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ELISE test facility

Cs evaporation in ELISE:

* Two Cs ovens on the side of the expansion chamber

e Cs continuously evaporated during both vacuum and plasma phases

Maximum Power 360 kW
Total HV 60 kV
Plasma pulse time up to 3600 s
Beam extraction 10 s every = 150 s
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ELISE test facility

Cs evaporation in ELISE:

* Two Cs ovens on the side of the expansion chamber

e Cs continuously evaporated during both vacuum and plasma phases

Plasma grid

L

Source walls

Maximum Power 360 kW
Total HV 60 kV
Plasma pulse time up to 3600 s
Beam extraction 10 s every = 150 s
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Cs dynamics

s 4

* Only neutral Cs

 Ballistic transport (p = 10 Pa)

* Dynamics determined by:
* Oven outflow profile
®* Source geometry

* Wall sticking probability
(temperature and impurities)
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Cs dynamics W

Both Cs neutrals and ions

* Only neutral Cs

« Ballistic transport (p = 10** Pa) Collisions (p = 0.3 Pa) :
* Back
« Dynamics determined by: ackground gas
i ®* Plasma
* Oven outflow profile

* Source geometry Cs redistribution by plasma

* Wall sticking probability
(temperature and impurities)
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Cs dynamics W

PLASMA PHASE

Beam pulse
* Only neutral Cs e Both Cs neutrals and ions
 Ballistic transport (p = 10 Pa) e Collisions (p = 0.3 Pa):

* Back
« Dynamics determined by: ackground gas

, * Plasma
* Oven outflow profile

* Source geometry * Csredistribution by plasma

* Wall sticking probability . L
(temperature and impurities) * Cs Sputtering by back-streaming ions

. Back-streaming
@ H'and H,"

- A7

Spl;ttéréd Cs
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Cs dynamics W

PLASMA PHASE

Beam pulse
* Only neutral Cs e Both Cs neutrals and ions
 Ballistic transport (p = 10 Pa) e Collisions (p = 0.3 Pa):

* Background gas

Dynamics determined by:

: * Plasma
* Oven outflow profile

* Source geometry * Csredistribution by plasma

* Wall sticking probability

(temperature and impurities) e Cs Sputtering by back-streaming ions

. Back-streaming

* Stability of the work function & H'andH," 9
(-
* Sufficient Cs flux onto the grid is needed during & SputteredCs
the pulse to counteract degradation of the work Y !

function
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CsFlow3D code

INPUT OUTPUT

Oven nozzle Cs flux onto surfaces

outflow profile, , (both neutrals and ions)
position, direction Monte Carlo Test Particle
Transport code :
Surface E> E> Energy of Cs particles
sticking probability
CsFlow3D Cs coverage
Plasma parameters

Neutral Cs density
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CsFlow3D code

INPUT

Oven nozzle
outflow profile,
position, direction

Surface
sticking probability

Plasma parameters

EXp. measurements
of line-averaged neutral Cs density
(Laser Absorption Spectroscopy)

OUTPUT

Cs flux onto surfaces
(both neutrals and ions)

Monte Carlo Test Particle

E> Transport code E> Energy of Cs particles

CsFlow3D Cs coye

eutral Cs density

E TDLAS
bottom LOS
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Investigation of Caesium dynamics W

* Results of the code already benchmarked at BATMAN[

1. Plasma drift effect on neutral Cs distribution in the larger source at ELISE

2. Effect of the PG bias potential on the Cs transport,
i.e. energy of Cs*/Cs impinging the PG

3. Extension to the full source,
simulation of conditioning and long pulses

[1] A. Mimo, AIP Conf. Proc. 1869, 030019 (2017)
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Effect of the plasma drift at ELISE W

Plasma drift at ELISE: L
e Atl,.=2kA MplasmaTOP - C. Wimmer |
Nplasma,BOTTOM (Mon04) S
N top
e bottom

Bfilter
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Effect of the plasma drift at ELISE W

Plasma drift at ELISE:

. At IpG -2 kKA Nplasma,TOP ~ 7

Nplasma,BOTTOM

CsFlow3D input SIMULATION
plasma density

20-10*m® 20 consecutive pulses (conditioning):

0.4
20 s plasma phase
0.2 o
E 0.0 10 200 s vacuum phase
>
-0.2 5 Cs evap. rate 10 mg/h (5mg/h/oven)
-0.4
0

-04 -0.2 0.0 0.2 0.4

x [m]
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Effect of the plasma drift at ELISE

Simulated neutral Cs density with and w/o the vertical plasma drift
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Effect of the plasma drift at ELISE

Simulated neutral Cs density with and w/o the vertical plasma drift

Neutral Cs is symmetric both in simulation and experiment

129 Simulations
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Effect of the plasma drift at ELISE

Simulated neutral Cs density with and w/o the vertical plasma drift

Neutral Cs is symmetric both in simulation and experiment
But this is not necessarily true for the Cs ions...

