Exotic charm hadrons at LHCb

Anton Poluektov

University of Warwick, UK

21 May 2018

On behalf of LHCb collaboration

Exotic states and interpretations

Exotic hadrons: hadrons with quark content other than well-established $q\overline{q}$ (mesons) and qqq (baryon) states.

- Tightly-bound multiquark states:
 - qqqqq: tetraquarks
 - qqqqq: pentaquarks
- Loosely-bound molecules (meson-meson, meson-baryon, baryon-baryon)

Strong evidence from many analyses for the existence of such states.

However, kinematical effects in rescattering can lead to structures that can resemble resonances

Cusps: rescattering without binding.

Outline

LHCb analyses related to exotic charm hadron spectroscopy:

- Measurements of X(3872)
- \blacksquare Z(4430) in $B^0 \rightarrow \psi(2S) K^+ \pi^-$
- Exotic states in $B^+ \to J/\psi \, \phi K^+$
- Pentaquark states in $\Lambda_b^0 \to J/\psi \, pK^-$
- Exotic states in $\Lambda_b^0 o J/\psi \, p \pi^-$
- $D^0 p$ states in $\Lambda^0_b o D^0 p \pi^-$
- Excited Ω_c states
- Searches for other exotic contributions

Other related talks at this conference:

- Prospects with upgraded LHCb [Tomasz Skwarnicki]
- Conventional spectroscopy [Patrick Spradlin]
- Doubly-charmed hadrons [Daniel Vieira]
- Amplitude analysis techniques [Tim Evans]

Covers forward region (maximum of *c* and *b* production)

Covers forward region (maximum of c and b production)

Good vertexing: measure B^0 and B_s^0 oscillations, reject prompt background

- Covers forward region (maximum of c and b production)
- Good vertexing: measure B^0 and B_s^0 oscillations, reject prompt background
- Particle identification: flavour tagging, misID background

- Covers forward region (maximum of c and b production)
- Good vertexing: measure B^0 and B_s^0 oscillations, reject prompt background
- Particle identification: flavour tagging, misID background
- High-resolution tracking

- Covers forward region (maximum of *c* and *b* production)
- Good vertexing: measure B^0 and B_s^0 oscillations, reject prompt background
- Particle identification: flavour tagging, misID background
- High-resolution tracking
- Calorimetry: reconstruct neutrals (π^0, γ) in the final state

LHCb

- Covers forward region (maximum of *c* and *b* production)
- Good vertexing: measure B^0 and B_s^0 oscillations, reject prompt background
- Particle identification: flavour tagging, misID background
- High-resolution tracking
- Calorimetry: reconstruct neutrals (π^0, γ) in the final state
- Efficient trigger, including fully hadronic modes

 $3 \,\text{fb}^{-1}$ in 2011 and 2012 (Run 1, $\sqrt{s} = 7,8 \,\text{TeV}$): All results in this talk $4 \,\text{fb}^{-1}$ in 2015–2018 so far (Run 2, $\sqrt{s} = 13 \,\text{TeV}$, higher *b* cross section)

Conventional and exotic charm states are studied at LHCb in two production regimes:

- Prompt production in pp collisions
 - High statistics
 - High combinatorial background
- Weak decays of beauty hadrons (fully or partially reconstructed)
 - Low background
 - Well-defined initial state, determination of quantum numbers
 - Kinematic constraints

charm charm beauty

Properties of exotic states which can be determined and tested against theory models

- Mass and width
- Production and decay channels, branching ratios
- Quantum numbers: spin, parity
- Line shape

Amplitude analyses

Many of LHCb exotic measurements use amplitude analysis technique.

Perform fits of the amplitude as a function of phase space variables

- Three-body decays $D \rightarrow ABC$: two kinematic variables M_{AB}^2 , M_{BC}^2 (Dalitz plot)
- Add angular variables if initial/final state not scalar

- Both lineshape parameters and spin can be extracted.
- Complex phases of components can be accessed though interference with other structures.

Amplitude analyses

Many of LHCb exotic measurements use amplitude analysis technique.

