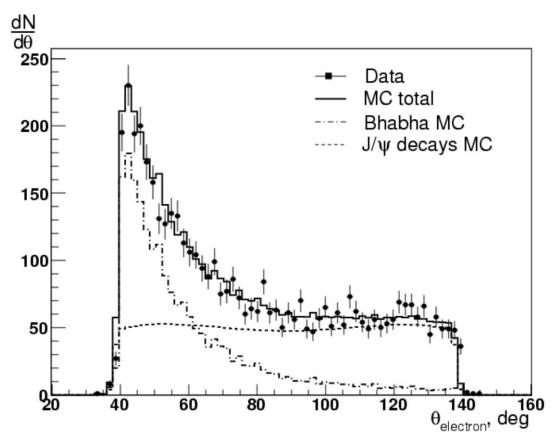

### **Detector KEDR**




- 1. Vacuum chamber
- 2. Vertex detector
- 3. Drift chamber
- 4. Threshold aerogel counters
- 5. ToF counters
- 6. Liquid krypton calorimeter
- 7. Superconducting coil
- 8. Magnet yoke
- 9. Muon tubes
- 10. CsI calorimeter
- 11. Compensating s/c solenoid

## Measurement of $\Gamma_{ee} \cdot B_h(J/\psi)$ and $\Gamma_{ee}(J/\psi)$

- Combined fit of hadronic and leptonic events
- Free parameters:  $\Gamma_{ee} \cdot B_{ee}(J/\psi)$ ,  $\Gamma_{ee} \cdot B_{h}(J/\psi)$  or  $\Gamma_{ee}(J/\psi)$ ,
- and also :  $m(J/\psi)$ ,  $R_L$ ,  $\sigma_W$ ,  $\sigma_O$

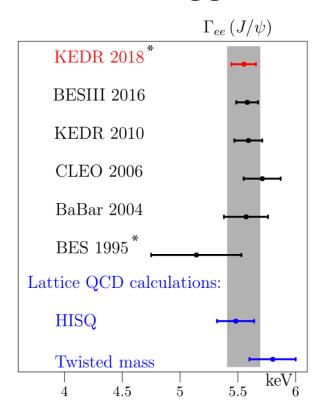





$$\Gamma_{e^+e^-}/\Gamma_{\mu^+\mu^-}(J/\psi) = 1.0022 \pm 0.0065$$

was fixed from KEDR result Phys. Lett. B 731(2014) 227

# Measurement of $\Gamma_{ee} \cdot B_h(J/\psi)$ and $\Gamma_{ee}(J/\psi)$

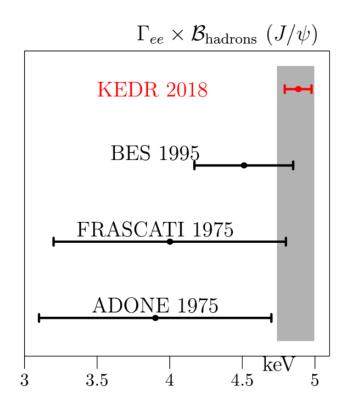


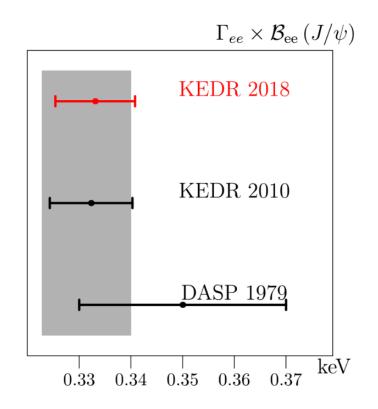

- The relative luminosity was measured by bremsstrahlung luminosity monitor
- The absolute luminosity was calculated using e<sup>+</sup>e<sup>-</sup> events in the barrel LKr calorimeter

