Mixing and Indirect CPV charm measurements at LHCb

Angelo Carbone INFN and University of Bologna

Charm and New Physics

- In indirect searches for new physics, charm furnishes a unique probe of flavour physics in the up-quark sector
 - complementary to strange and bottom physics
- Indirect searches for NP with charm give complementary constraints to direct searches at the Energy Frontier
- Precision measurements in charm are necessary as inputs for B physics (B \rightarrow DK, B \rightarrow D π) and the measurement of the CKM angle γ
- Many "null-tests" available, one of them is the search for CP violation, which is expected to be small in SM (but not zero)
 - ... but SM predictions are difficult to be calculated

Phenomenology: *D*⁰ Mixing and CP violation

Angelo Carbone

D^0 mixing

The D^0 and $\overline{D}{}^0$ mesons are produced as flavor eigenstates They propagate and decay according to

$$irac{\partial}{\partial t} \left(egin{matrix} D^0(t) \ \overline{D}^0(t) \end{array}
ight) = \left(\mathbf{M} - rac{i}{2} \mathbf{\Gamma}
ight) \left(egin{matrix} D^0(t) \ \overline{D}^0(t) \end{array}
ight)$$

D^0 mixing

The D^0 and $\overline{D}{}^0$ mesons are produced as flavor eigenstates They propagate and decay according to

$$i\frac{\partial}{\partial t} \begin{pmatrix} D^0(t)\\ \overline{D}^0(t) \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} D^0(t)\\ \overline{D}^0(t) \end{pmatrix}$$

Mixing occurs because D^0 and \overline{D}^0 are linear combinations of mass eigenstates $|D_1
angle = p|D^0
angle + q|\overline{D}^0
angle$ $|D_2
angle = p|D^0
angle - q|\overline{D}^0
angle$

The D^0 and $\overline{D}{}^0$ mesons are produced as flavor eigenstates They propagate and decay according to

$$i\frac{\partial}{\partial t} \begin{pmatrix} D^0(t)\\ \overline{D}^0(t) \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} D^0(t)\\ \overline{D}^0(t) \end{pmatrix}$$

Mixing occurs because D^0 and \overline{D}^0 are linear combinations of mass eigenstates $|D_1
angle = p|D^0
angle + q|\overline{D}^0
angle$ $|D_2
angle = p|D^0
angle - q|\overline{D}^0
angle$

The mass eigenstates develop in time as follow $|D_{1,2}(t)\rangle = e_{1,2}(t)|D_{1,2}(0)\rangle$ $e_{1,2}(t) \equiv \exp\left[-i\left(M_{1,2} - \frac{i}{2}\Gamma_{1,2}\right)t\right]$

The D^0 and $\overline{D}{}^0$ mesons are produced as flavor eigenstates They propagate and decay according to

$$i\frac{\partial}{\partial t} \begin{pmatrix} D^0(t)\\ \overline{D}^0(t) \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} D^0(t)\\ \overline{D}^0(t) \end{pmatrix}$$

Mixing occurs because D^0 and \overline{D}^0 are linear combinations of mass eigenstates $|D_1\rangle = p|D^0\rangle + q|\overline{D}^0\rangle$ $|D_2\rangle = p|D^0\rangle - q|\overline{D}^0\rangle$

Two parameters characterize the D^0 and \overline{D}^0 mixing $x \equiv \frac{\Delta M}{\Gamma}, \ \Delta M \equiv M_1 - M_2$ $y \equiv \frac{\Delta \Gamma}{2\Gamma}, \ \Delta \Gamma \equiv \Gamma_1 - \Gamma_2$ The mass eigenstates develop in time as follow $|D_{1,2}(t)\rangle = e_{1,2}(t)|D_{1,2}(0)\rangle$ $e_{1,2}(t) \equiv \exp\left[-i\left(M_{1,2} - \frac{i}{2}\Gamma_{1,2}\right)t\right]$

Angelo Carbone

The D^0 and $\overline{D}{}^0$ mesons are produced as flavor eigenstates They propagate and decay according to

$$i\frac{\partial}{\partial t} \begin{pmatrix} D^0(t)\\ \overline{D}^0(t) \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} D^0(t)\\ \overline{D}^0(t) \end{pmatrix}$$

Mixing occurs because D^0 and \overline{D}^0 are linear combinations of mass eigenstates $|D_1
angle = p|D^0
angle + q|\overline{D}^0
angle$ $|D_2
angle = p|D^0
angle - q|\overline{D}^0
angle$

