Системы идентификации

Барняков А.Ю.

Летняя научная школа НЦФМ, «Супер Ц-Тау фабрика», 25-29 июля 2022г., г. Саров

- 1. Основные положения
- 2. Методы идентификации в экспериментах на встречных пучках
 - 1) dE/dx
 - 2) ToF
 - 3) Черенковские счетчики
 - а) Чернковское излучение
 - b) Пороговые счетчики
 - с) Детекторы черенковских колец
 - 4) Детекторы переходного излучения
- 3. Опции систем идентификации для проекта «Супер Ц-Тау фабрика»

Алексей Павлович Онучин (1934 – 2021)

Работал в ИЯФ СО РАН практически с основания (1959—2021)

- А.П. Онучин был одним из пионеров экспериментов на встречных пучках. Множество экспериментальных методик было им предложено и развито для экспериментов со встречными электрон-позитронными пучками:
 - Первый черенковский счетчик в эксперименте на встречных пучках
 - Первая система регистрации частиц со сбором данных на ЭВМ
 - Развитие производства МППК для детектора МД-1 в ИЯФ СО РАН
 - идр.
- Благодаря его энтузиазму, активности и оптимизму началось и продолжается развитие технологии производства черенковских счетчиков на основе аэрогеля

Основные положения

- Идентификация частиц = Разделение частиц по массам
- Полезные соотношения:

$$\gamma = \frac{E}{mc^2} = \frac{1}{\sqrt{1-\beta^2}}; \qquad \beta = \frac{v}{c} = \frac{p}{E} \le 1; \qquad \beta \gamma = \frac{p}{mc^2} = \frac{\beta}{\sqrt{1-\beta^2}}; \quad E^2 = (pc)^2 + (mc^2)^2;$$

- Для определения массы частицы необходимо определить одну из комбинаций:
 - импульс (p) и энергию (E)
 - энергию (E) и скорость (β)
 - Чаще всего измеряют импульс (p) и скорость (eta)

$$m = \frac{p}{c\beta\gamma}$$
$$\left(\frac{\Delta m}{m}\right)^2 = \left(\gamma^2 \frac{\Delta\beta}{\beta}\right)^2 + \left(\frac{\Delta p}{p}\right)^2$$
$$m_2^2 - m_1^2 = p^2 \frac{\Delta\beta(\beta_1 + \beta_2)}{c^2(\beta_1\beta_2)^2}$$

$$\frac{\Delta\beta}{\beta} \cong \frac{(m_2^2 - m_1^2)c^2}{2p^2}$$

Основные положения (2)

Методы идентификации Примечания $R_i = \frac{M}{z^2} F(v, z_0)$ По пробегу $R_i \leq \mathrm{L}_{\mathrm{s}}$, применяется для выделения μ $-\frac{dE}{dx} \sim \frac{z^2}{\beta^2} \ln(\beta^2 \gamma^2)$ Применяется на встречных пучках по ионизационным потерям $\Delta t = \frac{L}{c} \left(\sqrt{1 + \left(\frac{m_2 c^2}{pc}\right)^2} - \sqrt{1 + \left(\frac{m_1 c^2}{pc}\right)^2} \right)^2$ Применяется на встречных пучках по времени пролета $\cos \theta_c = \frac{1}{n\beta}$ Применяется на встречных пучках по черенковскому излучению $E_{p};$ Позволяет хорошо делить e/hadr $L \approx (10 \div 30) X_0; L \approx (5 \div 10) \lambda_{\text{яд}}$ с помощью калориметров $I \sim \ln \gamma$ Применяется при Е ≥10 ГэВ по переходному излучению $\Delta E = 8.64 \cdot 10^{-11} \frac{\gamma^4 H^2}{(nc)^2}$ по СИ Не применяется на встречных пучках

Основные положения (3)

