

XYZ states at upgraded LHCb

Tomasz Skwarnicki

Syracuse University

LHCD

New particle zoo: charmonium above flavor threshold

Rev.Mod.Phys. 90, 015003 (2018); arXiv:1708.04012

Mesons are $(q\overline{q})$ bound states.

All excited light hadrons are above "the open flavor threshold"!

Mesons are **predominantly** $(q\bar{q})$ bound states below the open flavor threshold. **They are more complex structures above it,** and we have not yet understood them.

Preface to this talk

It's Difficult to Make Predictions, Especially About the Future

of the field with poorly understood phenomenology

- The latter makes it a very interesting physics to pursue
- Illustrate future capabilities on a few selected examples

LHCb data samples: present & future

For details see Alexey Dzyuba's talk this morning!

Charged charmonium-like states in B decays

LHCb

Amplitude analyses used to distinguish $\overline{K^{*0}} \rightarrow \pi^+ K^-$ and $(c\bar{c})\pi^+$ contributions

 $Z_c(4200)^+$, $Z_c(4050)^+$, $Z_c(4250)^+$ await confirmation (LHCb has enough data to do it already)

 $Z_c(3900)^+$ and $Z_c(4020)^+$ observed in $e^+e^- \rightarrow \pi^- Z_c^+$, not observed in $B \rightarrow K Z_c^+$, (and vice versa). Sensitivity to production mechanism, points to hadronlevel interactions.

No clear explanations.

- Too broad to be molecular bound states?
- No tetraquark model can accommodate all of them.
- Rescattering effects?
- Artifacts of complicated amplitude analyses?

LHCb

Resonant structure of Z(4430)⁻?

• Detailed studies of "exotic" amplitudes desired to shed light onto their nature: example Argand diagram of $Z(4430)^- \rightarrow \psi(2S)\pi^-$.

Statistical accuracy will be sufficient to distinguish between resonant poles and cusps. Systematic errors (e.g. K* model dependence) hard to predict.

	LHCb		U. I	Phase II	Belle	Ш
Decay mode	3 fb ⁻¹	8 fb ⁻¹	50 fb ⁻¹	300 fb ⁻¹	0.7 ab ⁻¹	50 ab-1
$B^0 \to \psi(2S)\pi^-K^+$	25k	0.13M	0.8M	5M	2k	0.14M
$B^0 \to J/\psi(1S)\pi^-K^+$	0.4M	1.5M	10M	62M	30k	2M

the same J^P selection rules as

happen in S-wave)

realistic molecular models (must

Decay mode

 $\Lambda_h \to J/\psi p K^-$

3 fb⁻¹

25k

8 fb⁻¹

0.13M

50 fb⁻¹

0.8M

300 fb⁻¹

5M

Study related channels (see next).

 $\Lambda_b \to J/\psi p\pi^-$

4.5

LHCb-PAPER-2016-015 $m_{J/\psi\rho}$ [GeV]

LHCb Run I

3 fb⁻¹

 $Z^- \to J/\psi \pi$

m_{pπ}>1.8 GeV

Isospin partners of P_c(4450)⁺,P_c(4380)⁺?

- $I_3(J/\psi p) = +\frac{1}{2}$
- Whatever the nature of these states is, $I_3(J/\psi n) = -\frac{1}{2}$ partners should exist. Unfortunately neutrons are not detectable in LHCb.
- However such states can decay to open charm final states

- Relative to J/ψ(→ μ⁺μ⁻)p extra 4 tracks to reconstruct and no dimuon to trigger on (efficiency loss by a factor of ~50).
- Upgrade luminosities are essential to reach sensitivity in these channels

 $\Sigma_{c}^{++} \overline{D^{0}}$

 $\Sigma_c^{++} \rightarrow \Lambda_c^+ \pi^+$

U-spin partners of P_c(4450)⁺,P_c(4380)⁺?

LHCb

3 fb⁻¹

80

300

8 fb⁻¹

0.4k

1.6k

50 fb⁻¹

3k

10k

• Strange partners:

Decay mode

 $\Lambda_b \to J/\psi \Lambda \phi$

 $\Xi_h^- \to J/\psi \Lambda K^-$

[PLB 772 (2017) 265]

Beautiful analogs of P_c(4450)⁺,P_c(4380)⁺?

- Binding of hadrons with beauty quark(s) is "deeper" than with charm quark(s)
- If molecular structures, then masses must be very near relevant baryon-meson thresholds ($\Sigma_b B^*, \Sigma_b^* B, \Sigma_b^* B^*, \Lambda_b B^*, \Lambda_b^* B$)
- Beautiful analogs of the P_c^+ states ($\overline{b}buud$) would decay to easily detectable final state: $\Upsilon(\rightarrow \mu^+\mu^-)p$ (if $\overline{b}busd$ exists in $\Upsilon(\rightarrow \mu^+\mu^-)\Lambda$)
- Unfortunately, can only be searched for in prompt production:
 - Large backgrounds from protons produced in primary pp collision (no secondary vertex formed)
 - If compact pentaquarks then prompt production can be sizeable, but prompt production of the P_c^+ states have not been observed so far

Beautiful $\overline{b}qqqq$ pentaquarks with lifetime

- If binding was large enough, the lightest ones might have masses below the relevant baryon-meson threshold and decay weakly
- A secondary vertex eliminates combinatorial background from the particles produced at the primary vertex
- LHCb has searched for stable *bduud*,
 bsuud, *buud*, *bduud* in J/ψph⁺h⁻ (h = K or π) in Run I; found no evidence, and set upper limits on their production rate
- Such searches will have a better sensitivity with larger integrated luminosity

LHCb-PAPER-2017-043

Detection of stable 1⁺ $bb[\overline{ud}]$ tratraquark?