Two parameters characterize the D^0 and \overline{D}^0 mixing $x \equiv \frac{\Delta M}{\Gamma}, \ \Delta M \equiv M_1 - M_2$ $y \equiv \frac{\Delta \Gamma}{2\Gamma}, \ \Delta \Gamma \equiv \Gamma_1 - \Gamma_2$ The mass eigenstates develop in time as follow $|D_{1,2}(t)\rangle = e_{1,2}(t)|D_{1,2}(0)\rangle$ $e_{1,2}(t) \equiv \exp\left[-i\left(M_{1,2} - \frac{i}{2}\Gamma_{1,2}\right)t\right]$

If both *x* and *y* are different from zero, mixing occurs $|\langle \overline{D}^0 | D^0(t) \rangle|^2 = \frac{1}{2} \left| \frac{q}{p} \right|^2 e^{-\Gamma t} [\cosh(y\Gamma t) - \cos(x\Gamma t)]$ $|\langle D^0 | \overline{D}^0(t) \rangle|^2 = \frac{1}{2} \left| \frac{p}{q} \right|^2 e^{-\Gamma t} [\cosh(y\Gamma t) - \cos(x\Gamma t)]$

Angelo Carbone

The D^0 and $\overline{D}{}^0$ mesons are produced as flavor eigenstates They propagate and decay according to

$$i\frac{\partial}{\partial t} \begin{pmatrix} D^0(t)\\ \overline{D}^0(t) \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} D^0(t)\\ \overline{D}^0(t) \end{pmatrix}$$

Mixing occurs because D^0 and The mass eigenstate develop in time Mixing is well established $Charm mixing parameters are small < 10^{-2}$

Two parameters characterize the D^0 and \overline{D}^0 mixing $x \equiv \frac{\Delta M}{\Gamma}, \ \Delta M \equiv M_1 - M_2$ $y \equiv \frac{\Delta \Gamma}{2\Gamma}, \ \Delta \Gamma \equiv \Gamma_1 - \Gamma_2$

If both *x* and *y* are different from
zero, mixing occurs
$$|\langle \overline{D}^0 | D^0(t) \rangle|^2 = \frac{1}{2} \left| \frac{q}{p} \right|^2 e^{-\Gamma t} [\cosh(y\Gamma t) - \cos(x\Gamma t)]$$

 $|\langle D^0 | \overline{D}^0(t) \rangle|^2 = \frac{1}{2} \left| \frac{p}{q} \right|^2 e^{-\Gamma t} [\cosh(y\Gamma t) - \cos(x\Gamma t)]$

Angelo Carbone

3 modes of observing CP violation

3 modes of observing CP violation

in decay: amplitudes for a process and its conjugate differ

$$|\mathcal{D} - \mathcal{O} + f|^2 \neq |\mathcal{D} - \mathcal{O} + f|^2$$
direct CPV

Angelo Carbone

3 modes of observing CP violation

in decay: amplitudes for a process and its conjugate differ

$$D \rightarrow f^2 \neq D \rightarrow f^2$$
direct CPV

in mixing: rates of
$$D^0 \to \overline{D}^0$$
 and $\overline{D}^0 \to D^0$ differ
in interference between mixing and decay diagrams
 $D^0 - \overline{D}^0 - \overline$

3 modes of observing CP violation

Indirect CP violation: LHCb results with $D^{\circ} \rightarrow K^{-}K^{+}$ and $D^{\circ} \rightarrow \pi^{-}\pi^{+}$ decays PRL 118 (2017) 261803

Angelo Carbone

A_{Γ} : a powerful observable to search for indirect CPV

• The time-dependent CP asymmetry for D^0 decaying into a CP eigenstate (i.e. *KK* or $\pi\pi$) is defined as

$$A_{CP}(t) \equiv \frac{\Gamma(D^0 \to f; t) - \Gamma(\overline{D}{}^0 \to f; t)}{\Gamma(D^0 \to f; t) + \Gamma(\overline{D}{}^0 \to f; t)} \qquad A_{CP}(t) \approx A_{CP}^{\text{dir}} - A_{\Gamma} \frac{t}{\tau}$$

where $A_{\Gamma} \equiv \frac{\hat{\Gamma}_{D^0} - \hat{\Gamma}_{\overline{D}^0}}{\hat{\Gamma}_{D^0} + \hat{\Gamma}_{\overline{D}^0}}$ is the asymmetry of the effective D^0 lifetime

• A_{Γ} can be approximate in term of D^0 mixing parameters p,q and ϕ

$$A_{\Gamma} \approx \frac{1}{2} \left[\left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y \cos \phi - \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x \sin \phi \right] \quad \phi = \arg \left[\frac{q \overline{A}_f}{p A_f} \right]$$

