Caesiated H⁻ source operation with helium

K. Tsumori, M. Wada, H. Nakano, M. Kisaki,K. Ikeda, Y. Haba, K. Nagaoka, S. Kamio,Y. Fujiwara and M. Osakabe

NIBS2018, Novosibirsk, 3 – 7 September, 2018

outline

- Introduction
- Experimental Background
- Experimental Setup
- Increase of co-extracted electron current.
- Increase of Cs neutral.
- Processes through diffusion of parent particles to beam extraction.
- Summary

Introduction

- By replacing the operation gas from H₂ to D₂,
 - a. Decrease of negative ion current.
 - b. Increase of co-extracted electron current.
 - c. Increase of caesium (Cs) consumption.

Similar phenomena have been observed at JAEA and IPP.

Not favorable to improve the performances of negative-NBI ion sources \rightarrow Important Issue to resolved for the acceleration of D⁻ ions

Background

Question

- What is the main cause of this degradation of "Cs effect"?
- Why Cs signal increases in the D₂ discharge?

NBI test-stand in NIFS

- Merit: several diagnostics comparing to NBI for Large Helical Device.
- Demerit: D₂ discharge was not allowed at the test-stand <u>until last week</u>.

• Helium is alternately applied for D₂ to observe

- 1. Mass effect to ion source plasma
- 2. Mass effect to Cs evaporation

experimental setup

After continuous helium discharges damage filament surface and discharge resistance increases shot by shot.

Diagnostics

Diagnostics :

Langmuir probe (LP)

Plasma parameters.

Optical Emission Spectroscopy (OES)

Balmer α , He and Cs lines.

Cavity Ring-Down (CRD)

Density of H⁻ ions.

Cs Laser Absorption Spectroscopy (Cs LAS)

Density of neutral Cs atom.

Distance from Plasma Grid

Cs LAS:	19.5 mm
OES line-of sight:	19.5 mm
Langmuir probe:	19.5 mm
Cavity Ring-Down:	17.5 mm

H⁻ Density and Extracted H⁻ Current

- In helium discharge, H atoms adsorbs on the chamber walls were removed during pre-arc discharge.
- Co-extracted electron current becomes one order higher in helium discharge.
- H⁻ current measured with calorimeter array shows recovery character after helium discharge.

Plasma Density in H₂ and He Discharges

sn151338

sn151339

sn151340

Electron Temperature and Plasma Potential

sn151339

Plasma Density in H₂ and He Discharges

Electron density:

- One order higher in the helium discharge.
- H^{-} ions suppress the increase of electron density in H_{2} discharge.

lon saturation current:

- The currents are almost the same in H2 and helium discharges.
- The He⁺ density is about twice larger than that of H₂.

Electron temperature:

• During beam extraction, no difference in H₂ and helium discharge.

Plasma potential is 2-3 times higher in the case of helium discharge.

Spectra in H₂ Discharge

>	Ηα	656	.28nm	:	<u>3S</u>	\rightarrow	<u>2S</u>
>	Ηβ	486.	.13nm	:	4S	\rightarrow	<u>2S</u>
>	Hγ	434.	05nm	:	5S	\rightarrow	2S
?	Ηδ	410	.17nm	•	6S	\rightarrow	2S

Sn150799 (H₂ discharge)

? He 587nm : $3^{3}D \rightarrow 2^{3}P$ > He 706nm : $3^{3}S \rightarrow 2^{3}P$? He 501nm : $3^{1}P \rightarrow 2^{1}S$? He 728nm : $3^{1}S \rightarrow 2^{1}P$? He 667nm : $3^{1}D \rightarrow 2^{1}P$

<u>> Cs 852nm</u> ? O 777nm ? Cs 522nm ? Cs 460nm

Spectra in He Discharge

>	Ηα	656	.28nr	<u>n : (</u>	3S	\rightarrow	<u>2S</u>
>	Ηβ	486	.13nr	<u>n</u> :4	4S	\rightarrow	2S
>	Hγ	434.	.05nr	n : {	5S -	\rightarrow	<u>2S</u>
?	Ηδ	410	.17nr	n : 6	6S	\rightarrow	2S

