Studies of Cs Dynamics in Large Ion Sources using the CsFlow3D Code

A. Mimo, C. Wimmer, D. Wünderlich, U. Fantz

6th International Symposium on Negative Ions, Beams and Sources (NIBS)

3rd - 7th September 2018

Budker INP, Novosibirsk, Russia
RF negative ion sources

Accelerated current | 40 A in D^-
\[j_e/j_{ex} \] | < 1
Time | 1 hour

Prototype source (59x30 cm²)
BATMAN test facility
IPP

Source for ITER NBI (190x90 cm²)

Size scaling: half ITER source size test facility ELISE (100x90 cm²)
IPP

SPIDER (Consorzio RFX)
ELISE test facility

Cs evaporation in ELISE:

- Two Cs ovens on the side of the expansion chamber
- Cs continuously evaporated during both vacuum and plasma phases

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Power</td>
<td>360 kW</td>
</tr>
<tr>
<td>Total HV</td>
<td>60 kV</td>
</tr>
<tr>
<td>Plasma pulse time</td>
<td>up to 3600 s</td>
</tr>
<tr>
<td>Beam extraction</td>
<td>10 s every ≈ 150 s</td>
</tr>
</tbody>
</table>
ELISE test facility

Cs evaporation in ELISE:

- Two Cs ovens on the side of the expansion chamber
- Cs continuously evaporated during both vacuum and plasma phases

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Power</td>
<td>360 kW</td>
</tr>
<tr>
<td>Total HV</td>
<td>60 kV</td>
</tr>
<tr>
<td>Plasma pulse time</td>
<td>up to 3600 s</td>
</tr>
<tr>
<td>Beam extraction</td>
<td>10 s every ≈ 150 s</td>
</tr>
</tbody>
</table>
Cs dynamics

- Only neutral Cs
- Ballistic transport \((p \approx 10^{-4} \text{ Pa})\)
- Dynamics determined by:
 - Oven outflow profile
 - Source geometry
 - Wall sticking probability (temperature and impurities)
Cs dynamics

VACUUM PHASE

- Only neutral Cs
- Ballistic transport \((p \approx 10^{-4} \text{ Pa}) \)
- Dynamics determined by:
 - Oven outflow profile
 - Source geometry
 - Wall sticking probability (temperature and impurities)

PLASMA PHASE

- Both Cs neutrals and ions
- Collisions \((p \approx 0.3 \text{ Pa}) \):
 - Background gas
 - Plasma
- Cs redistribution by plasma
Cs dynamics

- **VACUUM PHASE**
 - Only neutral Cs
 - Ballistic transport ($p \approx 10^{-4}$ Pa)
 - Dynamics determined by:
 - Oven outflow profile
 - Source geometry
 - Wall sticking probability (temperature and impurities)

- **PLASMA PHASE**
 - Both Cs neutrals and ions
 - Collisions ($p \approx 0.3$ Pa):
 - Background gas
 - Plasma
 - Cs redistribution by plasma
 - Cs Sputtering by back-streaming ions
Cs dynamics

- Only neutral Cs
- Ballistic transport ($p \approx 10^{-4}$ Pa)
- Dynamics determined by:
 - Oven outflow profile
 - Source geometry
 - Wall sticking probability (temperature and impurities)
- Stability of the work function
- Sufficient Cs flux onto the grid is needed during the pulse to counteract degradation of the work function
- Both Cs neutrals and ions
- Collisions ($p \approx 0.3$ Pa):
 - Background gas
 - Plasma
- Cs redistribution by plasma
- Cs Sputtering by back-streaming ions
CsFlow3D code

INPUT
- Oven nozzle outflow profile, position, direction
- Surface sticking probability
- Plasma parameters

OUTPUT
- Cs flux onto surfaces (both neutrals and ions)
- Energy of Cs particles
- Cs coverage
- Neutral Cs density

Monte Carlo Test Particle Transport code
CsFlow3D code

INPUT
- Oven nozzle outflow profile, position, direction
- Surface sticking probability
- Plasma parameters