Perform fits of the amplitude as a function of phase space variables

- Three-body decays $D \rightarrow ABC$: two kinematic variables M_{AB}^2 , M_{BC}^2 (Dalitz plot)
- Add angular variables if initial/final state not scalar

- Both lineshape parameters and spin can be extracted.
- Complex phases of components can be accessed though interference with other structures.

First manifestly exotic candidate: X(3872)

X(3872)

Hadron machines are also active in studies of X(3872) production D0, [PRL 93:162002,2004]

CMS, 7 TeV [JHEP 04 (2013) 154]

X(3872) results from LHCb

Observation of prompt X(3872) in *pp* collisions and mass measurement:

 $M(X(3872)) = 3871.95 \pm 0.48 \pm 0.12 \,\mathrm{MeV}$ with 35 pb⁻¹ [EPJC 72 (2012) 1972]

Quantum numbers: $J^{PC} = 1^{++}$ (> 8 σ over 2⁻⁺) [PRL 110, 222001 (2013)]

D-wave decay could invalidate 1^{++} , constrained < 4%

[PRD 92 (2015) 011102]

Branching ratio to $c\bar{c}\gamma$:

[Nucl.Phys. B886 (2014) 665-680]

$$R_{\psi\gamma} = rac{\mathcal{B}(X(3872) o \psi(2S)\gamma)}{\mathcal{B}(X(3872) o J/\psi\gamma)} = 2.46 \pm 0.64 \pm 0.29$$

Rules out purely molecular interpretation $(R_{\psi\gamma} \ll 1)$

Charged exotic state: Z(4430)

Z(4430) in $B \rightarrow \psi(2S)K^+\pi^-$

- Decay $B^0 o \psi(2S) K^+ \pi^-$
- Signal yield: 25k events
- Combinatorial background: ~ 4%
- 4D amplitude analysis: ($m^2(K\pi), m^2(\psi(2S)\pi), \theta_{\psi'}, \phi_{\psi'}$)

[PRL 112, 222002 (2014)]

Z(4430) in $B \rightarrow \psi(2S)K^+\pi^-$

[PRL 112, 222002 (2014)]

Model-dependent fit prefers resonance-like state with $J^P = 1^+$ $\mathcal{F}(Z(4430)^+) = (5.9 \pm 0.9^{+1.5}_{-3.3}(syst))\%$

Quantum numbers (wrt. favoured $J^P = 1^+$)

Parameters

	LHCb	Belle
Mass, MeV	$4475\pm7^{+15}_{-25}$	$4485\pm22^{+28}_{-11}$
Width, ${\rm MeV}$	$172\pm13^{+27}_{-34}$	$200^{+41}_{-46}{}^{+26}_{-35}$

Z(4430) in $B \rightarrow \psi(2S)K^+\pi^-$

[PRL 112, 222002 (2014)]

Model-dependent fit prefers resonance-like state with $J^P = 1^+$ $\mathcal{F}(Z(4430)^+) = (5.9 \pm 0.9^{+1.5}_{-3.3}(syst))\%$ Quantum numbers (wrt. favoured $J^P = 1^+$)

Parameters

	LHCb	Belle
Mass, MeV	$4475\pm7^{+15}_{-25}$	$4485\pm22^{+28}_{-11}$
Width, MeV	$172\pm13^{+27}_{-34}$	$200^{+41}_{-46}{}^{+26}_{-35}$

Anton Poluektov

Z(4430): model-independent confirmation

 K^* states provide reference amplitude for phase motion measurement.

Clockwise rotation: characteristic of a resonant behaviour.

Confirmation of $\psi'\pi^-$ structures

[PRD 92 (2015) 112009]

Check that $K^-\pi^+$ amplitude *only* fails to describe the decay.

 $K^-\pi^+$ should contribute to reasonably low moments, while exotic $\psi'\pi^-$ contributes to *all* moments.

Resonances with spin up to 3 cannot reproduce the features seen in data.