129 Simulations
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Effect of the PG bias voltage on Cs flux

* Simulation of a long pulse at ELISE with pulsed extraction: Cs flux consists mostly of ions (up to 70%)
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Effect of the PG bias voltage on Cs flux

* Simulation of a long pulse at ELISE with pulsed extraction: Cs flux consists mostly of ions (up to 70%)

40
< 30-
K7
&
o Total
N 0
S 204
=,
E 1lons
8 10
Neut.ll\‘\n\‘,\—l\
0 T T T T T T T
0 100 200 300 400
time [s]

Calculation performed for: A(p = (pplasma — Ppg = oV
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Effect of the PG bias voltage on Cs flux

* Simulation of a long pulse at ELISE with pulsed extraction: Cs flux consists mostly of ions (up to 70%)
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Effect of the PG bias voltage on Cs flux

* Simulation of a long pulse at ELISE with pulsed extraction: Cs flux consists mostly of ions (up to 70%)
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Effect of the PG bias voltage on Cs flux

* Energy distribution of Cs* ions onto a sample surface element of the PG during plasma phase

Ap = Pplasma — PPG = 0V

Peak at 0.06 eV

Peak at 0.57 eV

Norm. distribution
N

0 . , :
0 5 10
Energy [eV]
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Effect of the PG bias voltage on Cs flux

* Energy distribution of Cs* ions onto a sample surface element of the PG during plasma phase

Ap = Pplasma — PPG = 0V

4
([ e —

Peak at 0.06 eV E VQO
S d TH+ = 0.8 eV
e
=)
0
B 2
©
§ Peak at 0.57 eV
o
Z

0 - l :
0 5 10
Energy [eV]

A. Mimo 6t NIBS, Novosibirsk, 3 — 7th September 2018 9/15



Effect of the PG bias voltage on Cs flux

* Energy distribution of Cs* ions onto a sample surface element of the PG during beam extraction

Ap = Pplasma — PPG = 0V

1Peak at 0.06 eV

| Peakat0.57 ev

Norm. distribution
N
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Influence of PG bias potential on Cs flux W

* Csion flux onto the PG for different Agp = QDplasma — Qpg
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Influence of PG bias potential on Cs flux W

* Csion flux onto the PG for different Agp = (pplasma — Qpg
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Influence of PG bias potential on Cs flux W

* Csion flux onto the PG for different Agp = QDplasma — Qpg
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Influence of PG bias potential on Cs flux W

* Csion flux onto the PG for different Agp = QDplasma — Qpg
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Influence of PG bias potential on Cs flux W

* Csion flux onto the PG for different Agp = QDplasma — Qpg
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Influence of PG bias potential on Cs flux W

* Csion flux onto the PG for different Agp = QDplasma — Qpg
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Evaporation close to the PG

* Evaporation close to the plasma grid:
* Limit Cs ionization due to low T, close to the PG (almost 70 % of the flux is neutral)

* Direct control of PG caesiation, not relying on plasma assisted redistribution
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Towards the full size source: conditioning at SPIDER

e Simulation of SPIDER:
* 20 pulses (20 s plasma + 200 s vacuum phase)
* Different Cs oven configuration

Ports for
» Total Cs evap. rate to reach ELISE flux: 20 mg/h Cs ovens
. | 00090030 mg/h
FI'U’ 20 ELISE ”” v v25 mg/h
o, reference o f _yyyYTTTTO
g 0’ vY AAAAAAAZOmg/h
ﬁ 15_ .vv AAA "
3 *v A ......oolSmg
: ov ,* o’
10 va o ,
g :A... .l.lll.....lomg/h Source side
n ehoe ]
© ] Ie s
T 27 ,en
e |-
O T T T T T T T T .
0 5 10 15 20 | - :Ijﬂﬂ_ﬂu

Pulse number

A. Mimo 6t NIBS, Novosibirsk, 3 — 7th September 2018 13 /15



Towards the full size source: long pulses at SPIDER

* Long pulses at SPIDER compared with ELISE: 20t pulse after conditioning = Long pulse of 400 s
* Depletion of Cs flux during the long pulse also observed, but much stronger than in ELISE

» Effect of back-streaming ion sputtering not increase the flux, but not enough to compensate the

depletion.
30
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Towards the full size source: long pulses at SPIDER

* Long pulses at SPIDER compared with ELISE: 20t pulse after conditioning = Long pulse of 400 s
* Depletion of Cs flux during the long pulse also observed, but much stronger than in ELISE

» Effect of back-streaming ion sputtering not increase the flux, but not enough to compensate the
depletion.
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Summary and conclusions W

* Plasma drift does not induce asymmetry for the neutrals, but this is not necessarily true
also for the ions

e Cs*ions mostly affected by the PG bias voltage:
* Cs*ion flux onto PG can be locally different due to locally different values of A
* Cs*released by back-streaming ions reach higher energy (= 4.7 eV)

* Evaporation close to the grid beneficial for having mostly neutral Cs flux
(control of the caesiation independently from plasma parameters)

* Simulation of the full source at SPIDER:

e Depletion of Cs flux during long pulses stronger than in ELISE,
(not compensated by the Cs released by back-streaming ion sputtering)

* Cs density measurements during continuous extraction will be very helpful
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