Recent LHCb A_r measurements

- Latest LHCb measurement using D^o from D^{*+} \rightarrow D^o π^+
- Charge of the π used to define the flavour of D^o
- Two different approaches to measure A_{Γ} :
 - Binned fit versus decay time (lifetime efficiency cancel in the ratio)
 - Unbinned fit (description of lifetime reconstruction efficiency necessary)
- $D^{\circ} \rightarrow K^{-}\pi^{+}$ used as control channel

PRL 118 (2017) 261803

Angelo Carbone

LHCb A_{Γ} results

PRL 118 (2017) 261803

- Two methods consistent within 1σ (correlation included)
 - The most precise one is used as nominal result
- Consistent with no-CPV hypothesis
- Most precise measurements of CPV in charm system ever made
- Statistically limited

$$egin{aligned} A_{\Gamma}(K^+K^-) &= (-0.30 \pm 0.32 \pm 0.10) imes 10^{-3} \ A_{\Gamma}(\pi^+\pi^-) &= (0.46 \pm 0.58 \pm 0.12) imes 10^{-3} \ A_{\Gamma} &= (-0.13 \pm 0.28 \pm 0.10) imes 10^{-3} \end{aligned}$$

Angelo Carbone

"Short distance"

Short distance contribution is CKM + GIM suppressed. NP might manifest in the loop

CKM suppression: b quark GIM suppression: d,s quark

"Long distance"

Real particle in the loop

Long distance contribution is dominant but hard to predict

Angelo Carbone

How the D^0 oscillation is observed (with $D^0 \rightarrow K^+\pi^-$ decay)

- The D^0 flavor at the production is tagged by $D^{*+} \rightarrow D^0 \pi^+_s$
- Measure the time dependent ratio of Wrong-Sign $D^{*+} \rightarrow [K^{+}\pi^{-}] \pi^{+}_{s}$ and Right-Sign (RS) $D^{*+} \rightarrow [K^{-}\pi^{+}] \pi^{+}_{s}$

$$R(t) = \frac{N(D^0 \rightarrow K^+ \pi^-)}{N(D^0 \rightarrow K^- \pi^+)}$$

For WS two processes interfere:

- Mixing then Cabibbo-Favoured decay
- Doubly-Cabibbo-Suppressed decay

For RS only one process dominates:

• Cabibbo-Favoured decay

Angelo Carbone

D^0 WS/RS as function time

Considering negligible CP violation and in the limit of x,y<<1, to second order in t/τ , the time-dependence of the phase-space integrated decay rate ratio R(t) is approximated by:

$$R(t) \approx R_D + \sqrt{R_D} y' \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau}\right)^2$$

τ is the average D^0 lifetime R_D is the ratio of suppressedto-favored decay rates $x' ≡ x \cos \delta + y \sin \delta$ $y' ≡ y \cos \delta - x \sin \delta$

 δ is the strong-phase difference between the suppressed and favored amplitudes

$$\mathcal{A}(D^0 \to K^+\pi^-)/\mathcal{A}(\overline{D}{}^0 \to K^+\pi^-) = -\sqrt{R_D}e^{-i\delta}$$

LHCb results with $D^0 \rightarrow K^+ \pi^-$

PRD 97 (2018) 031101

- Use tagged $(\pi) D^0 \to K^+ \pi^-$ decay from $D^{*+} \to D^0 \pi^+$ decay
- Data sample of 5 fb^{-1} of integrated luminosity (2011-2016)
- Constrain $D^0 \pi_s^+$ vertex to measured position of primary vertex \Rightarrow 0.3 MeV/c² invariant-mass resolution
- Fix WS signal shape parameters from RS fits in each decay time bin
- Run 2 signal yields (2015-2016) ~ 2 times larger than Run 1 (2011-2012)

Angelo Carbone

Peaking background

- The most dangerous background comes from doubly misidentified RS decays
 - Peaks in the $m(D^0\pi_s)$ spectrum
 - 0.5% of RS decays
- Suppression due to tight PID requirements
- Residual contribution estimated from RS doubly misID sideband
- time-dependence is included in the fit → no dependence observed

PRD 97 (2018) 031101

Background from ghost pions

- Source: pions built from correctly identified clusters in VELO and TT, associated with clusters from a different particle in the T stations
- Potentially dangerous
 - Peaks in $m(D^0\pi_s)$ due to very similar opening angle w.r.t. correct pion \Rightarrow wrong counting of signal events
 - π_s charge wrong 50% of the time \Rightarrow RS confused for a WS

