

NEGATIVE ION AND HELICON WAVE PHYSICS ON THE RESONANT ANTENNA ION DEVICE (RAID)

Riccardo Agnello¹

M. Barbisan², S. Béchu³, I. Furno¹, Ph. Guittienne⁴, A. A. Howling¹, R. Jacquier¹, C. Marini¹, I. Morgal⁵, R. Pasqualotto², G. Plyushchev¹ and A. Simonin⁵

¹ Ecole Polytechnique Fédérale de Lausanne, Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland ² Consorzio RFX, Corso Stati Uniti 4, Padova, Italy ³ LPSC, Université Grenoble-Alpes, CNRS/IN2P3, F-38026 Grenoble, France ⁴ Helyssen, Route de la Louche 31, CH-1092 Belmont-sur-Lausanne, Switzerland ⁵ CEA, IRFM, F-13108 St-Paul-lès-Durance, France

The 6th International Symposium on Negative Ions, Beams and Sources, 3rd-7th September 2018, Novosibirsk

WHICH NEGATIVE ION SOURCE FOR DEMO?

	DEMO ¹
Species	D
Beam Energy [keV]	800
Current [A]	34
Filling pressure [Pa]	0.2
Beam on time [s]	7200
Extracted e-/D- fraction	<1
Neutralization efficiency	>0.65

[1] P. Sonato et al., Conceptual design of the beam source for the DEMO NBI: main developments and R&D achievements, Nucl. Fusion **57** 056026

Can a helicon source be an option?

Challenges for plasma physics and technology

(laroslav Morgal's presentation at 14:30)

OUTLINE

1) The Resonant Antenna Ion Device (RAID)

2) Experimental study of the helicon plasma source in H_2 and D_2 plasmas

2.1) 3D plasma profiles and helicon wave measurements

2.2) Negative ion population measurements

- Optical Emission Spectroscopy (OES)
- Cavity Ring-Down Spectroscopy (CRDS)
- Langmuir Probe Photodetachment

3) Summary and Outlook

THE RESONANT ANTENNA ION DEVICE (RAID)

Birdcage resonant antenna

"Blue core" \rightarrow signature of helicon wave

I. Furno et al., EPJ Web of Conferences 157, 03014 (2017)

2-axis probe mounting for3D plasma measurements

Water cooled end-plate

PLASMA SOURCE: BIRDCAGE ANTENNA

Ph. Guittienne et al., J. Appl. Phys. 98, 083304 (2005)

Operating frequency: 13.56 MHz

OUTLINE

1) The Resonant Antenna Ion Device (RAID)

2) Experimental study of the helicon plasma source in H_2 and D_2 plasmas

2.1) 3D plasma profiles and helicon wave measurements

2.2) Negative ion population measurements

- Optical Emission Spectroscopy (OES)
- Cavity Ring-Down Spectroscopy (CRDS)
- Langmuir Probe Photodetachment

3) Summary and Outlook

A HELICON WAVE PROPAGATES ALONG THE PLASMA COLUMN

3 axes B-dot coils

3D MEASUREMENTS SHOW PEAKED DENSITY AND TEMPERATURE PROFILES

RF POWER AFFECTS ELECTRON DENSITY PROFILES

PEAKED T_e PROFILE IS FAVORABLE FOR VOLUME PRODUCTION OF NEGATIVE IONS

Temperature profile favorable for **volume production** of H⁻ (**dissociative attachment**)

OUTLINE

1) The Resonant Antenna Ion Device (RAID)

2) Experimental study of the helicon plasma source in H_2 and D_2 plasmas

2.1) 3D plasma profiles and helicon wave measurements

2.2) Negative ion population measurements

- Optical Emission Spectroscopy (OES)
- Cavity Ring-Down Spectroscopy (CRDS)
- Langmuir Probe Photodetachment

3) Summary and Outlook

OPTICAL EMISSION SPECTROSCOPY REVEALED NEGATIVE ION DENSITY PEAKED OFF AXIS

[1] Wünderlich D., Dietrich S. and Fantz U. 2009 J. Quant. Spectrosc. Radiat. Transfer **110** 62-71
[2] Marini C. et al. Nucl. Fusion **57** (2017) 036024

OUTLINE

1) The Resonant Antenna Ion Device (RAID)

2) Experimental study of the helicon plasma source in H_2 and D_2 plasmas

2.1) 3D plasma profiles and helicon wave measurements

2.2) Negative ion population measurements

- Optical Emission Spectroscopy (OES)
- Cavity Ring-Down Spectroscopy (CRDS)
- Langmuir Probe Photodetachment