X(4140) and $J\!/\psi\,\phi$ family

Exotic charm hadrons at LHC

Peaks in J/ $\psi\,\phi$ around 4140 and 4274 ${\rm MeV}$ are found by CDF and confirmed by D0 and CMS

[CDF, PRL 102, 242002 (2009)]

Belle [PRL 104:112004 (2010)]: no X(4140), but X(4350) in $\gamma\gamma \rightarrow J/\psi\phi$ no evidence from:

BaBar [PRD 91, 012003 (2015)], LHCb (0.37 fb⁻¹) [PRD 85, 091103(R) (2012)]

[PRL 118 (2017) 022003], [PRD 95 (2017) 012002]

[PRL 118 (2017) 022003], [PRD 95 (2017) 012002]

[PRL 118 (2017) 022003], [PRD 95 (2017) 012002]

 K^* plus 4(!) exotic states in $J/\psi \phi$

 K^* states only

Contribution	J^{PC}	Significance	M_0 [MeV]	$\Gamma_0 \ [$ MeV $\]$	FF %
X(4140)	1^{++}	8.4σ	$4146.5 {\pm} 4.5 {}^{+4.6}_{-2.8}$	$83{\pm}21{}^{+21}_{-14}$	$13{\pm}3.2{}^{+4.8}_{-2.0}$
X(4274)	1^{++}	6.0σ	$4273.3{\pm}8.3{}^{+17.2}_{-~3.6}$	$56{\pm}11^{+8}_{-11}$	$7.1{\pm}2.5{}^{+3.5}_{-2.4}$
X(4500)	0++	6.1σ	$4506 \!\pm\! 11^{+12}_{-15}$	$92{\pm}21{}^{+21}_{-20}$	$6.6{\pm}2.4{}^{+3.5}_{-2.3}$
X(4700)	0++	5.6σ	$4704 \!\pm\! 10 {}^{+14}_{-24}$	$120{\pm}31^{+42}_{-33}$	$12\pm~5^{+~9}_{-~5}$

Masses for X(4140) and X(4274) are consistent with previous measurements, but widths significantly larger.

[PRL 118 (2017) 022003], [PRD 95 (2017) 012002]

 $J^P = 1^+$ assignment rules out interpretation of X(4140) as a $D_s^{*+}D_s^{*-}$ molecule. X(4140) could be a $D_s^+D_s^{*-}$ state, below threshold \Rightarrow line shape differs from a Breit-Wigner ("cusp").

Check one particular "cusp" model by [E.S.Swanson, Phys. Rev. D91 034009, 2015] Preferred by 3σ over Breit-Wigner fit. Should be able to distinguish BW and "cusp" with larger statistics.

Pentaquarks: $P_c(4380)$ and $P_c(4450)$

Pentaquark states in $\Lambda^0_b o J/\psi \, p K^-$

 $\Lambda_b^0 \to J/\psi \, pK^-$ decay

Conventional contributions only in pK^- spectrum (Λ^* states).

(a)

Not an experimental effect (veto $B \rightarrow J/\psi Kh$, check part-rec Ξ_b decays, clones and ghosts...)

[PRL 115 (2015) 072001]

Έ **}** J/ψ

Pentaquark states in $\Lambda^0_b o J/\psi \, p K^-$

 $\Lambda_b^0 \to J/\psi \, pK^-$ decay

Conventional contributions only in pK^- spectrum (Λ^* states).

(a)

Not an experimental effect (veto $B \rightarrow J/\psi Kh$, check part-rec Ξ_b decays, clones and ghosts...)

[PRL 115 (2015) 072001]

Έ **}** J/ψ

Pentaquark states in $\Lambda^0_b \to J/\psi \, p K^-$

PRL 115, 072001 (2015),

Full amplitude analysis of the $\Lambda_b^0 \to J/\psi \, p K^-$ decay to understand its dynamics.

Fit in 6D phase space: $(M_{\kappa_{P}}, \theta_{\Lambda_{L}^{0}}, \theta_{\mu}, \phi_{\mu}, \theta_{\kappa}, \phi_{\kappa})$

Two models for Λ^* system (both isobar based on Breit-Wigners):

- "Extended": 14 Λ* states ("**" and higher).
- "Reduced": 12 states, exclude two higher mass (2350, 2585), fewer *LS*-couplings.

Admixture of all known Λ^* states does not reproduce the peak observed at $m_{J/\psi p} = 4450 \text{ MeV}.$

Anton Poluektov

Pentaquark states in $\Lambda^0_b \to J/\psi \, p K^-$

PRL 115, 072001 (2015),

Full amplitude analysis of the $\Lambda_b^0 \to J/\psi \, p K^-$ decay to understand its dynamics.