OUTPUT
- Cs flux onto surfaces (both neutrals and ions)
- Energy of Cs particles
- Cs coverage
- Neutral Cs density

Exp. measurements of line-averaged neutral Cs density (Laser Absorption Spectroscopy)

Monte Carlo Test Particle Transport code
Investigation of Caesium dynamics

• Results of the code already benchmarked at BATMAN\cite{1}

1. **Plasma drift** effect on neutral Cs distribution **in the larger source at ELISE**

2. **Effect of the PG bias potential on the Cs transport**, i.e. energy of Cs\(^+\)/Cs impinging the PG

3. **Extension to the full source**, simulation of conditioning and long pulses

\cite{1} A. Mimo, AIP Conf. Proc. 1869, 030019 (2017)
Effect of the plasma drift at ELISE

Plasma drift at ELISE:

- At $I_{PG} = 2$ kA, $\frac{n_{plasma, TOP}}{n_{plasma, BOTTOM}} \approx 2$

C. Wimmer (Mon04)
Effect of the plasma drift at ELISE

Plasma drift at ELISE:

- At $I_{PG} = 2$ kA, $\frac{n_{plasma, TOP}}{n_{plasma, BOTTOM}} \approx 2$

SIMULATION

- 20 consecutive pulses (conditioning):
 - 20 s plasma phase
 - 200 s vacuum phase
 - Cs evap. rate 10 mg/h (5 mg/h/oven)
Effect of the plasma drift at ELISE

Simulated neutral Cs density with and w/o the vertical plasma drift
Effect of the plasma drift at ELISE

Simulated neutral Cs density with and w/o the vertical plasma drift

Neutral Cs is symmetric both in simulation and experiment

SIMULATIONS

TDLAS top LOS

TDLAS bottom LOS

Neutral Cs density \([10^{14} \text{ m}^{-3}]\)

Pulse number

Simulations

with drift

w/o drift

Experiment
Effect of the plasma drift at ELISE

Simulated neutral Cs density with and w/o the vertical plasma drift

Neutral Cs is symmetric both in simulation and experiment
But this is not necessarily true for the Cs ions...

![Graph showing simulated and experimental neutral Cs density with and without drift.](image)
Effect of the PG bias voltage on Cs flux

- Simulation of a long pulse at ELISE with pulsed extraction: Cs flux consists mostly of ions (up to 70%)
Effect of the PG bias voltage on Cs flux

- Simulation of a long pulse at ELISE with pulsed extraction: Cs flux consists mostly of ions (up to 70%)

Calculation performed for: \[\Delta \varphi = \varphi_{\text{plasma}} - \varphi_{\text{PG}} = 0 \, \text{V} \]
Effect of the PG bias voltage on Cs flux

- Simulation of a long pulse at ELISE with pulsed extraction: Cs flux consists mostly of ions (up to 70%)

Calculation performed for: \[\Delta \varphi = \varphi_{\text{plasma}} - \varphi_{\text{PG}} > 0 \text{ V} \]
Effect of the PG bias voltage on Cs flux

- Simulation of a long pulse at ELISE with pulsed extraction: Cs flux consists mostly of ions (up to 70%)

Calculation performed for: \[\Delta \phi = \phi_{\text{plasma}} - \phi_{\text{PG}} < 0 \text{ V} \]
Effect of the PG bias voltage on Cs flux

- **Energy distribution of Cs\(^+\) ions** onto a sample surface element of the PG during plasma phase

\[
\Delta \varphi = \varphi_{\text{plasma}} - \varphi_{\text{PG}} = 0 \text{ V}
\]

- Peak at 0.57 eV
- Peak at 0.06 eV
Effect of the PG bias voltage on Cs flux

- Energy distribution of Cs$^+$ ions onto a sample surface element of the PG during plasma phase

\[\Delta \varphi = \varphi_{\text{plasma}} - \varphi_{\text{PG}} = 0 \text{ V} \]