# Systematic uncertainties for $\Gamma_{ee}(J/\psi)$

| Source                        | Uncertainty, % |                                                 |                                      |  |  |  |
|-------------------------------|----------------|-------------------------------------------------|--------------------------------------|--|--|--|
|                               | $\Gamma_{ee}$  | $\Gamma_{ee} \cdot \mathcal{B}_{	ext{hadrons}}$ | $\Gamma_{ee} \cdot \mathcal{B}_{ee}$ |  |  |  |
| Luminosity                    | 1.0            | 1.0                                             | 1.0                                  |  |  |  |
| Simulation of $J/\psi$ decays | 0.7            | 0.7                                             | _                                    |  |  |  |
| Detector response             | 0.8            | 0.8                                             | 0.4                                  |  |  |  |
| Accelerator-related effects   | 0.4            | 0.4                                             | 0.4                                  |  |  |  |
| Theoretical uncertainties     | 0.4            | 0.4                                             | 0.2                                  |  |  |  |
| Total                         | 1.6            | 1.6                                             | 1.2                                  |  |  |  |

# Measurement of $\Gamma_{ee}$ (J/ $\psi$ )

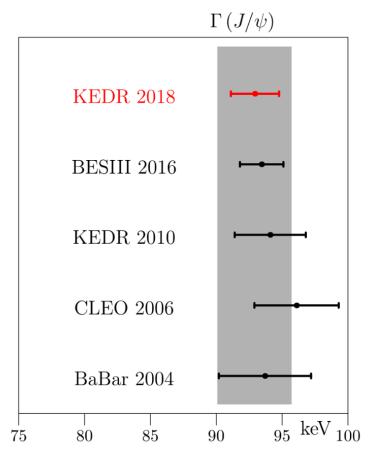




$$\Gamma_{ee}(J/\psi) = 5.550 \pm 0.056 \pm 0.089 \,\mathrm{keV}$$

J. High Energ. Phys. (2018) 2018: 119

To note: Agreement in  $\Gamma_{ee}$  (J/ $\psi$ ) obtained from hadronic and leptonic decays confirm the assumption, that interference phases are not correlated

### Measurement of $\Gamma_{ee} \cdot B_h$ and $\Gamma_{ee} \cdot B_{ee} (J/\psi)$

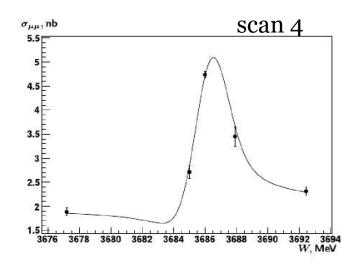





$$\Gamma_{ee}(J/\psi) \cdot \mathcal{B}_{hadrons}(J/\psi) = 4.884 \pm 0.048 \pm 0.078 \,\text{keV}$$
  
 $\Gamma_{ee}(J/\psi) \cdot \mathcal{B}_{ee}(J/\psi) = 0.3331 \pm 0.0066 \pm 0.0040 \,\text{keV}$ 

J. High Energ. Phys. (2018) 2018: 119

## Determination of $\Gamma(J/\psi)$



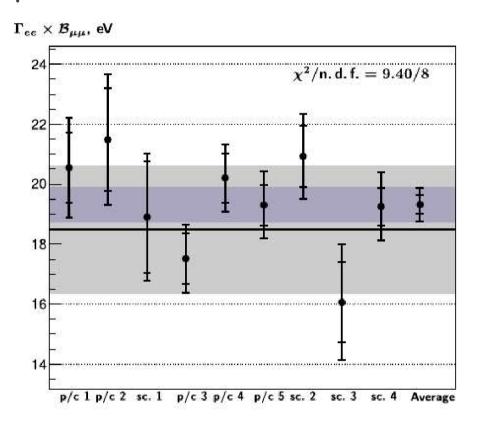

Taking into account  $\mathcal{B}_{ee}(J/\psi) = (5.971 \pm 0.032)\%$  from PDG:  $\Gamma = 92.94 \pm 1.83 \text{ keV}$ 

# $\Gamma_{ee} \cdot B_{\mu\mu}(\psi(2S))$ measurement

| Data set     | Period       | $\int L dt$ , nb <sup>-1</sup> | $\sigma_W$ , MeV |
|--------------|--------------|--------------------------------|------------------|
| Peak/cont. 1 | January 2005 | 358                            | 1.08             |
| Peak/cont. 2 | Autumn 2005  | 222                            | 0.99             |
| Scan 1       | Spring 2006  | 255                            | 0.99             |
| Peak/cont. 3 | Spring 2006  | 631                            | 0.99             |
| Peak/cont. 4 | Autumn 2006  | 701                            | 0.99             |
| Peak/cont. 5 | Autumn 2007  | 1081                           | 1.01             |
| Scan 2       | End 2007     | 967                            | 1.01             |
| Scan 3       | Summer 2010  | 379                            | 1.00             |
| Scan 4       | End 2010     | 2005                           | 0.98             |
|              |              |                                |                  |

