THE 6TH INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES SEPTEMBER 3-7, 2018

Methods of Beam Emittance Measurements of High Power Negative Ion Beams for NBIs

<u>SAQUILAYAN, GLYNNIS MAE</u>, M. Kashiwagi, H. Tobari, J. Hiratsuka, M. Ichikawa, N. Umeda, K. Watanabe, M. Wada, M. Sasao

ST NATIONAL INSTITUTES FOR QUANTUM AND RADIOLOGICAL SCIENCE AND TECHNOLOGY

High power negative ion beam for NBIs

JT-60SA

0.5 MeV, 22 A (130 A/m²) for 100s from three stage-multi aperture beam source

ITER project

1 MeV, 40 A (200 A/m²) for 3600 s from five stage and multi aperture beam source

MeV ion source Test Facility (MTF) in QST

The test facility is developing the ion beam accelerator for the ITER NBI system.

ITER REQUIREMENTS:

Beam Energy : 1 MeV Beam Current : 40 A Current Density : 200 A/m² (D⁻) Pulse Length : 3600 s

MTF specification

Beam Energy : 1 MeV Beam Current : 1 A Current Density : 200 A/m² (H⁻) Pulse Length : > 1000 s

MTF Facility in Naka Fusion Institute, Ibaraki

Recent issues and solutions

Degradation of current for long pulse

- \rightarrow Temperature control of chamber wall to suppress excess
- Cs deposition from wall to plasma grid (Dr. Yoshida (P1-09))

Negative ion acceleration

High power loading on acceleration grids due to beam deflection by magnetic field and space charge repulsion \rightarrow Compensated

Insufficient voltage holding capability of large accelerator \rightarrow Construction of experimental scaling to design large grid with multi apertures

Beam acceleration up to 60 s has been achieved.

Beam acceleration over 100 s is now on-going.

Aperture displacement

Cs

ement plate

Field shaping

Beam _____

Recent results

However, precise study for this kind of high dense and large beams has not been performed yet.

Beam Diagnostics for 1 MeV High current density Beams

Common Measurement Methods:

Slit-and-Collector Method

Faraday cups and wire scanners.

Things to consider: electrical noise (i.e. secondary electrons) sensitivity/resolution

Imaging methods

Fluorescence due to particle beams.

Things to consider: lifetime of scintillator screens

Thermal Measurement of Beam Emittance

Target Material

A one-dimensional carbon fiber composite (CFC) target is selected to measure the high power beam.

• High heat resistance

(Melting Point: 2000°C)

- Good machining properties
- Low axial thermal conductivity
- Imaging form of measurement

Low axial conductivity reduces the overestimation of the beam size.

Material	Thermal Expansion Coefficient (linear)	Melting Point (°C)	Density (kg/m³)	Specific Heat (J/kg K)
1D-CFC	2.95	2000	1660	1140
Cu	16.7	1085	8960	376.8
W	4.5	3410	19600	133.9
Мо	5	2623	10188	277.1

Thermal Measurement of Beam Emittance

Target Material

Previous thermal images that captured the beam footprint of a 1 MeV negative ion beam exhibited a Gaussian profile with the beam power density averaging to 200 MW/m².

Calculation of a Gaussian profile beam Total Beam Power Density in 1D

Beam Divergence : 5 mrad Drift distance: 2.3 m Aperture diameter: 14 mm

Beam Power Density (MW/m²) Spatial contour of the Gaussian beam The exposure time of the beam to the CFC target will be limited when reproducing the beam footprint.

Material Parameters:

- Thickness /
 Dimensions
- Exposure time
- Thermal Expansion

Operation of the 1 MeV Negative Ion Beam

83.8

21.9

Operation of the 1 MeV Negative Ion Beam

Beam Profile

Sampling Rate: 120 Hz Beam Pulse: 0.2 sec

Broadening of the beam footprint at longer exposure times.

Tune to the stable beam operation

The multiple beamlet profiles of a 900 keV negative hydrogen ion beam was observed through the thermal images on the CFC target.

10

Operation of the 1 MeV Negative Ion Beam

Beam Profile

Thermal images show the multiple beamlets.

Noise from the background temperature in the images were reduced.

Displacement on the beamlet alignment

Possible reasons:

- Initial particle trajectories upon extraction
- Non-uniformity in the beam initializing phase

Operation of the 1 MeV Negative Ion Beam

Beam Profile

Diagnostics for 1 MeV Negative Ion Beam

Beam Emittance Application

Diagnostics for 1 MeV Negative Ion Beam

Measurement Schemes

Parc

Vext

IH⁻

To assure that the measured beam is stable, the ion source will operate continuously.

Possible mechanisms for continuous beam monitoring.

Summary

1 MeV High Power Beam

High Beam Power Densities

Thermal Beam Emittance Measurement Method

1D – Carbon-Fiber Composite

Challenge for Beam Diagnostics :

High voltage components of the accelerator High temperature heat loading (Long) Beam Pulse Operation

Advantages:

Imaging form of measurement CFC has a high heat resistance Measurement schemes are possible

Beam diagnostics of the 1MeV H⁻ beam is possible with the thermal beam emittance measurement. This method is being developed specifically for ITER class beams for NBI systems

Thank you for your attention