Fit in 6D phase space: $(M_{\kappa_{P}}, \theta_{\Lambda_{L}^{0}}, \theta_{\mu}, \phi_{\mu}, \theta_{\kappa}, \phi_{\kappa})$

Two models for Λ^* system (both isobar based on Breit-Wigners):

- "Extended": 14 Λ* states ("**" and higher).
- "Reduced": 12 states. exclude two higher mass (2350, 2585), fewer *LS*-couplings.

Inclusion of the exotic $J/\psi p$ state improves the fit, best $J^P = 5/2^{\pm}$

Pentaquark states in $\Lambda^0_b \to J/\psi \, p K^-$

PRL 115, 072001 (2015),

Full amplitude analysis of the $\Lambda_b^0 \to J/\psi \, p K^-$ decay to understand its dynamics.

Fit in 6D phase space: $(M_{\kappa_{P}}, \theta_{\Lambda_{L}^{0}}, \theta_{\mu}, \phi_{\mu}, \theta_{\kappa}, \phi_{\kappa})$

Two models for Λ^* system (both isobar based on Breit-Wigners):

- "Extended": 14 Λ* states ("**" and higher).
- "Reduced": 12 states. exclude two higher mass (2350, 2585), fewer *LS*-couplings.

Two $J/\psi p$ states give the best fit, J = 3/2 and 5/2 with opposite parities

Pentaquark states in $\Lambda_b^0 \rightarrow J/\psi \, pK^-$

PRL 115, 072001 (2015),

- data	- 💀 · Λ(1670)
total fit	·· Λ(1690)
- background	-₩·Λ(1800)
4450)	- ⊡ · Λ(1810)
P (4380)	- ↔ · Λ(1820)
	- * · Λ(1830)
- + -Λ(1405)	- 🕁 · Λ(1890)
-⊖- Λ(1520)	- • · Λ(2100)
- 🔶 - A(1600)	- <u>-</u> - Λ(2110)

Parameters of the pentaquark states

$$\begin{aligned} &P_c(4380): \\ &M = 4380 \pm 8 \pm 29 \, \text{MeV}, \\ &\Gamma = 205 \pm 18 \pm 86 \, \text{MeV} \\ &\mathcal{F} = (8.4 \pm 0.7 \pm 4.2(\text{syst}))\% \\ &P_c(4450): \\ &M = 4449.8 \pm 1.7 \pm 2.5 \, \text{MeV} \\ &\Gamma = 39 \pm 5 \pm 19 \, \text{MeV} \\ &\mathcal{F} = (4.1 \pm 0.5 \pm 1.1(\text{syst}))\% \end{aligned}$$

Significance (stat+syst) is overwhelming: 9σ and 12σ

Pentaquark states in $\Lambda_b^0 \rightarrow J/\psi \, pK^-$

PRL 115, 072001 (2015),

Apparent need for 2nd, wide, $J/\psi p$ state

- data	- • · A(1670)
total fit	·· Λ(1690)
- background	-₩·Λ(1800)
4450)	- ⊡ · Λ(1810)
D (4380)	- ☆ · Λ(1820)
(4300)	- * · Λ(1830)
- + - A(1405)	- 🛨 · Λ(1890)
-⊖- Λ(1520)	- • · Λ(2100)
-�- ∧(1600)	- <u>-</u> - Λ(2110)

Parameters of the pentaquark states

$$\begin{aligned} &P_c(4380): \\ &M = 4380 \pm 8 \pm 29 \, \text{MeV}, \\ &\Gamma = 205 \pm 18 \pm 86 \, \text{MeV} \\ &\mathcal{F} = (8.4 \pm 0.7 \pm 4.2(\text{syst}))\% \\ &P_c(4450): \\ &M = 4449.8 \pm 1.7 \pm 2.5 \, \text{MeV} \\ &\Gamma = 39 \pm 5 \pm 19 \, \text{MeV} \\ &\mathcal{F} = (4.1 \pm 0.5 \pm 1.1(\text{syst}))\% \end{aligned}$$

Significance (stat+syst) is overwhelming: 9σ and 12σ

Pentaquark states in $\Lambda_b^0 \rightarrow J/\psi \, pK^-$: model-independent confirmation

PRL 115, 072001 (2015),

Argand plots: model-independent confirmation of the resonant character of the exotic states.