- Основные характеристики:
 - «Эффективность регистрации» (ε_{A→A}) отношение числа зарегистрированных частиц А (N_A^{per}) к общему числу частиц А (N_A^{oбщ})
 - \circ «вероятность ложной идентификации» ($\mathcal{E}_{B \to A}$) отношение числа частиц B, зарегистрированных как A ($N_{B \to A}^{\mathrm{per}}$), к N_A^{ofm}

 \circ достоверность разделения в системе – $n_{\sigma}=rac{S_A-S_B}{\sigma_{AB}}$

 S_A и S_B – средние значения распределений параметра измеренного для частиц A и B, σ_{AB} – средняя величина STDEV этих распределений. Если S_A и S_B распределены по Гауссу, то $\varepsilon_{B \to A} \leq 1\% \to n_{\sigma} = 4$

• В системах идентификации работают с долгоживущими заряженными частицами:

e±	μ^{\pm}	π^{\pm}	Κ [±]	р
0.511 МэВ/с	105.6 МэВ/с	139.6 МэВ/с	493.7 МэВ/с	938.3 МэВ/с
∞	$2.2 \cdot 10^{-6}$ c	2.6 · 10 ^{−8} c	$1.24 \cdot 10^{-8}$ c	> 2.9 · 10 ²⁹ лет

- γ, π^0, K^0, n идентифицируются (реконструируются) по вторичным частицам.
- Системы идентификации в универсальных детекторах должны обладать минимально-возможной толщиной. Характерные современные величина это 0.1÷0.3*X*₀

Идентификация по ионизационным потерям

Идентификация по $\frac{dE}{dx}$

 При прохождении через вещество заряженная частица теряет энергию на ионизацию и возбуждение атомов среды.

$$-\frac{dE}{dx} = 0.31 \frac{z_0}{A} \frac{z^2}{\beta^2} \left[\ln\left(\frac{2mc^2}{I(z_0)}\beta^2\gamma^2\right) - \beta^2 - \delta(\beta^2, z_0) \right] \left[\frac{M \Im B}{\Gamma/_{CM}^2} \right]$$

- Ионизационные потери (при z=1) зависят только от и скорости частицы: $\frac{dE}{dx} \propto \frac{1}{\beta^2} \ln \beta^2 \gamma^2$
- Для частиц с разной массой, но одинаковым импульсом ионизационные потери будут различаться
- Потери энергии на ионизацию можно измерять в газах, жидкостях и полупроводниках
- Существует два метода измерения ионизационных потерь:
 - *Q* измерение полного заряда ионизации
 - *N* подсчет количества кластеров ионизации

dE

dt

Идентификация по
$$\frac{dE}{dx}$$
 (2)

 Совокупность измеренной зависимости <u>dE</u> и *p* позволяет разделять частицы по массам:

$$n_{\sigma} = \frac{\frac{dE}{dx}(m1) - \frac{dE}{dx}(m2)}{\sigma_{dE}_{dx}(m1,m2)}$$

- Основная сложность заключается в точности измерения ионизационных потерь. Ионизационные потери в газах имеют ярко выраженный хвост (распределение Ландау)
- Хорошо подавить флуктуации удается за счет многократных измерений. Например, для π ,К и р с импульсом 50 ГэВ/с при 100 измерениях можно достичь $\frac{\sigma({^{dE}/_{dx}})}{{^{dE}/_{dx}}} = 2$
- Так же разрешение в газах должно улучшаться с ростом давления как ¹/_{√p}, но это приводит к ограничению логарифмического роста ионизационных потерь из-за эффекта плотности.

LBL ТРС для экспериментов на РЕР (SLAC), 1990-ые гг.