Angelo Carbone

Background from ghost pions

PRD 97 (2018) 031101

- Use a track-based classifier to reject this background
 - Combination of the track number of hits in the various sub-detectors and track quality variables
- Study the N_{WS}/N_{RS} ratio as a function of the requirement on the classifier output
- Choose loosest requirement (0.05) that preserve flatness of N_{WS}/N_{RS} ratio

Angelo Carbone

Secondary D^0 decays

PRD 97 (2018) 031101

- D⁰ decaying from a B meson have a larger and wrong decay time
- They bias the time dependence of the WS-to-RS ratio
 - Secondary D⁰ decays tend to populate bins at higher decay time

Angelo Carbone

Secondary D^0 decays

PRD 97 (2018) 031101

- *B* mesons flight about $c\tau \simeq 450 \ \mu m$ before decaying $\Rightarrow D^0$ has nonzero impact parameter
- Require D^0 to point to the primary vertex is very effective in rejecting these candidates, but still 3-10% (depending on the lifetime) of them pass the requirement
- Fraction of secondary D^0 surviving the requirement on impact parameter estimated as a function of the decay time

Angelo Carbone

$K\pi$ detection asymmetry

PRD 97 (2018) 031101

- Detection asymmetry in WS/RS ratio: $N_{WS}^{\pm}(t) = \varepsilon(K^{\pm}\pi^{\mp})$
 - $\frac{N_{WS}^{\pm}(t)}{N_{RS}^{\pm}(t)} = R^{\pm} \frac{\varepsilon(K^{\pm}\pi^{\mp})}{\varepsilon(K^{\mp}\pi^{\pm})}$
- Charge-conjugated particles have different probabilities to interact with the material LHCb is made of
 - this results in a detection asymmetry
- Effect relevant for particles momenta lower than 100 GeV/c

Angelo Carbone

$K\pi$ detection asymmetry

- Use CF $D^+ \to K^- \pi^+ \pi^+$ and $D^+ \to \overline{K}{}^0 \pi^+$ decays
 - CPV in these decays is expected to be negligible
- Measure raw asymmetries with fits to the invariantmass spectra in bins of kaon momentum

$$\begin{aligned} A_{raw}^{K\pi\pi} &= A_{CP}^{K\pi\pi} + A_{D}^{\pi_{trig}} + A_{P}^{D} + A_{D}^{K\pi} \\ A_{raw}^{\overline{K}^{0}\pi} &= A_{CP}^{\overline{K}^{0}\pi} + A_{D}^{\pi_{trig}} + A_{P}^{D} + A_{D}^{\overline{K}^{0}} \\ A_{raw}^{K\pi\pi} - A_{raw}^{\overline{K}^{0}\pi} &= A_{D}^{K\pi} - (A_{D}^{\overline{K}^{0}}) \end{aligned}$$
 Obtained from previous LHCb measurement [JHEP 07 (2014) 041]

- Need to reweight D^+ and π_{trig} kinematics to ensure a perfect cancellation
- $A_D^{K\pi} \sim 1\%$

Consistency checks

- The observed WS-to-RS yield ratio is measured again dividing the sample in statistically independent sub-samples, according to
 - Data-taking year
 - Magnetic field orientation
 - Number of primary vertices in the event
 - Candidate multiplicity per event
 - Trigger category
 - *D*⁰ momentum
 - $D^0 \chi^2_{IP}$ with respect to the primary vertex
 - Probability of reconstructing a ghost pion
- P-values of CP parameters distributed uniformly in the 4% 85% range

Systematic uncertainties

- Several sources of systematic uncertainties have been evaluated
 - Instrumental asymmetries ($K\pi$ detection asymmetry)
 - Contribution due to peaking background
 - Contribution from secondary decays
 - Background due to ghost soft pions
- Systematic uncertainty is roughly half of the statistical one

No CP violation							
Source	$R_D \ [10^{-3}]$	$y' [10^{-3}]$	$x^{\prime 2} [10^{-3}]$				
Instrumental asymm.	< 0.001	< 0.01	< 0.001				
Peaking background	± 0.003	± 0.04	± 0.002				
Secondary D decays	± 0.010	± 0.21	± 0.011				
Ghost soft pions	± 0.008	± 0.15	± 0.008				
Total syst. uncertainty	± 0.014	± 0.27	± 0.014				
Statistical uncertainty	± 0.028	± 0.45	± 0.023				

Angelo Carbone

Result on search for CP violation in mixing

PRD 97 (2018) 031101

Angelo Carbone

Two-dimensional confidence regions in the y' and x'^2

PRD 97 (2018) 031101

• Bounds on |q/p| can be calculated from x' and y'

$$x'^{\pm} = |q/p|^{\pm 1} \times (x' \cos \phi \pm y' \sin \phi)$$

$$y'^{\pm} = |q/p|^{\pm 1} \times (y' \cos \phi \mp x' \sin \phi)$$

Results

PRD 97 (2018) 031101

1.00 < |q/p| < 1.35 @ 68.3% C.L. 0.82 < |q/p| < 1.45 @ 95.5% C.L.