Total luminosity more than 6.5 pb<sup>-1</sup>  $4\times10^6~\psi(2S)$  mesons Combined fit of  $e^+e^-$  and  $\mu^+\mu^-$  events



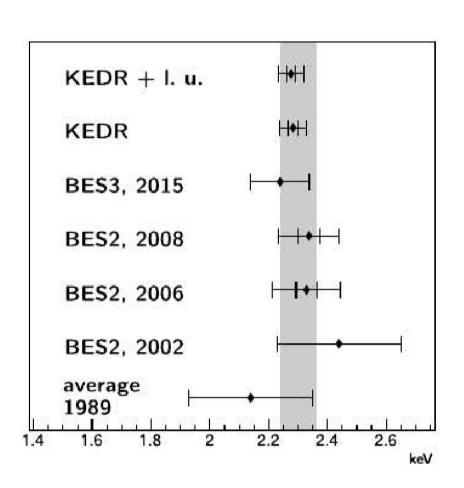

| Bg mode                | m, %  | Efficiency, %    | Correction, %    |
|------------------------|-------|------------------|------------------|
| $J/\psi\pi^+\pi^-$     | 34.49 | $0.03 \div 0.09$ | $2.29 \div 8.94$ |
| $J/\psi\pi^0\pi^0$     | 18.16 | $0.01 \div 0.02$ | $0.38 \div 0.92$ |
| $\gamma \chi_{c0}(1P)$ | 9.99  | < 0.01           | $0.00 \div 0.05$ |
| $\gamma \chi_{c1}(1P)$ | 9.55  | $0.03 \div 0.03$ | $0.47 \div 0.92$ |
| $\gamma \chi_{c2}(1P)$ | 9.11  | $0.02 \div 0.03$ | $0.44 \div 0.69$ |
| $J/\psi\eta$           | 3.36  | $0.02 \div 0.05$ | $0.17 \div 0.46$ |
| $e^+e^-$               | 0.79  | < 0.01           | < 0.01           |
| $\eta_c \gamma$        | 0.34  | < 0.01           | < 0.01           |
| $	au^+	au^-$           | 0.31  | $0.05 \div 0.08$ | $0.05 \div 0.07$ |
| $J/\psi\pi^0$          | 0.13  | $0.10 \div 0.15$ | $0.03 \div 0.05$ |
| рp                     | 0.03  | $0.01 \div 0.03$ | < 0.01           |