Идентификация по времени пролета

Идентификация по ToF

Сцинтиллятор1 Сцинтиллятор2

Принцип методики Time of Flight (ToF)

$$m = p \sqrt{\frac{c^2 t^2}{L^2} - 1}$$

$$\Delta t = \frac{L}{c} \left(\sqrt{1 + \left(\frac{m_2 c^2}{pc}\right)^2} - \sqrt{1 + \left(\frac{m_1 c^2}{pc}\right)^2} \right)$$

$$\frac{dm}{m} = \sqrt{\frac{\gamma^4 \left(\frac{dt}{t} + \frac{dL}{L}\right)^2 + \left(\frac{dp}{p}\right)^2}}$$

Например:

$$n_{\sigma}(\pi/K) \ge 3$$

при
 $\sigma_t = 100 \, \mathrm{пc}$
 $L = 3.5 \, \mathrm{M}$
До $p = 2.1 \, \Gamma$ эВ/ c

Разница времени пролета частиц на длине в 1 м

Рекордное временное разрешение $\sigma_t = 5 \, \mathrm{nc}$ получено на черенковском кварцевом радиаторе с ФЭУ на основе МКП

Идентификация по ToF (3)

Идентификация по ToF (4)

- В экспериментах на встречных пучках существует ряд ограничений:
 - Существенно ограничена база $L = 1 \div 2$ м
 - Точность t_0 (время взаимодействия частиц) определяется параметрами пучка $l_{bunch} = 5 \div 10$ мм $\rightarrow \sigma_{t_0} = 15 \div 30$ пс
 - Калибровка и стабилизация временных сдвигов и задержек в цепи электроники с точностью ~10 пс в течение эксперимента.
- В экспериментах с длинными пучками и большой множественностью взаимодействия техника ToF применяется для, так называемой «4D реконструкции».

Например, для фазы HL-LHC ожидается 200 вершин взаимодействий на каждое столкновение при длине пучка ~10 см.

Требуется измерение времени пролета частиц с точностью ~30 пс, чтобы обеспечить эффективность реконструкции событий в детекторах ATLAS и CMS на уровне 80÷90%. Сегодня активно разрабатываются такие системы ToF с суммарной площадью ~40 м².

Идентификация по Черенковскому излучению

Черенковское излучение: основные свойства

- Возникает в среде с n>1, при условии, что $v>rac{c}{n}$
- Направленность и интенсивность ЧИ зависит от скорости частицы
- Интенсивность ЧИ квадратично зависит от заряда частицы (z^2)
- Практически отсутствует время высвечивания
- Относительно низкая интенсивность
- 100% линейная поляризация

 $\cos \theta_c = \frac{1}{n\beta}, \qquad \beta = \frac{\nu}{c}$ $\frac{d^2 N}{dx d\lambda} = \frac{2\pi\alpha z^2}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2(\lambda)}\right)$

В оптическом диапазоне
$$\lambda = 400 \div 700$$
 нм и $z = 1 \rightarrow \frac{dN}{dx} = 490 \cdot \sin^2 \theta_0 \, [\text{см}^{-1}]$

Радиаторы черенковского излучения

- π и K мезоны при импульсах Р \leq 0.6 ГэВ/с можно надежно разделять (на уровне $\geq 3\sigma$) при помощи методик $\frac{dE}{dx}$ и ToF
- Для надежного π/К -разделения в области импульсов 0.6÷10 ГэВ/с наиболее успешно применяются системы идентификации на основе черенковских счетчиков (детекторов).

	n	Ρ _π , MeV/ <i>c</i>	P _K , MeV/ <i>c</i>
Fused silica	1.458	132	465
Water	1.33	159	563
Freon 114, 1 atm	1.0014	2640	9330
CO ₂ , 1 atm	1.00043	4760	16800
CO ₂ , 10 atm	1.0043	1500	5320
C ₂ H ₄ , 25 atm	1.02	600	2460
Aerogel (SiO ₂)	1.006÷1.25	190÷1250	660÷4500

В экспериментах на встречных пучках используется два типа черенковских счетчиков: пороговые и детекторы черенковских колец (ДЧК или RICH в англ. литературе)

Пороговые черенковские счетчики

Более легкая частица *m*₁ излучает ЧИ в радиаторе с показателем преломления *n*, а более тяжелая *m*₂ – нет.