- \(E = -\nabla \varphi \)
- \(T_{H^+} = 0.8 \text{ eV} \)
Effect of the PG bias voltage on Cs flux

- Energy distribution of Cs\(^+\) ions onto a sample surface element of the PG during beam extraction

\[
\Delta \varphi = \varphi_{\text{plasma}} - \varphi_{\text{PG}} = 0 \text{ V}
\]

- Peak at 0.06 eV
- Peak at 0.57 eV
- Peak at 4.4 eV during extr.
Influence of PG bias potential on Cs flux

- Cs ion flux onto the PG for different $\Delta \varphi = \varphi_{\text{plasma}} - \varphi_{\text{PG}}$

![Graph showing Cs flux over time for different potential differences](image)
Influence of PG bias potential on Cs flux

- Cs ion flux onto the PG for different $\Delta \varphi = \varphi_{\text{plasma}} - \varphi_{\text{PG}}$

![Graph showing Cs+ flux as a function of time with different potentials](image)

$\Delta \varphi$ values are shown along the x-axis, and the Cs+ flux is plotted on the y-axis. The graph illustrates the variation of Cs+ flux with time for different potentials.
Influence of PG bias potential on Cs flux

- Cs ion flux onto the PG for different \(\Delta \varphi = \varphi_{\text{plasma}} - \varphi_{\text{PG}} \)
Influence of PG bias potential on Cs flux

- Cs ion flux onto the PG for different $\Delta \varphi = \varphi_{\text{plasma}} - \varphi_{\text{PG}}$
Influence of PG bias potential on Cs flux

- Cs ion flux onto the PG for different $\Delta \varphi = \varphi_{\text{plasma}} - \varphi_{\text{PG}}$
Influence of PG bias potential on Cs flux

- Cs ion flux onto the PG for different $\Delta \varphi = \varphi_{\text{plasma}} - \varphi_{\text{PG}}$
Evaporation close to the PG

- **Evaporation** close to the plasma grid:
 - Limit Cs ionization due to low T_e close to the PG (almost 70% of the flux is neutral)
 - **Direct control of PG caesiation**, not relying on plasma assisted redistribution
Towards the full size source: conditioning at SPIDER

- Simulation of SPIDER:
 - 20 pulses (20 s plasma + 200 s vacuum phase)
 - Different Cs oven configuration

- Total Cs evap. rate to reach ELISE flux: 20 mg/h
Towards the full size source: long pulses at SPIDER

- Long pulses at SPIDER compared with ELISE: 20th pulse after conditioning → Long pulse of 400 s
- Depletion of Cs flux during the long pulse also observed, but much stronger than in ELISE
- Effect of back-streaming ion sputtering not increase the flux, but not enough to compensate the depletion.
Towards the full size source: long pulses at SPIDER

- Long pulses at SPIDER compared with ELISE: 20th pulse after conditioning → Long pulse of 400 s
- Depletion of Cs flux during the long pulse also observed, but much stronger than in ELISE
- Effect of back-streaming ion sputtering not increase the flux, but not enough to compensate the depletion.
Summary and conclusions

- Plasma drift does not induce asymmetry for the neutrals, but this is not necessarily true also for the ions

- Cs\(^+\) ions mostly affected by the PG bias voltage:
 - Cs\(^+\) ion flux onto PG can be locally different due to locally different values of $\Delta \varphi$
 - Cs\(^+\) released by back-streaming ions reach higher energy (≈ 4.7 eV)
 - Evaporation close to the grid beneficial for having mostly neutral Cs flux (control of the caesiumation independently from plasma parameters)

- Simulation of the full source at SPIDER:
 - Depletion of Cs flux during long pulses stronger than in ELISE, (not compensated by the Cs released by back-streaming ion sputtering)
 - Cs density measurements during continuous extraction will be very helpful
Flux of Cs$^+$ / total Cs flux

Distance d from PG [mm]

standard configuration (relying on plasma redistribution)