

High Current Results from the 2X Scaled Penning Source

Dan Faircloth Low Energy Beams Group Leader

Scott Lawrie, Mark Whitehead, Trevor Wood, John Macgregor, Olli Tarvainen, Tiago Sarmento, Rob Abel

BINP Novosibirsk 4th September 2018

ISIS Spallation Neutron Source Rutherford Appleton Laboratory, Oxfordshire UK

ISIS Spallation Neutron Source Rutherford Appleton Laboratory, Oxfordshire UK

70 MeV 4 tank Drift Tube Linac

800 MeV 160 kW Rapid Cycling Synchrotron

MA CONTRACTOR

Target Station 1 21 Neutron beamlines 4 Muon beamlines

665 keV RFQ

Target Station 2 11 Neutron beamlines

Low Energy Beams Group

Low Energy Beams Group Sources

Penning Surface Plasma Sources

ISIS (Not an acronym!)

ISDR (Ion Source Development Rig)

All operational sources are pre-tested Also used for ancillary equipment tests

Sources routinely produce 55 mA 250 µs 50 Hz H⁻ beams

However only 25 mA is transported through LINAC tank 1 because there is no MEBT! See Olli Tarvainen's Talk

Science & Technology Facilities Council

ISIS

Operational sources run for 2-3 weeks before scheduled changes

Low Energy Beams Group Sources

Penning Surface Plasma Sources

External RF Antenna Volume Source

ISDR (Ion Source Development Rig)

ISIS (Not an acronym!)

RFIS (Radio Frequency Ion Source)

See Olli Tarvainen's Talk

8

10380

V Here

V

Low Energy Beams Group Sources

Penning Surface Plasma Sources

External RF Antenna Volume Source

ISIS (Not an acronym!)

ISDR (Ion Source Development Rig)

VESPA (Vessel for Extraction and Source Plasma Analysis)

RFIS (Radio Frequency Ion Source)

Diagnostics include: Optical spectrometers Vibrating quartz deposition monitors 1.11.1

See Tiago Sarmento'sTalk

Low Energy Beams Group Sources

Penning Surface Plasma Sources

External RF Antenna Volume Source

FETS (Front End Test Stand)

ISIS (Not an acronym!)

ISDR (Ion Source Development Rig)

VESPA (Vessel for Extraction and Source Plasma Analysis)

RFIS (Radio Frequency Ion Source)

FETS is a test stand to demonstrate a perfectly chopped 60 mA H⁻, 3 MeV, 2 ms, 50 Hz beam

Low Energy Beam Transport

3 solenoids

Medium Energy Beam Transport

- 9 quadrupoles
- 3 re-bunching cavities
- novel 'fast-slow' perfect chopping

Diagnostics

- non-interceptive
- BPM's
- CT's
- laser-based

High brightness H⁻ ion source

- 60 mÅ, 0.25 π mm mrad beam
- 2 ms, 50 Hz pulsed operation

Radio Frequency Quadrupole

- four-vane, 324 MHz, 3 MeV
- 4 m bolted construction

Beam dumps

- defocussing quads
- water cooled pure Al cones

FETS September 2018 RFQ is being installed

Metreel -SWL500KGS 2006

0 4

Limit of the 1X Source

60 mA 2 ms 25 Hz

Droop is unavoidable at 50 Hz 2 ms

Duty factor limited thermal problems: 1. TRANSIENT PROBLEM

Transient surface temperature rise occurs in a very thin layer

SOLUTION

Reduce plasma power density by increasing surface area = Scaling

Duty factor limited thermal problems:

2. STEADY STATE PROBLEM

Average surface temperatures must be maintained at increased duty cycles

SOLUTION

Improve cooling:

CFD cooling simulations

Head coolingswitched from air to water

Flange coolingextra parallel water channels

Permanent Magnet 1X Source

140 mm diameter flange

Permanent Magnet 1X Source

48

Plasma Volume = 10 x 5 x 2.1 mm = 0.105 cm^3

2X Scaled Source

external source width maintained

Plasma Volume = 20 x 10 x 4.2 mm = 0.84 cm^3

2X Source Cross-sections

Thermal Contact Resistances

316LN Stainless Steel

Anode cooling relies on good contact between the molybdenum anode and the stainless steel source body head

Anode Press

24

Anode Cooling

Dissimilar Expansion Coefficients and Mechanical Tolerances

Component	Length	Tolerance	Width	Tolerance
Anode	33.5	+0.02/+0.01	8.5	+0.028/+0.020
Source Body	33.5	+0.02/-0.00	8.5	+0.01/-0.00

Possible clearance above 130 °C

20	С		
Most clearance		Length	Width
	Anode	33.51	8.52
	Source body	33.52	8.51
	Difference	0.01	-0.01
	Inter/Clear	Clearance	Interference
Least Clearance			
	Anode	33.52	8.528
	Source body	33.5	8.5
	Difference	-0.02	-0.028
	Inter/Clear	Interference	Interference

130	С		
Most clearance		Length	Width
	Anode	33.528	8.525
	Source body	33.579	8.525
	Difference	0.051	0.000
	Inter/Clear	Clearance	Clearance
Least Clearance			
	Anode	33.538	8.533
	Source body	33.559	8.515
	Difference	0.021	-0.018
	Inter/Clear	Clearance	Interference

Guaranteed clearance above 320 °C

320	С		
Most clearance		Length	Width
	Anode	33.560	8.533
	Source body	33.681	8.551
	Difference	0.121	0.018
	Inter/Clear	Clearance	Clearance
Least Clearance			
Least Clearance	Anode	33.570	8.541
Least Clearance	Anode Source body	33.570 33.661	8.541 8.541
Least Clearance	Anode Source body	33.570 33.661	8.541 8.541
Least Clearance	Anode Source body Difference	33.570 33.661 0.091	8.541 8.541 0.000

Anode length and width tolerances modified to: +0.04/+0.03 and +0.048/+0.038

Science & Technology Facilities

26

Thermal Contact Resistances

$Ra = 0.8 \ \mu m$ improved to $Ra = 0.4 \ \mu m$

Aperture plate cooling relies on good thermal contact

overheating aperture plate

Science & Technology Facilities Council

SIS

Panasonic

"PGS" Graphite Sheets

Comparison of thermal conductivity (a-b plane)

2.5x conductivity of copper!

Layered structure of PGS

Laser cut 70 µm thick PGS thermal interface gasket

PGS allows biasable aperture plate

Not implemented on scaled source

Magnetic Penning Field

- Cathode separation is doubled in the 2X source
- Penning field should be halved
- 0.084 T found to be best after experimentation

Power Supply Upgrades

 Extraction and discharge power supplies both had to be upgraded to operate at full 2 ms 50 Hz duty cycle

Full Duty Cycle Results

60 A discharge 12 kV extraction voltage 35 keV beam 210°C Cs oven!

See Tiago Sarmento'sTalk

Shorter 700 µs Pulse at 90 A

90 A discharge 16 kV extraction voltage 35 keV beam 210°C Cs oven 150 mA 700 µs 50 Hz

Next Steps

- Integration on to FETS
- Lifetime tests
- Investigate high caesium/noise problem
- Investigate scaling laws
- Deliver a scaled source to Fermilab

chnology Facilities Council

Acknowledgements: Phil Wise, Theo Rutter, Bradley Kirk Joe Sherman, Vernon Smith Vadim Dudnikov

Thank you for your attention Questions, Comments?