Interference with Λ^* states allows to extract the phase in bins of $m_{J/\psi p}$.

Clear phase rotation for $P_c(4450)$, direction consistent with Breit-Wigner amplitude Not conclusive for $P_c(4380)$, need more statistics.

[PRL 117 (2016) 082002] Model-independent PWA analysis (similar to Z(4430)): Λ^* resonances *only* cannot describe the data; 10σ significance of exotic contribution. Exotic contributions in $\Lambda^0_b o J/\psi \, p\pi^-$

[PRL 117 (2016) 082003]

Signal yield: 1885 \pm 50 events Background: \sim 20%

 N^* states in $p\pi^-$

Possible exotic contributions:

- $P_c(4380, 4450)$ in $J/\psi p$
- $Z_c \text{ in } J/\psi \pi^- \text{ [Belle, PRD 90, 112009 (2014)]}$ $M = 4196^{+31+17}_{-29-13} \text{ MeV}$ $\Gamma = 370 \pm 70^{+70}_{-132} \text{ MeV}$

 Total significance of exotic contributions: 3.1σ.

[PRL 119 (2017) 062001]

Test exotic nature of P(4450)

- Mass close to \(\chi_{c1}\)p threshold, could be a rescattering effect
- If a kinematic effect, should be absent in $\Lambda_b^0 \rightarrow \chi_{c(1)} p K^-$ [PRD 92, 071502 (2015)]

First step :observation of $\Lambda_b^0 \to \chi_{c(1)} p K^-$

 $m(J/\psi\gamma)$ constrained to equal $m(\chi_{c1}) \Rightarrow \Lambda_b^0 \to \chi_{c2}pK^-$ peak is displaced

$$\frac{\mathcal{B}(\Lambda_b^0 \to \chi_{c1} p K^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)} = 0.242 \pm 0.014 \pm 0.013(syst) \pm 0.009(Br), \quad 453 \pm 25 \text{ events}$$

$$\frac{\mathcal{B}(\Lambda_b^0 \to \chi_{c2} p K^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)} = 0.248 \pm 0.020 \pm 0.014(syst) \pm 0.009(Br), \quad 285 \pm 23 \text{ events}$$

Next step: amplitude analysis adding Run 2 data

Observation of $\Xi_b^- \rightarrow J/\psi \Lambda K^-$: search for strange pentaquark

[PLB 772 (2017) 265]

Search for strange hidden-charm pentaquark *udsc*c [PRL 105:232001 (2010)]

First observation of this decay: Λ inside VELO: 99 ± 12 events; Λ outside VELO: 209 ± 17 events

$$\begin{aligned} &\frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}}\frac{\mathcal{B}(\Xi_b^-\to J/\psi\Lambda K^-)}{\mathcal{B}(\Lambda_b^0\to J/\psi\Lambda)} = \\ & (4.19\pm 0.29(\mathrm{stat})\pm 0.15(\mathrm{syst}))\times 10^{-2}. \end{aligned}$$

Possible open-charm exotics in Λ_c excitations

Excited Λ_c^+ states

- J^P = 3/2⁺ state (2nd member of D-wave doublet) is missing in data
- Two experimentally observed states without clear assignment: Λ_c(2765)⁺ and Λ_c(2940)⁺.
- Λ_c(2940)⁺ has mass close to D^{*}N threshold: possible molecular interpretation.

D^o p Invariant Mass (GeV/c²)

285 29 295

1000

500

$$\Lambda^0_b o D^0 p \pi^-$$
 , $D^0 o K^- \pi^+$

[JHEP 1705 (2017) 030]

Looking at excited Λ_c^+ states in the exclusive *b* decay for the first time. Well-defined initial state, low background, access to quantum numbers.

$$\Lambda^0_b o D^0 p \pi^-$$
, $D^0 o K^- \pi^+$

[JHEP 1705 (2017) 030]

Looking at excited Λ_c^+ states in the exclusive *b* decay for the first time. Well-defined initial state, low background, access to quantum numbers.

 Λ_b^0 unpolarised \Rightarrow two DoF, 2D Dalitz plot phase space.