В

# Systematic uncertainties for $\Gamma_{ee} \cdot B_{\mu\mu} (\psi(2S))$

| Syste | ematic uncertainty source                            | p/c 1 | p/c 2 | sc. 1 | p/c 3 | p/c 4 | p/c 5 | sc. 2 | sc. 3 | sc. 4 | $\sigma_{ m syst}^{ m corr}$ |
|-------|------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------------|
| 1     | C. m. energy distribution                            | 1.9   | 2.7   | 1.1   | 2.9   | 2.2   | 2.6   | 1.1   | 2.9   | 1.7   | 0                            |
| 2     | Fixed values of $M_{\psi(2S)}$ , $\Gamma_{\psi(2S)}$ | 0.7   | 0.6   | 0.1   | 0.3   | 0.7   | 0.7   | 0.5   | 0.2   | 0.9   | 0.1                          |
| 3     | Energy measurement                                   | 3.1   | 0.6   | < 0.1 | 1.7   | 0.3   | 0.5   | 0.2   | 3.8   | 2.7   | < 0.1                        |
| 4     | Bhabha simulation                                    | 1.4   | 1.4   | 2.2   | 1.7   | 1.1   | 2.1   | 1.6   | 2.6   | 0.9   | 0.9                          |
| 5     | $\mu^+\mu^-$ scattering simulation                   | 0.2   | 0.2   | 0.3   | 0.2   | 0.2   | 0.2   | 0.2   | 0.3   | 0.3   | 0.2                          |
| 6     | Collinearity cuts                                    | 8.0   | 2.8   | 2.4   | 0.8   | 2.1   | 1.4   | 1.5   | 5.4   | 1.6   | 0.8                          |
| 7     | $e^+e^-$ polar angle range                           | 1.1   | 2.0   | 1.8   | 1.0   | 1.0   | 1.2   | 1.6   | 2.1   | 1.3   | 1.0                          |
| 8     | Charge determination                                 | 0.6   | 0.3   | 0.8   | 0.6   | 0.2   | 1.9   | 0.1   | 1.0   | 0.4   | 0.1                          |
| 9     | Detector asymmetry                                   | 0.9   | 0.2   | 0.5   | 0.9   | 0.1   | 0.1   | 0.2   | 0.4   | 0.2   | 0.1                          |
| 10    | Extra energy deposit cut                             | 1.4   | 1.2   | 2.2   | 0.5   | 1.0   | 0.6   | 2.2   | 1.7   | 1.6   | 0.5                          |
| 11    | Muon system cut                                      | 2.5   | 2.7   | 2.2   | 0.6   | 0.3   | 0.5   | 0.6   | 0.7   | < 0.1 | 0                            |
| 12    | ABG thresholds                                       | 0.3   | 0.7   | 0.5   | 0.1   | 0.3   | _     | _     | _     | _     | 0.1                          |
| 13    | Calo trigger thresholds                              | 0.1   | 0.1   | 0.2   | 0.1   | < 0.1 | 0.4   | 0.5   | 0.4   | 0.2   | < 0.1                        |
| 14    | RND trigger application                              | 0.2   | 0.1   | < 0.1 | < 0.1 | < 0.1 | 0.3   | 0.1   | 0.9   | 0.3   | < 0.1                        |
| 15    | FSR accounting                                       | 0.4   | 0.4   | 0.4   | 0.4   | 0.4   | 0.4   | 0.4   | 0.4   | 0.3   | 0.3                          |
| 16    | $e^+e^-$ events $\theta$ binning                     | 0.6   | 0.2   | 0.6   | 0.5   | 0.5   | 0.3   | 0.1   | 0.4   | 0.3   | 0.1                          |
| 17    | ToF measurement efficiency                           | 1.9   | 2.5   | 1.5   | 1.2   | 0.8   | 0.9   | 2.8   | 2.7   | 2.3   | 0.8                          |
| 18    | Trigger efficiency                                   | 0.9   | < 0.1 | 0.2   | 0.1   | 0.1   | 0.1   | 0.2   | 0.1   | 0.1   | < 0.1                        |
| 19    | Theoretical accuracy                                 | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 0.1                          |
| Sum   | in quadrature                                        | 5.7   | 6.2   | 5.4   | 4.4   | 3.7   | 4.5   | 4.7   | 8.7   | 4.9   | 1.9                          |

# $\Gamma_{ee} \cdot B_{\mu\mu}(\psi(2S))$ measurement




$$\Gamma_{ee} \times \mathcal{B}_{\mu\mu} = 19.3 \pm 0.3 \pm 0.5 \text{ eV}$$

World average taking  $\Gamma_{ee}$  and  $B_{\mu\mu}(\psi(2S))$  from PDG:  $\Gamma_{ee} \times \mathcal{B}_{\mu\mu} = 18.5 \pm 2.1 \text{ eV}$ 

Phys. Lett. B V. 781, 10 June 2018, pp. 174-181

# $\Gamma_{ee}$ ( $\psi(2S)$ ) measurement



 With lepton universality and KEDR result on hadronic channel

$$\Gamma_{ee} \times \mathcal{B}_{hadrons} = 2.233 \pm 0.015 \pm 0.042 \text{ keV}$$

Phys. Lett. B, 711 (2012), p. 280

$$\Gamma_{ee} = 2.279 \pm 0.015 \pm 0.042 \text{ keV}$$

• Summing up hadronic and 3 leptonic channels from KEDR:

$$\Gamma_{ee} \times \mathcal{B}_{ee} = 21.2 \pm 0.7 \pm 1.2 \text{ eV}$$

Phys. Lett. B V. 781 (2018) pp. 174

$$\Gamma_{ee} \times \mathcal{B}_{\tau\tau} = 9.0 \pm 2.6 \text{ eV}$$

JETP Lett., 85 (2007), p. 347

$$\Gamma_{ee} = 2.282 \pm 0.015 \pm 0.042 \text{ keV}$$

#### R measurement

$$R = \frac{\sigma(e^-e^+ \to \text{hadrons})}{\sigma(e^-e^+ \to \mu^-\mu^+)} \approx \frac{e^-}{e^-} \underbrace{\frac{q}{q}}_{q}$$

