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Motivation 
A large beam for ITER 

ITER NBI: 

• Accelerated current of 40 A in D @1MeV / 46 A in H @870keV -  0.3 Pa filling pressure 

• Electron – ion ratio < 1 

• Long pulses (3600 s for D, 1000 s for H) 

• Large beam: 

• source of  2 m x 1 m; extraction area: 0.2 m2 

• uniformity better than 90% (beamlets) 

• beam core divergence smaller than 7 mrad (0.4 deg) 

 

ELISE test facility:  

• Half size of the ITER-NBI source in vertical direction 

• Large beam: 

• source of  1 m x 1 m; extraction area: 0.1 m2 

• so far, the only large source with extraction in operation 
 

                     what can we learn about a large beam for the ITER NBI?   
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Outline 

• ELISE test facility 

• Beam diagnostics 

 

• Large beam features during Cs conditioning process of the source (short pulses, H) 

• Volume operation 

• Cs conditioning  phase 

 

• Beam optimization 

• Global beam uniformity better than 90% 

• Beam optics tuning 

 

• Summary 
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ELISE test facility 
NNBI source 
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• Half of the ITER NBI in vertical direction 

• 4 drivers up to 75kW/driver 
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ELISE test facility 
NNBI source 
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• Half of the ITER NBI in vertical direction 

 

• ITER-like 3-grid system (640 beamlets / 
8 rectangular beamlet groups) 

• HV power supply limited to 60 kV 

• 10 s extraction each 150 s 

• deflecting magnets in the extr. grid 
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ELISE test facility 
NNBI source 
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• Half of the ITER NBI in vertical direction 

 

• ITER-like 3-grid system (640 beamlets / 
8 rectangular beamlet groups) 

 

• To limit the co-extracted electrons: 

• Filter Field (FF) to limit the co-
extracted electrons (IPG current) 

 

 

• Bias potential (PG positively biased 
versus the source wall) 
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ELISE test facility 
NNBI source 

4/13 

• Half of the ITER NBI in vertical direction 

 

• ITER-like 3-grid system (640 beamlets / 
8 rectangular beamlet groups) 

 

• To limit the co-extracted electrons: 

• Filter Field (FF) to limit the co-
extracted electrons (IPG current) 

• External magnets 

 

• Bias potential (PG positively biased 
versus the source wall) 

• Potential rods 

 

• Two liquid Cs ovens (left/right) 
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ELISE test facility 
NNBI source & ITER targets 
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Bias 

voltage 

ELISE ITER targets: 

 

 Plasma duration (3600s D & 1000s H) 

 

• Extracted & Accelerated currents: 

 for H (1000 s) 

• For D (3600 s)  - only 65% 

 Ratio co-extracted electrons/ions  <1 

 

• Uniformity 

• top/bottom beam segments or 
beamlet groups 

 

• Beam divergence 

• no ITER divergences (> 1 deg) BUT 
large beam investigation 
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ELISE Beam Diagnostics 
Electrical current measurements 

• Electrical measurements of currents 

• Total extracted negative ion current (Iex) 

• Top/bottom currents on EG (mostly electrons) 

• Top/bottom currents on GG 
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ELISE Beam Diagnostics 
Beam Emission Spectroscopy 
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• Electrical measurements of currents 

• Beam Emission Spectroscopy diagnostic (BES) 

• Beam intersection: 2.7 m from GG 

• 50 deg angle between LOS & beam 

• H Doppler peak spectra analysis 

• Beam divergence from Doppler peak  

• Stripping losses 

• Vertical beam intensity profile  

• spatial resolution of 5 cm 
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ELISE Beam Diagnostics 
Diagnostic calorimeter 
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• Electrical measurements of currents 

• Beam Emission Spectroscopy diagnostic (BES) 

• Diagnostic calorimeter 

• 3.5 m from GG 

• Water calorimetry 

• 30 x 30 inertially cooled blocks  
(4 cm x 4 cm) 

• 48 thermocouples embedded 

 

thermocouples 
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ELISE Beam Diagnostics 
Diagnostic calorimeter 

6/13 

• Electrical measurements of currents 

• Beam Emission Spectroscopy diagnostic (BES) 

• Diagnostic calorimeter 

• 3.5 m from GG 

• Water calorimetry 

• 30 x 30 inertially cooled blocks  
(4 cm x 4 cm) 

• 48 thermocouples embedded 

• Black coating for Infra-Red (IR) analysis 

• Absolutely calibrated (thermocouples) 

• 2D map of the beam power 

• accelerated current (global & local) 
via 8 2D-gaussian fitting, one for 
each beamlet group 
 jacc for the top/bottom grid   
      segments 
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ELISE large beam features 
Volume operation (hydrogen, 0.3 Pa) 