3) Summary and Outlook

CAVITY RING DOWN SPECTROSCOPY TO

The extinction time of light in the optical cavity depends on medium absorbance

RING-DOWN SIGNAL SHOWS AN EXPONENTIAL DECAY

A photo of CRDS experimental setup

Tipical decay signals in two conditions: in vacuum (no plasma) and in a D_2 plasma

A JUMP OF τ is observed when D_2 plasma is turned off: disappearance of negative ions

SWISS PLASMA

CENTER

NO JUMP OF τ IS OBSERVED WHEN Ar plasma is turned off

Plasma is turned off here

LINE-INTEGRATED NEGATIVE ION DENSITY INCREASES WITH POWER

Average negative ions densities increase with power

R. Agnello et al. *Cavity Ring-Down Spectroscopy to measure negative ion density in a helicon plasma source for fusion neutral beams* (submitted to Review of Scientific Instruments)

OUTLINE

1) The Resonant Antenna Ion Device (RAID)

2) Experimental study of the helicon plasma source in H_2 and D_2 plasmas

2.1) 3D plasma profiles and helicon wave measurements

2.2) Negative ion population measurements

- Optical Emission Spectroscopy (OES)
- Cavity Ring-Down Spectroscopy (CRDS)
- Langmuir Probe Photodetachment

3) Summary and Outlook

LASER PHOTODETACHMENT TO MEASURE NEGATIVE ION DENSITY PROFILES

COLUMN **AXIS**

Langmuir

probe

Negative ion density n_{-} can be calculated from:

<u>n_</u>	$\underline{i_{pd}}$	
$\overline{n_e}$	$\overline{i_{dc}}$	

 $i_{pd} \rightarrow$ photodetachment current $i_{dc} \rightarrow$ direct electron current

LASER PULSES PHOTODETACH ELECTRONS FROM NEGATIVE IONS $\rm H^-/~D^-$

 $\frac{\Delta n_{-}}{n_{-}} = 1 - exp\left(-\frac{\sigma}{h\nu}\frac{E}{S}\right)$

TYPICAL PHOTODETACHMENT SIGNALS IN H_2 AND D_2 PLASMAS

ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PHOTODETACHMENT AMPLITUDES INCREASE ON PLASMA EDGE

<u>n_</u>	_ <i>i_{pd}</i>
$\overline{n_e}$	$\overline{i_{dc}}$

$n_{\rm H}$ - and $n_{\rm D}$ - increase with power

COMPARISON BETWEEN NEGATIVE ION DENSITIES OBTAINED WITH DIFFERENT DIAGNOSTICS

NEGATIVE ION DENSITIES AT 3.5kW RF POWER

	H ₂	D ₂
	$n_{ m H}$ –	n_{D} -
OPTICAL EMISSION SPECTROSCOPY	$(2.3 \pm 1) \times 10^{16} \text{ m}^{-3}$	$(4.5 \pm 2) \times 10^{16} \text{ m}^{-3}$
CAVITY RING-DOWN SPECTROSCOPY	$3.3 \times 10^{16} \text{ m}^{-3}$	$2.5 \times 10^{16} \text{ m}^{-3}$
LP PHOTODETACHMENT	$1.3 \times 10^{16} \text{ m}^{-3}$	$0.5 \times 10^{16} \text{ m}^{-3}$

OUTLINE

1) The Resonant Antenna Ion Device (RAID)

2) Experimental study of the helicon plasma source in H_2 and D_2 plasmas

2.1) 3D plasma profiles and helicon wave measurements

2.2) Negative ion population measurements

- Optical Emission Spectroscopy (OES)
- Cavity Ring-Down Spectroscopy (CRDS)
- Langmuir Probe Photodetachment

3) Summary and Outlook

SUMMARY

- Demonstrated the production of a dense and homogeneous plasma column in $\rm H_2$ and $\rm D_2$ up to 5kW of injected power and the propagation of a helicon wave
- Negative ion diagnostics (OES, CRDS and LP photodetachment) show a negative ion population and density increasing with RF power in H_2 and D_2 plasmas.

OUTLOOK: COMSOL NUMERICAL SIMULATIONS TO STUDY HELICON WAVES

A plasma distribution is considered in the shaded volume

$$\vec{\nabla} \times \vec{\nabla} \times \vec{E} = k_o^2 \,\overline{\chi} \,\vec{E}$$

Radial electric field vector along the z-axis

In the next future

- Time dependent model
- Include transport and diffusion

Thank you for your attention

Backup: Ratios $n_{\rm H}$ - $/n_e$ and $n_{\rm D}$ - $/n_e$ increase on edge and are independent on electron density

In agreement with spectroscopy

No agreement with spectroscopy

Backup: n_e profiles are calibrated by interferometric measurements

Backup: Ar and H light during plasma ignition