*this includes also LHCb Run 1 results, obtained with a subset of the sample used in this analysis

Angelo Carbone

Comparison with previous results

• Assuming CP conservation

	$R_D (10^{-3})$	y' (10 ⁻³)	$x^{\prime 2} (10^{-3})$
CDF ¹	3.51 <u>+</u> 0.35	4.3 ± 4.3	0.08 ± 0.18
Belle ²	3.53 ± 0.13	4.6 ± 3.4	0.09 ± 0.22
BaBar ³	3.03 ± 0.19	9.7 ± 5.4	-0.22 ± 0.37
LHCb Run 1+2 ⁴	3.454 ± 0.031	5.28 ± 0.52	0.039 ± 0.027

LHCb completely dominating the scene

¹CDF: PRL 111 (2013) 231802 ²Belle: PRL 112 (2014) 111801 ³BaBar: PRL 98 (2007) 211802 ⁴LHCb: PRD 97 (2018) 031101

Angelo Carbone

Angelo Carbone

LHCb and the future

- Run-2 \rightarrow 9 fb⁻¹
- After Run 2, raise instantaneous luminosity from $4 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$ $\rightarrow 2 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$
- Run-3 Run-4 \rightarrow 50 fb⁻¹
- Run-5+ → 300 fb⁻¹
 - assuming an LHCb Upgrade II (funded) to raise the instantaneous luminosity to 2x10³⁴ cm⁻²s⁻¹

- Upgrade I and II → replace L0 hardware trigger (1 MHz output) with a software trigger (40 MHz output)
- Charm physics will reach the (extreme) high precision era
 - Lot of measurements limited by statistical uncertainties

Prospects for mixing and CPV in $D^0 \rightarrow K^+ \pi^-$

LHCb unofficial

Table 6.1: Extrapolated signal yields, and statistical precision on the mixing and *CP*-violation parameters, from the analysis of promptly-produced WS $D^{*+} \rightarrow D^0(\rightarrow K^+\pi^-)\pi^+$ decays. Signal yields of promptly-produced RS $D^{*+} \rightarrow D^0(\rightarrow K^-\pi^+)\pi^+$ decays are typically 245 times larger.

$\overline{\text{Sample } (\mathcal{L})}$	Yield $(\times 10^6)$	$\sigma(x'^2)$	$\sigma(y')$	$\sigma(A_D)$	$\sigma(q/p)$	$\sigma(\phi)$
Run 1-2 (9fb^{-1})	1.8	1.5×10^{-5}	2.9×10^{-4}	0.51%	0.12	10°
Run 1-4 (50fb^{-1})	25	3.9×10^{-6}	$7.6 imes 10^{-5}$	0.14%	0.03	4°
Run 1-6 $(300 {\rm fb}^{-1})$	170	1.5×10^{-6}	2.9×10^{-5}	0.05%	0.01	1°

- Systematic uncertainty assessed using control samples
 - Scale with luminosity
- Run 1/2 PID and tracking performance sufficient to control most dangerous backgrounds
 - Should be at same level/improve in Upgrade I

At the end of Run 5...

* Several analysis contribute to the plot: WS $D^0 \rightarrow K^+\pi^-$, A_{Γ} , mixing in $D^0 \rightarrow K_s^0\pi^+\pi^-$

Angelo Carbone

Conclusions

- Charm mixing and indirect CP violation are very promising probes for indirect searches of physics beyond the SM
 - especially if contributions affect mostly the up sector
- A_{Γ} and $D^0 \overline{D}^0$ mixing have reached an unprecedented precision
 - $A_{\Gamma} \rightarrow 3 \times 10^{-4}$
 - $y' \rightarrow 5 \times 10^{-4} x'^2 \rightarrow 3 \times 10^{-5}$
- With coming data LHCb will reach the precision to observe CP violation as expected by SM
- In the coming years, LHCb will be a leading player in searching for indirect CP violation with charm decays