• no Cs into the source 
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Volume operation (hydrogen, 0.3 Pa) 

• no Cs into the source 
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ELISE grid system 

volume Cs evaporation caesiated 
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ELISE large beam features 
Volume operation (hydrogen, 0.3 Pa) 

• no Cs into the source 
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ELISE grid system 

volume Cs evaporation caesiated 

source 

Courtesy of 
N. Den Harder 

beam divergence: 1.5 deg 
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ELISE large beam features 
Volume operation (hydrogen, 0.3 Pa) 

• no Cs into the source 

• To reduce the co-extracted electrons: 

• reduced parameters (low Uex  & RF power) 
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ELISE grid system 

caesiated 

source 

Courtesy of 
N. Den Harder 

beam divergence: 1.5 deg 

 jex = 1 - 3 mA/cm2 
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ELISE large beam features 
Volume operation (hydrogen, 0.3 Pa) 

• no Cs into the source 

• To reduce the co-extracted electrons: 

• reduced parameters (low Uex  & RF power) 

• high FF + high bias potential  

 large upward vertical drift in the plasma 

 FF: downward beam deflection 
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ELISE grid system 
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source 
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ELISE large beam features 
Volume operation (hydrogen, 0.3 Pa) 

• no Cs into the source 

• To reduce the co-extracted electrons: 

• reduced parameters (low Uex  & RF power) 

• high FF + high bias potential  

 large upward vertical drift in the plasma 

 FF: downward beam deflection 
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Can the beam be vertically uniform during volume operation? 

• smaller FF  more uniform beam… 
  

ELISE large beam features 
Volume operation /2 
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Can the beam be vertically uniform during volume operation? 

• smaller FF  more uniform beam… 
 …BUT not possible to get rid of the FF: too much co-extracted electrons! 
 

ELISE large beam features 
Volume operation /2 
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RF top=27kW/driver 
RF bot=42kW/driver 

4kV+24kV, FF=4mT 

Can the beam be vertically uniform during volume operation? 

• smaller FF  more uniform beam… 
 …BUT not possible to get rid of the FF: too much co-extracted electrons! 

• independent settings of the RF power in the top/bottom generators 

  

ELISE large beam features 
Volume operation /2 
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RF top=27kW/driver 
RF bot=27kW/driver 

4kV+24kV, FF=4mT 
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RF top=27kW/driver 
RF bot=42kW/driver 

4kV+24kV, FF=4mT 

Can the beam be vertically uniform during volume operation? 

• smaller FF  more uniform beam… 
 …BUT not possible to get rid of the FF: too much co-extracted electrons! 

• independent settings of the RF power in the top/bottom generators 

 …BUT  RF power limited to keep the co-extracted electron at a tolerable value! 

ELISE large beam features 
Volume operation /2 
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RF top=27kW/driver 
RF bot=27kW/driver 

4kV+24kV, FF=4mT 
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RF top=27kW/driver 
RF bot=42kW/driver 

4kV+24kV, FF=4mT 

Can the beam be vertically uniform during volume operation? 

• smaller FF  more uniform beam… 
 …BUT not possible to get rid of the FF: too much co-extracted electrons! 

• independent settings of the RF power in the top/bottom generators 

 …BUT  RF power limited to keep the co-extracted electron at a tolerable value! 

ELISE large beam features 
Volume operation /2 
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RF top=27kW/driver 
RF bot=27kW/driver 

4kV+24kV, FF=4mT 

In volume operation, a vertical uniform beam with solely RF power 
compensation in presence of a strong FF is not possible! 
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ELISE large beam features 
Cs conditioning process 

• Constant Cs evaporation rate for both ovens 

• Steps of “constant parameters” from volume to higher performances 

• Short pulses in hydrogen (9.5 s beam into a 20 s plasma pulse) 
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ELISE large beam features 
Cs conditioning process 

• Constant Cs evaporation rate for both ovens 

• Steps of “constant parameters” from volume to higher performances 
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• After 4 days (1.5h plasma-on time) 
jex from 2 to 7 mA/cm2 
je  / jex < 1 
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ELISE large beam features 
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• After 4 days (1.5h plasma-on time) 
jex from 2 to 7 mA/cm2 
je  / jex < 1 

volume Cs evaporation 
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source 
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FF=4mT, Ubias=29V 

jacc
TOP=8.7mA/cm2 

jacc
BOT=2.8mA/cm2 

F.Bonomo                                                6th NIBS, Novosibirsk, 3rd-7th September 2018 



ELISE large beam features 
Cs conditioning process 

• Constant Cs evaporation rate for both ovens 

• Steps of “constant parameters” from volume to higher performances 

• Short pulses in hydrogen (9.5 s beam into a 20 s plasma pulse) 
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• After 7 days (2.3h plasma-on time): 
jex up to  12 mA/cm2; je /jex < 1 
jacc