$$eta_2=rac{1}{n}$$
 или $\gamma_2=rac{1}{\sqrt{1-rac{1}{n^2}}}$

Необходимый показатель преломления:

$$n^2 = \frac{\gamma_2^2}{\gamma_2^2 - 1}$$

При этом более легкая частица излучает примерно $490 \cdot \sin^2 \theta_0 [\text{см}^{-1}]$ $\sin^2 \theta_0 = 1 - \cos^2 \theta_0 = 1 - \frac{1}{n\beta_1} = \frac{\gamma_1^2 - \gamma_2^2}{(\gamma_1^2 - 1)\gamma_2^2} = \left| \text{при } \gamma_1^2 \gg 1 \right| = \frac{1}{\gamma_2^2} - \frac{1}{\gamma_1^2}$ Если учесть, что $p_1 = p_2 = p$, а $E \approx pc$, то $\frac{dN}{dx} = 490 \cdot \frac{c^2}{p^2} (m_2^2 - m_1^2) [\text{см}^{-1}]$

При толщине радиатора t, квантовой эффективности q и эффективности светосбора ε $N_{\phi \ni} = 490 \cdot \frac{c^2}{p^2} (m_2^2 - m_1^2) \cdot t \cdot q \cdot \varepsilon$ или $t = \frac{N_{\phi \ni}^0 p^2}{490 \cdot c^2 (m_2^2 - m_1^2) \cdot q \cdot \varepsilon}$ [см]

Иллюстрация принципа использования пороговых счетчиков

При $p = 10 \ \Gamma$ эв/с • Пион $(m_{\pi} = 140 \ \frac{M \Rightarrow B}{c^2})$ выше порога (излучает ЧИ) во всех счетчиках • Каон $(m_K = 494 \ \frac{M \Rightarrow B}{c^2})$ дает сигнал в аэрогелевом и неопентановом счетчике • Протон $(m_p = 938 \ \frac{M \Rightarrow B}{c^2})$ дает сигнал только в аэрогелевом счетчике

Первый черенковский счетчик на встречных пучках (ВЭПП-2)

- 1970 год эксперимент на ВЭПП-2, были обнаружены многоадронные события — одно из первых наблюдений легких кварков.
- Эксперимент ставился для такой задачи:

$$e^+e^- \to \frac{\pi^+\pi^-}{K^+K^-}$$

- Максимальная энергия в пучке 700 МэВ.
- В качестве радиатора была выбрана вода: $n = 1.33, \beta_{\rm Kp} = 0.75.$ $E_{\rm пор}(\pi) = 210$ МэВ, $E_{\rm пор}(K) = 760$ МэВ. $\varepsilon_{\pi} = 99.3 \pm 0.4\%$ $\varepsilon_{K \to \pi} \leq 1\%$ при $E = 590 \div 630$ МэВ.

Газовый пороговый черенковский счетчик детектора МД-1 (ВЭПП-4)

- Эксперимент МД-1 (1980-1985гг.) в области Y-мезонов
- π/K -разделение при $E = 0.7 \div 2.5$ ГэВ

- Восемь счетчиков 1600 × 700 × 250 мм.
- 60% телесного угла
- ЧИ собирается четырьмя ФЭУ 58DVP (øФК=150 мм)

Первый аэрогелевый черенковский счетчик на встречных пучках: TASSO (PETRA-DESY)

- *π/К*-разделение *P* = 0.6 ÷ 16.9 ГэВ/*c*
- 1976 начало разработки
- Три радиатора:
 - Фреон-114 (n=1.0014)
 - CO₂ (n=1.00043)
 - Аэрогель SiO₂ (n=1.025)
- 32 счетчика с объемом аэрогеля 0.35x1.0x1.5 м (V_Σ=2000 л; S_Σ=12 м²)
- 6 ФЭУ (RCA Quantacom) ØФК=15 см
- L_{sc}(436 нм) = 2.4 см; t_{аэр}=13.5 см
 - $N_{\phi_{9}}$ (аэрогель) = $3.9 \varepsilon_{\pi} = 98\%$

