

First Beam Extraction Experiments at BATMAN Upgrade

W. Kraus

for the IPP NBI Team

Max-Planck-Institut für Plasmaphysik Boltzmannstraße 2, 85748 Garching, Germany Associated Member of the Helmholtz Gemeinschaft

BATMAN

On "Bavarian Test Machine for Negative Ions" negative ion RF source development since 1996:

- RF source of 1/8 of the ITER source size,
- extraction system of 63 cm² with 8 mm apertures,
- Cs evaporation,
- various diagnostics like OES, TDLAS, CRDS, LP, diodes. ITER requirements for the ion currents achieved in pulsed

operation (5 s).

=> RF source was chosen as the ITER reference source.

Drawbacks of the Testbed:

- Extraction system based on a positive ion system:
 - o Geometry not optimized for negative ions,
 - o maximum beam energy of only 23 kV,
 - => high beam divergence
- Filter field produced by permanent magnets.

From BATMAN to BATMAN Upgrade (BUG)

PP

BATMAN operation parallel to ELISE

- more flexible,
- better access for diagnostics,
- Allows testing new source concepts.

Upgrade from 2016 to 2018 to overcome the drawbacks by

- ITER Like Grid System (ILG) similar to one beamlet group of the ITER source,
- filter field generated by permanent magnets or by the PG current up to 3 kA,
- self-excited RF generator replaced by solid-state generators,
- higher reliability by renewing all electrical circuits and the cooling system.

Extraction system: ITER Like Grid system (ILG)

- 5 x 14 apertures of ϕ 14 mm, extraction area 108 cm²
- Higher voltage holding capability: from 23 kV to 45 kV,
- At high extraction voltage higher acceleration voltage possible
 => low beam divergence at high extracted ion currents
- Additional "repeller electrode (RE) on 2 kV positive potential
 - \Rightarrow No back-acceleration of H⁺/D⁺ ("back streaming ions")
 - $\Rightarrow\,$ Better space charge compensation of the beam

Magnetic field topology with permanent magnets and PG current

 U_{ex} = 4 kV, U_{acc} = 27 kV

Visualisation of

- single beamlet divergence,
- beam homogeneity
- deflection of the beamlets by the magnets in the extraction grid,
- Calculation of the **power density**

Source performance with PG filter

By evaporation of caesium and after some days of plasma operation

25 mA/cm² with 65 kW

have been achieved.

First results

- About 20 % lower extracted ion currents with permanent magnet filter
- With PG filter lower electron currents possible by raising the PG current

U_{acc} scan of the ion currents with repeller grid on ground potential

- Lower fraction on the calorimeter j_{wc}/j_{ex} < 0.75 than in 3 grid extraction system (ELISE) Reason: Additional current on the repeller grid measured by water flow calorimetry about the same as on the grounded grid j_{gg}
- Lower j_{gg} with PG filter
- Minimum of j_{gg} reached at mimimum beam divergence

Beam divergence measured by BES 129 cm from the GG:

- At U_{ex} = 6kV minimum at U_{acc} = 28kV about 1.3°,
- With PM field divergence inhomogenous,
- Much more homogenous beam with PG current

Beam profiles on the calorimeter

Main changes for BATMAN Upgrade:

- ITER like extraction system (ILG),
- magnetic filter generated by a PG current ,
- improved beam diagnostics

Results of first beam extraction:

- Higher source performance and lower electron currents with a field generated by a PG current
- Much lower beam divergence with the new ILG
- Beam drift only with field generated by permanent magnets
- More homogenous beam field generated by a PG current

- Focus of future experiments on **beam optics**
- Comparison with/wo repeller grid and with different potentials,
- **CW operation of the source** by replacing the Ti evaporation pumps by cryo pumps,
- **CW beam extraction** by replacing the short pulse calorimeter
- Test of more efficient driver concepts:

Race-track shaped driver,

Helicon source

width x height x length = $32 \times 19 \times 58 \text{ cm}^3$

Thank you for your attention