

The 6th International symposium on Negative Ions, Beams and Sources (NIBS'18)

3-7 September 2018 Budker INP

Complete Compensation of Criss-cross Deflection in a Negative Ion Accelerator by Magnetic Technique

Daniele Aprile^{1,2}

on behalf of: P. Agostinetti¹, C. Baltador², S. Denizeau¹, J. Hiratsuka⁴, M. Ichikawa⁴, M. Kashiwagi⁴, A. Kojima⁴, N. Marconato¹, A. Pimazzoni¹, E. Sartori^{1,3}, G. Serianni¹, P. Veltri¹, M. Yoshida⁵, G. Chitarin^{1,3}

¹Consorzio RFX (CNR, ENEA, INFN, University of Padova, Acciaierie Venete SpA), Padova, ITALY ² INFN-LNL, V.Ie dell'Università 2, I-35020, Legnaro (PD), ITALY

³ Dept. of Engineering and Management, Univ. of Padova, Strad. S. Nicola 3, 36100, Vicenza, ITALY ⁴ National Institute for Quantum and Radiological Science and Technology, Naka-shi, Ibaraki 311-0193, JAPAN ⁵ Dept. of Electrical, Electronic and Information Engineering, Yamaguchi University, Yamaguchi, 753-8511, JAPAN

Outline

- The Neutral Beam Test Facility
- Motivations of the QST Consorzio RFX joint experiments
- Magnetic Technique for compensation of Criss-Cross deflection
- Summary of first joint experiments
- Summary of second joint experiments
- Analysis of the result
- Benchmark of numerical models
- Conclusions

Neutral Beam Test Facility

NBTF is an essential step for the smooth operation of the ion source of ITER HNB, whose design is based on concepts developed in several collaborating labs (QST, IPP, CEA), but never tested at full performance at once in a single experiment.

- MITICA: full-scale prototype of ITER HNB, 46 A, 1 MV, 5 acceleration stages, 16.5 MW
- SPIDER: full-scale negative ion source and extractor having the same features and size as ITER HNB (and DNB), 46 A, 100keV. Operation started in June 2018.

Motivations of the joint experiments

- 1. Validation of the optics design for MITICA and ITER NBI
 - test of the magnetic technique for criss-cross deflection compensation
 - test of ITER-like extractor geometry (Plasma Grid, Extraction Grid, extraction gap size)
- 2. Benchmark and improvement of numerical tools for negative ion accelerator design
 - beamlet optics (2D): SLACCAD, design cross-check by QST using BEAMORBT
 - beamlet aiming (3D): OPERA (and recently COMSOL)
- 3. Improvement of the knowledge of negative ion extraction physics

Criss-cross deflection: origin and solution

- Alternate shift of consecutive beamlet rows
- produced by Co-extracted Electron Suppression magnet
- it produces in turn a global beam divergence

5

picture from M. Taniguchi et al, Rev. Sci. Instrum. 83, 02B121 (2012)

Beamlet deflection compensation by ADCM (Asymmetric Deflection Compensation Magnets) in the Extraction Grid:

The Negative Ion Test Stand (NITS)

- "Kamaboko" arc source
- Single stage accelerator, 2 beamlet groups of 3x5 apertures
- Max $V_{EXT} = 10 \text{ kV}$, max $V_{ACC} = 30 \text{ kV}$
- Main diagnostics available:
 - ✓ **CFC target** (Mitsubishi MFC-1) with current measurement
 - ✓ IR camera (InfRec R500 with IRL-TX02D tele-lens)
 - ✓ power supply current measurements

6

NITS accelerator with ITER-like PG and EG

vertical cross-section

horizontal cross-section

(AD)

- aperture pitch
 - vertical = 21 mm
 - horizontal = 19 mm
- ITER-like PG and EG profile
 - upstream aperture diam= 13 mm
 - downstream aperture diam= 17 mm
 - CESM 6.6x4.2x28.3mm
 Br=1.1 T
 - ADCM 6.6x1.0 x 16.4mm
 Br=0.88 T
- PG-EG_gap= 6mm
- EG-GG_gap= 12 mm
- Vacc= 30 kV