N_{фэ} (фреон) = 20

•
$$N_{\phi \ni}(CO_2) = 8$$
 $-\varepsilon_{\pi} = 99 \pm 1\%$

Экспериментальное открытие глюона

Аэрогелевые черенковские счетчики эксперимента Belle (KEKb)

- 1994 система Аэрогелевых черенковских счетчиков утверждена как базовая PID опция эксперимента Belle
- 1124 счетчиков с 2024 ФЭУ Fine Mesh (2, 2.5, 3 inch)
- n=1.01—1.03, V_Σ=2000 л, высоко-прозрачный аэрогель
- $N_{\phi_{\vartheta}} = 20 26(!)$
- Проработала 1998-2010

ЛНШ НЦФМ "СЦТФ", 25-29 Июль 2022г.

Аэрогелевые счетчики с переизлучателями (WLS=Wave Length Shifter)

- λ=400 нм L_{sc}~ 40 мм, L_{abs}~ 4-5 м
- λ=300 нм

 L_{sc} ~12 mm, L_{abs} ~ 0.5-1 m

HO T.K. !!! $\frac{dN}{d\lambda} \sim \frac{1}{\lambda^2} \rightarrow \frac{N_{\phi}(300 \text{ hm})}{N_{\phi}(400 \text{ hm})} \approx 3$

 Выгодно фотоны переизлучать в длиноволновую область, где прозрачность выше!

Аэрогелевые счетчики с переизлучателями (2)

- Примеры аэрогелевых счетчиков с перизлучателями:
 - Прототип аэрогелвого счетчика для детектора BaBar – применялся ПТФЭ отражатель, насыщенный РМР (Фенил-Метил-Пирозолин)
 - AMS-01 применялся отражатель Tedlar (25 µм), вымоченный в РМР –> Очень быстрая деградация N_{фэ} = 5 –> 1.5 (n=1.035)
 - DIRAC использует тефлоновые пленки покрытые р-терфенилом. Дало повышение на 50% светосбора, но так же на 40% выросла допороговая эффективность. N_{фэ} = 4 (n=1.008)
- Во всех этих детекторах переизлученный свет возвращается в аэрогель!

Experiment DIRAC-II (PS-CERN)

- $\pi/K/p$ separation in momenta range from 4 to 8 GeV/c
 - Aerogel n=1.015 K/p separation 4-5.5 GeV/c 2 modules (2x12 liters) (Matsushita)
 - Aerogel n=1.008 K/p separation 5.5-8 GeV/c 1 modules (1x12 liters) (Novosibirsk)
- WLS based on Teflon foils coated with p-terphenyl → Светосбор вырос на 50%, но и допороговая эффективность стала 40%

 Y.Alkofer et al., "A new aerogel Cherenkov detector for DIRAC-II", NIM A595 (2008) 84

 28.07.2022

 ЛНШ НЦФМ "СЦТФ", 25-29 Июль 2022г.

АШИФ счетчики

Аэрогель ШИфтер и Фотоприемник

ПММА пластина с добавкой BBQ работает, как световод со спектрсмещением.

Предложенно в ИЯФ СО РАН. A.Onuchin et.al. NIM A315(1992)517

КЕДР эксперимент – ВЭПП-4М

- Precise particle mass measurements: J/ψ , $\psi(2S)$, $\psi(3770)$, τ -lepton, D-mesons, Y-mesons
- Measurements of ψ and Y- mesons lepton width
- R measurement in 2-10 GeV c.m. energy range
- $\gamma\gamma \rightarrow hadrons$ and other 2γ processes
- Branching fractions measurements in charm and bottom quark systems (above 10⁻⁴)

🕅 АШИФ система эксперимента КЕДР (ВЭПП-4М

- 160 counters in 2 layers
- Solid angle 96% of 4π
- n=1.05, V_{Σ} =1000 l, high transparency SAN-96 aerogel
- π/K separation in the momentum range 0.6÷1.5 GeV/*c*
- 160 MCP PMTs, photocathode diameter ø18mm, able to work in the magnetic field up to 2 T
- Fully installed in the detector in 2013. Now in operation.