$\begin{array}{r} > \mbox{He } 587nm: 3^{3}D \rightarrow 2^{3}P \\ > \mbox{He } 706nm: 3^{3}S \rightarrow 2^{3}P \\ > \mbox{He } 501nm: 3^{1}P \rightarrow 2^{1}S \\ > \mbox{He } 728nm: 3^{1}S \rightarrow 2^{1}P \\ > \mbox{He } 667nm: 3^{1}D \rightarrow 2^{1}P \end{array}$

> Cs 852nm ? Cs 522nm ? Cs 460nm

Sn150798, He discharge

Shot Trends of OES Spectra

Arc power

Balmer lines (OES) intensity (Balmer spectra, log scale) [a.u.] 105 Hα Ja.u Hβ [a.u. Ηγ [a.u. 104 103 102 101 100 10-1 151320 151325 151330 151335 151340 151345 151350 151355 shot number

He lines (OES)

$T_{\rm e}$ and $n_{\rm e}$ (Langmuir probe)

Cs(852nm), Cs(460nm) (OES)

O(777nm) (OES)

Comparison of Cs Lines Height in H₂ and He Discharges

Cs: Comparison of OES Signal and LAS

Mass Dependence through Diffusion to Beam Extraction 1

Mass Dependence through Diffusion to Beam Extraction 2

	diffusion	Negative Ionization probability	Survival probability	H ⁻ extraction
atom	$\propto m^{-1/2}$	Independent of H and D	$1 - exp(-4\pi\Delta_0 e^{-\gamma v t}/h\gamma v)$	$\propto m^{-1/2}$
proton	$\propto m^{1/2}$	Independent of H and D	$1 - exp(-4\pi\Delta_0 e^{-\gamma v t}/h\gamma v)$	$\propto m^{-1/2}$

Mass dependence through the processes above are;

	Total mass dependence		
atom	$[1 - exp(-4\pi\Delta_0 e^{-\gamma v t}/h\gamma v)] \times m^{-1}$		
proton	$[1 - exp(-4\pi\Delta_0 e^{-\gamma v t}/h\gamma v)] \times m^0$		

Survival probabilities of H⁻ and D⁻ in low energy range such as less than 5 eV are unknown.

Summary

- To simulate the D₂ discharge, helium plasma is compared to H₂ plasma using OES, Langmuir probe, CRD, Cs-LAS measurement.
- In helium discharge, plasma density becomes higher than that in H₂ discharge.
- Increase of the plasma density is observed in NIFS recently (to be presented by H. Nakano).
- Evaporation of Cs is enhanced in helium discharge and the enhanced rate to H₂ discharge is ~6.
- Negative ionization probability is the same in H⁻ and D⁻ formation.
- Survival probability is a function of escaping velocity of negative ions, and escaping velocity of D⁻ is considered slower than that of H⁻.

He 587nm and 706nm Lines in He and H₂ Mixture Gas

10-1

Beam

Transition from H(n=3) to He⁺

[He discharge]

He 587nm: $3^{3}D \rightarrow 2^{3}P$ He 706nm: $3^{3}S \rightarrow 2^{3}P$ He 501nm: $3^{1}P \rightarrow 2^{1}S$ He 728nm: $3^{1}S \rightarrow 2^{1}P$

[*He* + *H*₂ *discharge*]

He 706nm: $3^3S \rightarrow 2^3P$ He 587nm: $3^3D \rightarrow 2^3P$ He 728nm: $3^1S \rightarrow 2^1P$ He 501nm: $3^1P \rightarrow 2^1S$

Considering the non-decrease He spectra and transition probability, following processes are possible; $He^+ + H(n=3) \rightarrow He(3^3S) + H^+$ $He(3^3S) \rightarrow He(2^3P) + hv(706nm)$ $He^+ + H(n=3) \rightarrow He(3^1S) + H^+$

 $He(3^{1}S) \rightarrow He(2^{1}P) + hv(728nm)$