Precise R measurement at low energies is important in calculation of fundamental values:

- $\alpha_s(s)$
- $(g_{\mu}-2)/2$
- $\alpha(M_Z^2)$
- Heavy quark masses

At first approximation:

$$R(s) \simeq 3 \sum e_q^2$$

#### R measurement at KEDR

```
3.12 - 3.72 GeV, data 2011, L = 1.4 pb-1
```

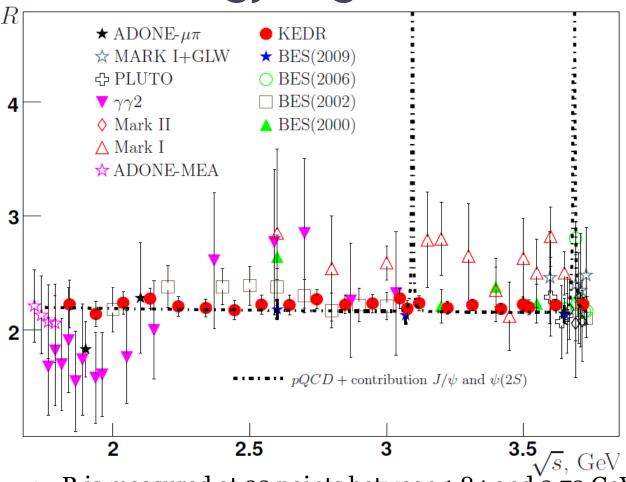
Phys. Lett. B 753 (2016) 533

1.84 - 3.05 GeV, data 2010, L = 0.65 pb-1

Phys. Lett. B 770 (2017) 174

New measurement:

3.08 - 3.72 GeV, data 2014-15 (after detector repair), 8 points, L = 1.3 pb<sup>-1</sup>

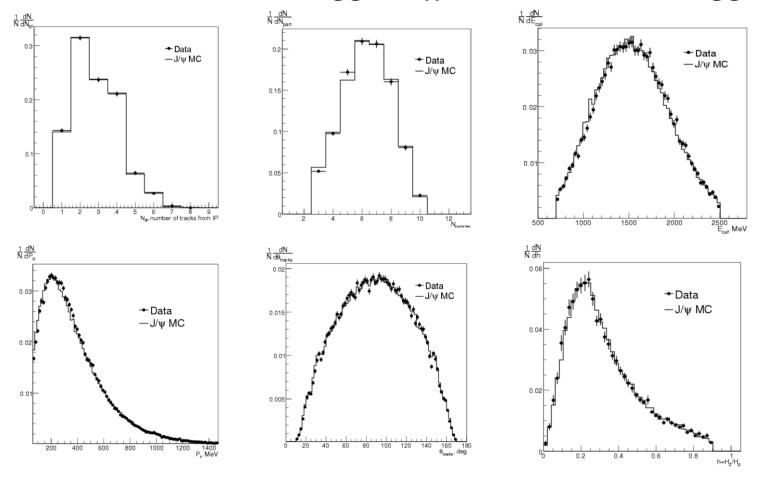

Submitted to Phys. Lett. B [arXiv:1805.06235]