D. Aprile: Complete Compensation of Criss-cross Deflection, NIBS 2018, 5 Sept, Novosibirsk 7

Main results of first joint experiments

- Successful test of MITICA/HNB optics design, beamlet divergence < 10 mrad, up to 140 A/m² H- ion current
- compensation of beamlet deflection by ADCM experimentally confirmed
- discovery of a discrepancy between numerical models (OPERA) and experiments:
 - residual criss-cross deflection was underestimated
 - possible missing effects in the simulations

Second joint experiments

9

- New combination of CESM and ADCM designed on the base of previous results (same geometry, but different remanent magnetic field)
- troubles with acceleration power supply: limitation of V_{ACC} to 10 kV
- better IR camera positioning

Main results of second joint experiments

- Complete criss-cross deflection compensation achieved
- numerical models further improved
- development of a general model correlating beamlet deflection with magnetic field and beam energy

IR image analysis

Noise reduction, then image fitting. Approximating function: sum of 30 Gaussians, one for each beamlet:

$$z(x, y) = \sum_{i=1}^{30} A_i \exp\left(-\left(\frac{x - x_i}{w_i}\right)^2 - \left(\frac{y - y_i}{w_i}\right)^2\right)$$

- x,y spatial coordinates
- x_i, y_i coordinates of Gaussian centers (beamlet positions)
- w_i Gaussian width (proportional to beamlet divergence)
- A_i Gaussian amplitude (proportional to beamlet intensity)

Typical experimental parameters

Typical parameters for first and second joint experiments (JT1 and JT2)

Campaign	max V _{ACC} [kV]	max j _{EXT} [A/m²]	best optics for	magnets		not compensated deflection [mm]	compensated deflection [mm]
JT1 (2016)	30	140	V _{ACC} = 22500 V V _{EXT} = 4500 V ratio = 5	part 1 part 2	$Br_{CESM} = 1.1 T$ $Br_{ADCM} = 0.88 T$ $Br_{CESM} = 1.1 T$ $Br_{ADCM} = 1.1 T$	20 ÷ 22	7 ÷ 5
JT2 (2017)	10	20	V _{ACC} = 6000 V V _{EXT} = 1200 V ratio = 5	Br _{CESM} = 0.77 T Br _{ADCM} = 1.1 T		18	-1.5

Deflection vs beam energy

compensated configurations less dependent on beam energy

Gap between experiments and simulations

- OPERA single beamlet model
- 5 mm shift in the result (deflection underestimated by \approx 5 mrad)

Possible explanation

- Non-uniform current density extraction
- pointed out by Veltri [1], confirmed by PIC models of Fubiani [2] and Taccogna [3]
- caused by **ExB** drift inside the source

OPERA model with non-uniform extraction

A step further, variable non uniformity

- Non-uniformity proportional to B_Y (consistent with the **E**x**B** assumption)
- COMSOL simulation added
- better agreement

 $j_{EXT, RIGHT} = (1 + p^*B_Y)$ $j_{EXT, LEFT} = (1 - p^*B_Y)$

Extensive OPERA simulations (I)

- **Purpose:** exploring the operative space
- extraction non uniformity included
- first set of simulations: constant V
- the effect of magnet strenght on the deflection is perfectly linear

 $\Delta x = f(B_{r,ADCM}, B_{r,CESM}, V)$

Extensive OPERA simulations (II)

- Simulations with different Br and V
- general model derived:

Conclusions

- Three successful years of QST Consorzio RFX collaboration
- Magnetic technique for criss-cross compensation validated
- Complete compensation of beamlet deflection achieved
- Clearer picture of negative ion extraction process
- Improvement of numerical design tools
- Large experimental database collected

• Hopefully, time will be saved on ITER NBI development schedule

Spare slides

NITS electrical scheme

NITS during JT1

NITS during JT2

Frame selection

Homography and cropping

Fitting and reconstruction

Image noise

lext vs Parc

OPERA non-uniform extraction

Deflection vs magnet strength

- Shift between JT1 part 1 and 2 not yet understood
- linearity (not considering the shift) between deflection and magnet strength

General model (scheme)