BOTTOM  jacc
TOP  but different optics 

 

jex = 12mA/cm2 

30kW/driver, 6kV+30kV 
FF=4mT, Ubias=22V 
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30kW/driver, 6kV+30kV 
FF=3mT, Ubias=22V 

F.Bonomo                                                6th NIBS, Novosibirsk, 3rd-7th September 2018 

volume Cs evaporation 
caesiated 

source 



ELISE large beam features 
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ELISE large beam features 
Cs conditioning process 

• Constant Cs evaporation rate for both ovens 

• Steps of “constant parameters” from volume to higher performances 

• Short pulses in hydrogen (9.5 s beam into a 20 s plasma pulse) 
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• After 14 days (9 h plasma-on time): 
jex up to  28.5 mA/cm2; je /jex < 1 
jacc

BOTTOM  jacc
TOP,  but different optics 

 
 

jex = 28.5mA/cm2 

72kW/driver, 10kV+37kV 
FF=2.4mT, Ubias=21V 

jacc
TOP=24.9mA/cm2 

jacc
BOT=24.7mA/cm2 
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ELISE large beam features 
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• After 14 days (9 h plasma-on time): 
jex up to  28.5 mA/cm2; je /jex < 1 
jacc

BOTTOM  jacc
TOP,  but different optics 

 
 

jex = 28.5mA/cm2 

72kW/driver, 10kV+37kV 
FF=2.4mT, Ubias=21V 

jacc
TOP=24.9mA/cm2 

jacc
BOT=24.7mA/cm2 The bottom beam segment needs 

more plasma pulses to achieve the same current 

density as the top one! 
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BES measurements during Cs conditioning 

•  beam width decreases while jex increasing  (divergence – perveance correlation) 

 

ELISE large beam features 
Cs conditioning process   /2 
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First 4 days of operation: 

F.Bonomo                                                6th NIBS, Novosibirsk, 3rd-7th September 2018 

volume Cs evaporation 
caesiated 

source 



BES measurements during Cs conditioning 

•  beam width decreases while jex increasing  (divergence – perveance correlation) 

•  top & bottom beam width decreases with different time scales 
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First 4 days of operation: 
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BES measurements during Cs conditioning 

•  beam width decreases while jex increasing  (divergence – perveance correlation) 

•  top & bottom beam width decreases with different time scales 

 

ELISE large beam features 
Cs conditioning process   /2 
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BES confirm that the conditioning of the bottom 

beam segment needs more plasma pulses! 

First 4 days of operation: 

F.Bonomo                                                6th NIBS, Novosibirsk, 3rd-7th September 2018 

volume Cs evaporation 
caesiated 

source 



ELISE large beam 
Beam optimization 

• ELISE: global homogeneity in terms of top/bottom beam segments 

• top/bottom accelerated current Iacc at the calorimeter (via IR analysis) 

• top/bottom beam divergence (BES) 
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In a good Cs conditioned source: 
 

1.   top/bottom accelerated currents are 
usually well within the 10% 

 
 

2.   similar top/bottom beam 
divergence is instead more tricky to get 

volume Cs evaporation 
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1. Independent top/bottom RF power settings (RF top < RF bottom) 

    Iacc
TOP = Iacc

BOTTOM 

      

 

 

 

 

 

 

 

 

 

ELISE large beam 
Beam optimization /2 
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ELISE large beam 
Beam optimization /2 

1. Independent top/bottom RF power settings (RF top < RF bottom) 

    Iacc
TOP = Iacc

BOTTOM 

2. Effect of the bias potentials on the beam divergence profile 

   bias potentials change the flatness of  
       the vertical divergence profile 
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1. Independent top/bottom RF power settings (RF top < RF bottom) 

    Iacc
TOP = Iacc

BOTTOM 

2. Effect of the bias potentials on the beam divergence profile 

   bias potentials change the flatness of  
       the vertical divergence profile 
 

 

 

ELISE large beam 
Beam optimization /2 
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jacc
TOP=20.5 mA/cm2 
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divTOP=1.86deg 
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ELISE large beam 
Summary & discussion 

What have we learned so far? 

• In volume : 

Beam uniformity not possible by simply  RF tuning 

 

• In the Cs conditioning phase: 

• Long conditioning phase because of the potential rods 

• Top/bottom beam segments have different time-scales of conditioning 

• bottom beam segment needs more plasma pulses 

 

• Large beam optimization  in a well conditioned source: 

• Very good uniformity for the top/bottom accelerated currents 

 fine tuning by independent RF power settings for different segments  
    very useful knob for ITER 

• Some difficulties to keep the same top/bottom beam optics 

 bias potentials help to change the vertical profile of the beam divergence  
    very useful knob for ITER 
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