- It would have observable lifetime, thus combinatorial background would be under control
- CMS claimed observation of 38 ± 7 (Υ → μ⁺μ⁻)(Υ → μ⁺μ⁻) events (bb + bb) in 21 fb⁻¹ of 8 TeV data JHEP 1705, 013 (2017).
- Unfortunately bbq baryons have not been detected yet, reflecting low prompt production rates expected for both b quarks to end up in the same hadron, and difficulty in reconstruction of two subsequent weak decays of b quark.
- Dominant decays via $b \to cW^{*-}$ leading to final states $D^0 \overline{B}{}^0 \pi^-$, $D^+ B^- \pi^- (W^{*-} \to \overline{u}d)$ and $J/\psi K^- \overline{B}{}^0$, $J/\psi \overline{K}{}^{(*)0}B^-$, $D^+ B^- D_s^- (W^{*-} \to \overline{c}s)$ plus possibly extra pions and heavy mesons in excited states.
- Decay modes with $\overline{B}{}^0$ or D^0 do not cleanly tag the heavy flavor due to mixing and doubly-Cabibbo suppressed decays of D^0 (causes backgrounds from $b\overline{b}$ production).
- Inclusive reconstruction efficiencies for *B* mesons are low at LHCb dues to low branching fractions into low multiplicity final states
- Tough prospects even for Phase II upgrade!
- Look out for detection of *bbq* baryons as a prelude for any hope for detection of such tertraquarks

Detection of $bc[\overline{ud}]$ **tratraquark?**

- More favorable prompt production rates. In fact, thousands of $B_c^+(\bar{b}c)$ have been detected by LHCb already. bcq baryons are expected to be first detected in Phase I, up to a few thousand reconstructed in Phase II.
- Possibly the lightest 0⁺ state is stable. The most promising decay modes from b → cW^{*-}: D⁺D⁺π⁻π⁻ (W^{*-} → ūd), J/ψD⁺K⁻ (W^{*-} → cs) or c → sW^{*-}: B⁻K⁻π⁺π⁺ (W^{*-} → ūd). Only one b quark decay to deal with product branching fractions are more favorable.
- If not stable, then decaying strongly but rather narrow state, just above the $\overline{B}{}^{0}D^{0}$ threshold, with $B^{-}D^{+}$ as the most favorable final state to reconstruct in LHCb.

LHCb

Detection of cc[ud] **tratraquark?**

• Prompt production of *ccq* baryon has been already detected!

	LHCb		U. Phase I II		
Decay mode	1.7 fb ⁻¹	8 fb ⁻¹	50 fb ⁻¹	300 fb ⁻¹	
$\Xi_{cc}^{++}\to\Lambda_c^+K^-\pi^+\pi^+$	0.3k	2.2k	14k	90k	

- The lightest 1⁺ state expected to be above the threshold for electromagnetic decay to $D^0 D^+ \gamma$, thus be very narrow but have no detectable lifetime.
- Not suitable for detection at LHCb, unless its mass is slightly above the threshold for strong decay to $D^+D^+\pi^-$. It would be still narrow due to phase space suppression.
- Allowing strange quark in the mix, cc[sd], $cc[\overline{us}]$, tetraquark is not as well bound and would be broader. Nevertheless, $B_c^+(\overline{b}c)$ decays, due to $\overline{b} \to \overline{c}W^{*+}$, $W^{*+} \to c\overline{s}$ with $d\overline{d}$ or $u\overline{u}$ popping provides a clean production environment (B_c^+ lifetime!) [see Esposito et al PRD88, 054029 (2013)]. Expect about 100 $B_c^+ \to D_s^+ D^0 \overline{D}^0$ events detected in Phase II.

Summary

- LHC offers enormous rates of heavy quarks via hadronic production cross-sections and large instantaneous luminosity
- Good place to study hadron spectroscopy with heavy quarks, including multi-quark exotics:
- Unique gateway to states produced in decays of b-baryons, B_c
- LHCb is well suited for such studies, thanks to hadron ID and large trigger bandwidth devoted to heavy flavors
- Near and farther future upgrades of the LHCb detector to take better advantage of the opportunity offered by the LHC:
 - Precision studies on already observed exotic hadron candidates
 - Hopes for detection of stable or very narrow doubly-flavored tetraquarks
 - Judging from the recent history we should also expect unexpected!