Amplitude analysis of $\Lambda_b^0 ightarrow D^0 p \pi^-$ decay

[JHEP 1705 (2017) 030]

 $J^P = 3/2^-$ favours molecular interpretation (P. Ortega, D. Entem, F. Fernandez, [arXiv:1210.2633]; J. Zhang, [arXiv:1212.5325], [arXiv:1405.0919]), 2P radial excitation (B. Chen, K.-W. Wei, A. Zhang, [arXiv:1406.6561]), or their admixture.

$\Lambda_c(2940)^+$	Significance wrt $3/2^-$		
J^P	(stat + syst)		
	Exp NR	Poly NR	
None	8.2	5.6	
$1/2^{+}$	7.9	4.1	
$1/2^{-}$	5.6	4.5	
3/2+	3.7	3.6	
$5/2^{+}$	4.4	3.1	
$5/2^{-}$	4.5	2.2	
$7/2^{+}$	6.1	6.2	
$7/2^{-}$	6.1	4.0	

Possible open-charm exotics in Ω_c excitations

Observation of five new Ω_c states

State	Mass, MeV	Width, MeV	Yield
$\Omega_{c}^{0}(3000)$	$3000.4\pm0.2\pm0.1^{+0.3}_{-0.5}$	$4.5\pm0.6\pm0.3$	$1300\pm100\pm80$
$\Omega_{c}^{0}(3050)$	$3050.2\pm0.1\pm0.1^{+0.3}_{-0.5}$	$0.8\pm0.2\pm0.1$	$970\pm60\pm20$
$\Omega_{c}^{0}(3066)$	$3065.6\pm0.1\pm0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$	$1740\pm100\pm50$
$\Omega_{c}^{0}(3090)$	$3090.2\pm0.3\pm0.5^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$	$2000\pm140\pm130$
$\Omega_{c}^{0}(3119)$	$3119.1\pm0.3\pm0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$	$480\pm70\pm30$

Two of the states are surprisingly narrow (3050, 3119); possible exotic interpretation (meson-baryon molecules, e.g. $K \Xi'_c$, $D\Xi$: [arXiv:1709.08737], [arXiv:1710.04231])

Searches for dibaryons New!

Observation of $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} p \overline{p} \pi^{-}$: search for dibaryons

New!

[arXiv:1804.09617]

First observation of $\Lambda_b^0 \to \Lambda_c^+ p \overline{p} \pi^-$:

$$rac{\mathcal{B}(\Lambda_b^0 o \Lambda_c^+
ho \overline{
ho} \pi^-)}{\mathcal{B}(\Lambda_b^0 o \Lambda_c^+ \pi^-)} = 0.0540 \pm 0.0023 \pm 0.0032.$$

No evidence of exotic contributions:

Summary

- Exotic spectroscopy is an essential part of LHCb physics programme
- Many important results with 3 fb⁻¹:
 - X(3872) measurements
 - Confirmation and quantum numbers of Z(4430)
 - Discovery of hidden-charm pentaquarks
 - Exotic states in $J/\psi \phi$
 - Studies of open-charm baryons
- Many more expected after adding Run 2:
 - Updates of present analyses with higher stats, precision measurements
 - Pentaquark searches with open-charm states
 - Prompt production of exotic states
 - Final states with neutrals $(\chi_c, \Lambda^0, K_S^0, \omega)$
 - New initial states $(B_s^0, B_c^+, b\text{-baryons})$
 - More amplitude analyses; more sophisticated models based on unitarity and analyticity

Backup

Z(4430): model-independent confirmation

[PRD 92 (2015) 112009]

Model-independent confirmation of a structure in $\psi'\pi^-$. Check that $K^-\pi^+$ amplitude *only* fails to describe the decay. $K^-\pi^+$ should contribute to reasonably low moments, while exotic $\psi'\pi^-$ contributes to *all* moments.

Resonances with spin up to 3 cannot reproduce the features seen in data.

 $m_{(\psi(2S)\pi)}$ distribution can only be described by an unreasonable number of Legendre moments.

