Max-Planck-Institut für Plasmaphysik

Studies of Cs Dynamics in Large Ion Sources using the CsFlow3D Code

A. Mimo, C. Wimmer, D. Wünderlich, U. Fantz

6th International Symposium on Negative Ions, Beams and Sources (NIBS)

3rd - 7th September 2018

Budker INP, Novosibirsk, Russia

RF negative ion sources

ELISE test facility

Cs evaporation in ELISE:

- Two Cs ovens on the side of the expansion chamber
- Cs continuously evaporated during both vacuum and plasma phases

ELISE test facility

IPP

Cs evaporation in ELISE:

- Two Cs ovens on the side of the expansion chamber
- Cs continuously evaporated during both vacuum and plasma phases

VACUUM PHASE

- Only neutral Cs
- Ballistic transport (p ≈ 10⁻⁴ Pa)
- Dynamics determined by:
 - Oven outflow profile
 - Source geometry
 - Wall sticking probability (temperature and impurities)

VACUUM PHASE

PLASMA PHASE

- Only neutral Cs
- Ballistic transport (p ≈ 10⁻⁴ Pa)
- Dynamics determined by:
 - Oven outflow profile
 - Source geometry
 - Wall sticking probability (temperature and impurities)

- Both Cs neutrals and ions
- Collisions (p ≈ 0.3 Pa) :
 - Background gas
 - Plasma
- Cs redistribution by plasma

VACUUM PHASE

- Only neutral Cs
- Ballistic transport (p ≈ 10⁻⁴ Pa)
- Dynamics determined by:
 - Oven outflow profile
 - Source geometry
 - Wall sticking probability (temperature and impurities)

- Both Cs neutrals and ions
- Collisions (p ≈ 0.3 Pa) :
 - Background gas
 - Plasma
- Cs redistribution by plasma
- Cs Sputtering by back-streaming ions

PLASMA PHASE

Beam pulse

VACUUM PHASE

- Only neutral Cs
- Ballistic transport (p ≈ 10⁻⁴ Pa)
- Dynamics determined by:
 - Oven outflow profile
 - Source geometry
 - Wall sticking probability (temperature and impurities)
- Stability of the work function
- Sufficient Cs flux onto the grid is needed during the pulse to counteract degradation of the work function

Beam pulse

PLASMA PHASE

- Both Cs neutrals and ions
- Collisions (p ≈ 0.3 Pa) :
 - Background gas
 - Plasma
- Cs redistribution by plasma
- Cs Sputtering by back-streaming ions

CsFlow3D code

CsFlow3D code

- Results of the code already benchmarked at BATMAN^[1]
- 1. Plasma drift effect on neutral Cs distribution in the larger source at ELISE
- 2. Effect of the PG bias potential on the Cs transport, i.e. energy of Cs⁺/Cs impinging the PG
- 3. Extension to the full source,

simulation of conditioning and long pulses

[1] A. Mimo, AIP Conf. Proc. 1869, 030019 (2017)

Effect of the plasma drift at ELISE

Plasma drift at ELISE:

• At $I_{PG} = 2 \text{ kA} \quad \frac{n_{plasma,TOP}}{n_{plasma,BOTTOM}} \approx 2$

C. Wimmer (Mon04) Effect of the plasma drift at ELISE

Plasma drift at ELISE:

Effect of the plasma drift at ELISE

IPP

Simulated neutral Cs density with and w/o the vertical plasma drift

6th NIBS, Novosibirsk, 3rd – 7th September 2018

Simulated neutral Cs density with and w/o the vertical plasma drift

Neutral Cs is symmetric both in simulation and experiment 12 · Simulations TDLAS with drift top LOS **♦** [♦] [♦] [•] w/o drift Experiment ∇ TDLAS **bottom LOS** 2 0 0 5 10 15 20 Pulse number

6th NIBS, Novosibirsk, 3rd – 7th September 2018

Simulated neutral Cs density with and w/o the vertical plasma drift

Neutral Cs is symmetric both in simulation and experiment But this is not necessarily true for the Cs ions...

Effect of the PG bias voltage on Cs flux

$$\Delta \varphi = \varphi_{
m Plasma} - \varphi_{
m PG} = 0 V$$

$$\Delta \varphi = \varphi_{
m plasma} - \varphi_{
m PG} = 0 V$$

$$\Delta \varphi = \varphi_{
m Plasma} - \varphi_{
m PG} = 0 V$$

6th NIBS, Novosibirsk, 3rd – 7th September 2018

Evaporation close to the PG

- Evaporation close to the plasma grid:
 - Limit Cs ionization due to low T_e close to the PG (almost **70 % of the flux is neutral**)
 - Direct control of PG caesiation, not relying on plasma assisted redistribution

Towards the full size source: conditioning at SPIDER

IPP

Towards the full size source: long pulses at SPIDER

- Long pulses at SPIDER compared with ELISE: 20th pulse after conditioning \rightarrow Long pulse of 400 s
- Depletion of Cs flux during the long pulse also observed, but much stronger than in ELISE
- Effect of back-streaming ion sputtering not increase the flux, but not enough to compensate the depletion.

6th NIBS, Novosibirsk, 3rd – 7th September 2018

Towards the full size source: long pulses at SPIDER

- Long pulses at SPIDER compared with ELISE: 20th pulse after conditioning \rightarrow Long pulse of 400 s
- Depletion of Cs flux during the long pulse also observed, but much stronger than in ELISE
- Effect of back-streaming ion sputtering not increase the flux, but not enough to compensate the depletion.

6th NIBS, Novosibirsk, 3rd – 7th September 2018

Summary and conclusions

- Plasma drift does not induce asymmetry for the neutrals, but this is not necessarily true also for the ions
- Cs⁺ ions mostly affected by the PG bias voltage:
 - Cs⁺ ion flux onto PG can be locally different due to locally different values of $\Delta \phi$
 - Cs⁺ released by back-streaming ions reach higher energy ($\approx 4.7 \text{ eV}$)
 - **Evaporation** close to the grid beneficial for having mostly neutral Cs flux (control of the caesiation **independently from plasma parameters**)
- Simulation of the full source at SPIDER:
 - **Depletion of Cs flux during long pulses** stronger than in ELISE, (not compensated by the Cs released by back-streaming ion sputtering)
 - Cs density measurements during **continuous extraction** will be very helpful