| Da               | ta 2011 [ <u>15</u> ]       | ]                                    | Data 2014                   | Combination      |                                      |  |  |
|------------------|-----------------------------|--------------------------------------|-----------------------------|------------------|--------------------------------------|--|--|
| $\sqrt{s}$ , MeV | $R_{\rm uds}(s)$            | $\sqrt{s}$ , MeV $R_{\text{uds}}(s)$ |                             | $\sqrt{s}$ , MeV | $R_{\rm uds}(s)\{R(s)\}$             |  |  |
| -                | -                           | $3076.7 \pm 0.2$                     | $2.188 \pm 0.056 \pm 0.042$ | $3076.7 \pm 0.2$ | $2.188 \pm 0.056 \pm 0.042$          |  |  |
| $3119.9 \pm 0.2$ | $2.215 \pm 0.089 \pm 0.066$ | $3119.2 \pm 0.2$                     | $2.211 \pm 0.046 \pm 0.060$ | $3119.6 \pm 0.4$ | $2.212\{2.235\} \pm 0.042 \pm 0.050$ |  |  |
| $3223.0 \pm 0.6$ | $2.172 \pm 0.057 \pm 0.045$ | $3221.8 \pm 0.2$                     | $2.214 \pm 0.055 \pm 0.042$ | $3222.5 \pm 0.8$ | $2.194\{2.195\} \pm 0.040 \pm 0.037$ |  |  |
| $3314.7 \pm 0.7$ | $2.200 \pm 0.056 \pm 0.043$ | $3314.7 \pm 0.4$                     | $2.233 \pm 0.044 \pm 0.042$ | $3314.7 \pm 0.6$ | $2.220\{2.220\} \pm 0.035 \pm 0.036$ |  |  |
| $3418.2 \pm 0.2$ | $2.168 \pm 0.050 \pm 0.042$ | $3418.3 \pm 0.4$                     | $2.197 \pm 0.047 \pm 0.040$ | $3418.3\pm0.3$   | $2.186\{2.186\} \pm 0.032 \pm 0.036$ |  |  |
| -                | -                           | $3499.6 \pm 0.4$                     | $2.224 \pm 0.054 \pm 0.040$ | $3499.6 \pm 0.4$ | $2.224\{2.224\} \pm 0.054 \pm 0.040$ |  |  |
| $3520.8 \pm 0.4$ | $2.200 \pm 0.050 \pm 0.044$ | -                                    | -                           | $3520.8\pm0.4$   | $2.200\{2.201\} \pm 0.050 \pm 0.044$ |  |  |
| $3618.2 \pm 1.0$ | $2.201 \pm 0.059 \pm 0.044$ | $3618.1 \pm 0.4$                     | $2.220 \pm 0.049 \pm 0.042$ | $3618.2 \pm 0.7$ | $2.212\{2.218\} \pm 0.038 \pm 0.037$ |  |  |
| $3719.4 \pm 0.7$ | $2.187 \pm 0.068 \pm 0.060$ | $3719.6 \pm 0.2$                     | $2.213 \pm 0.047 \pm 0.049$ | $3719.5 \pm 0.5$ | $2.204\{2.228\} \pm 0.039 \pm 0.043$ |  |  |

### Systematical errors for R measurement

|                         | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   |
|-------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Luminosity              | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
| Radiative correction    | 0.8 | 0.8 | 0.5 | 0.7 | 0.6 | 0.5 | 0.7 | 0.5 |
| Continuum simulation    | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 |
| Track reconstruction    | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
| $e^+e^-X$ contribution  | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| $l^+l^-$ contribution   | 0.4 | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 | 0.4 | 0.4 |
| Trigger efficiency      | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| Nuclear interaction     | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| Cuts variation          | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
| $J/\psi$ and $\psi(2S)$ | 0.1 | 1.8 | 0.4 | 0.2 | 0.1 | 0.1 | 0.1 | 1.1 |
| Machine background      | 0.4 | 0.8 | 0.5 | 0.6 | 0.5 | 0.4 | 0.4 | 0.6 |
| Sum in quadrature       | 1.9 | 2.7 | 1.9 | 1.9 | 1.8 | 1.8 | 1.9 | 2.2 |

# R measurement from p-antip to D-antiD threshold energy region




- R is measured at 22 points between 1.84 and 3.72 GeV
- Between 3.08 and 3.72 GeV syst. error 1.9%, total 2.6%

# Summary

- New precise measurement of  $J/\psi$  leptonic width
- New precise measurement of  $\Gamma_{ee} \cdot B_{\mu\mu}(\psi(2S))$
- New R measurement at 8 points between 3.08 and 3.72 GeV with accuracy up to 2.6%

# Measurement of $\Gamma_{ee} \cdot B_h(J/\psi)$ and $\Gamma_{ee}(J/\psi)$



• Comparison between data and MC in hadronic properties: the number of tracks from the IP, the total number of particles, energy deposited in the calorimeter, inclusive  $P_t$  and  $\theta$  distributions and the ratio of Fox-Wolfram moments  $H_2/H_0$