[PRD 92 (2015) 112009]

Test statistic:

$$-2\Delta \textit{NLL} = -2\sum_{i}rac{\textit{W}_{i}}{\epsilon_{i}}\lograc{\textit{F}_{i}(\textit{m}_{\psi\pi}^{i})}{\textit{F}_{30}(\textit{m}_{\psi\pi}^{i})}$$

Run toys with $K^+\pi^-$ -only model to determine distribution, compare with $-2\Delta NLL$ in data.

Resonances with spin up to 3 cannot reproduce the features seen in data.

Search for $X(3872) \rightarrow p\overline{p}$

[arXiv:1607.06446]

- Decay B⁺ → ppK⁺
 First observation of η_c(2S) → pp

No evidence of $X(3872) \rightarrow p\overline{p}$ in $B^+ \rightarrow p\overline{p}K^+$:

$$\frac{\mathcal{B}(B^+ \to X(3872)K^+) \times \mathcal{B}(X(3872) \to p\overline{p})}{\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to p\overline{p})} < 0.25 \times 10^{-2} \quad @ 95\% \text{ CL}$$

[PRL 117 (2016) 082002]

Checking that Λ^* resonances *only* cannot describe the data. Use Legendre moments in $\cos \theta_{hel}$ as a function of m_{pK} . Allow I_{\max} depending on m_{pK}

Moments from data

Exotic contributions in $arLambda_b^0 o J\!/\psi\, p\pi^-$

[PRL 117 (2016) 082003]

 N^* states in $p\pi^-$

Possible exotic contributions:

• P_c in $J/\psi p$

$$Z_c \text{ in } J/\psi \pi^- \text{ [Belle, PRD 90, 112009 (2014)]} M = 4196^{+31+17}_{-29-13} \text{ MeV} \Gamma = 370 \pm 70^{+70}_{-132} \text{ MeV}$$

Exotic contributions in $\Lambda_b^0 \rightarrow J/\psi \, p\pi^-$

[PRL 117 (2016) 082003]

- $N^*
 ightarrow p \pi^-$ contributions:
 - Baseline: isobar $p\pi^-$ with 7-14 states.
 - Tried BW and Flatté for N(1535) (opening of nη threshold)
 - Cross-check: K-matrix for 1/2⁻ wave using Bonn-Gatchina parametrisation [A. Anisovich et al., arXiv:0911.5277]

Exotic contributions:

- Considered $P_c(4380)$, $P_c(4450)$ (in $J/\psi p$) and $Z_c(4200)$ (in $J/\psi \pi^-$).
- Total significance of exotic contributions: 3.1σ .
- Individual contributions are not significant
- Fit fractions:
 - $\mathcal{F}(P_c(4380)) = (5.1 \pm 1.5^{+2.6}_{-1.6})\%$
 - $\mathcal{F}(P_c(4450)) = (1.6^{+0.8}_{-0.6}, -0.5)\%$
 - $\mathcal{F}(Z_c(4200)) = (7.7 \pm 2.8^{+3.4}_{-4.0})\%$

Amplitude analysis of $\Lambda^0_b ightarrow D^0 p \pi^-$ decay

[JHEP 1705 (2017) 030] Fit model: $\Lambda_c(2880)^+$ ($J^P = 5/2^+$), $\Lambda_c(2940)^+$, $\Lambda_c(2860)^+$ (J^P varied) and non-resonant (exponential or 2nd-order polynomial, $J^P = 1/2^{\pm}, 3/2^{-}$).

[JHEP 1705 (2017) 030]

Basically, a PWA in the low- $M(D^0p)$ region (admixture of $p\pi^-$ amplitude is small). Since no known "reference" amplitude and a large number of unknown parameters, make analysis in steps:

Consider a range of model variations, including:

- Non-resonant amplitude model (exponential, 2nd-order polynomial).
- Helicity formalism vs. covariant tensors [M. Williams, QFT++], e.g.: $A(5/2^+) = \bar{u}(p_{\Lambda_b^0}, m_{\Lambda_b^0}) (C_2 + C_1 \gamma^5) p_{\Lambda_b^0}^{\alpha} p_{\Lambda_b^0}^{\beta} P_{\alpha\beta\mu\nu}^{(5/2)}(q^2) p_{\rho}^{\mu} p_{\rho}^{\nu} \gamma^5 u(p_{\rho}, m_{\rho})$