АШИФ система – КЕДР (2)

- N_{фэ} = 6.4±0.2 «первый» слой
- N_{фэ} = 5.0±0.2 «второй» слой
- N_{фэ} = 10.9±0.2 сумма сигналов (80% телесного угла)
- π/K -separation at 1.2GeV/*c* is 4.3 σ

A.Yu.Barnyakov et al., NIM A824 (2016) 79

🕼 СНД эксперимент — ВЭПП-2000

🖤 АШИФ система — СНД

- π/K separation from 300 to 870 MeV/c
- Cylindrical shape: R=105÷141 mm
- Case material: 1mm of Al
- 3 segments of 3 counters in each
- Solid angle: ~60% of 4π
- Thickness: 0.09 X_o

- Scheme: ASHIPH
- WLS position: displaced by \sim 5° from counter center
- Aerogel thickness: ~30 mm

Aerogel parameters

- Refraction index: n=1.13±0.01
- Density: ρ=0.65 g/cm³
- L_{sc}=19 mm at λ =400 nm
- L_{abs} =100 cm at λ =400 nm

АШИФ система СНД: π/K - разделение

- For momenta above 350 MeV/c separation level is sufficient
- 2. Below 350 MeV/c separation will be supplemented by other subsystems (DC)

A Yu Barnyakov et al 2014 JINST 9 C09023

Детекторы черенковских колец (RICH)

ДЧК (RICH) – принцип

В идеальном случае

$$R_D = f = \frac{R_S}{2}$$
$$r = \frac{R_S}{2} \theta_C \quad \text{и} \quad \beta = \frac{1}{n \cdot \cos \frac{2r}{R_S}}$$

Зная *р* и β, можно определить массу

$$m = \frac{p/_C \cdot \sqrt{1 - \beta^2}}{\beta}$$

Имея предположения о массе, можно восстановить импульс.

$$\frac{\Delta p}{p} = \gamma^2 \frac{\Delta \beta}{\beta}$$

- ДЧК измеряет скорость частиц от порога до c
- Фотодетекторы должны определять координаты фотонов

•
$$\frac{\Delta\beta}{\beta} = \Delta\theta_{\rm C} \cdot \tan\theta_{\rm C}$$
, где $\Delta\theta_{\rm C} \sim \frac{\Delta\theta_{\rm C}^{1_{\phi_{\beta}}}}{\sqrt{N_{\phi_{\beta}}}}$

$$p \quad n_{\sigma} = \frac{\theta_{\bar{C}}^2 - \theta_{\bar{C}}^2}{\Delta \theta_{C}^{1,2}}$$

Первый ДЧК: RICH – DELPHI (LEP-CERN)

1990 г.

- Жидкий радиатор (C₆F₁₄) t=10 мм «прямая фокусировка» L=120 мм
- Газовый радиатор (C₅F₁₂) t=390 мм фокусировка параболическим зеркалом
- Фотонный детектор дрейфовые трубки с ТМАЕ в режиме ТРС с торцов считывались МППК

Для событий $Z \rightarrow \mu^+ \mu^-$

• $\Delta \theta_C^{\text{жид}} = 5.2$ мрад при $N_{\text{ф}_2}^{\text{жид}} = 14$

36

RICH – CLEO-III (CESR)

RICH был добавлен в CLEO в <mark>2000г.</mark>

- π/K -разделение лучше 3σ до $P \le 2.65 \ \Gamma \Rightarrow B/c$
- Прямая фокусировка L=20 см
- Фотодетектор МППК на CH_4 + TEA ($\lambda = 135..165$ нм)
- Радиатор $LiF n(150 \text{ нм}) = 1.5 \rightarrow$ зубчатая структура
- $\Delta \theta_{\rm C} = 13 \div 19$ мрад при $N_{\rm dy} = 10$
- $\varepsilon_{\pi} = 94.5\%$ при $\varepsilon_{K o \pi} = 1.1\%$
- $\varepsilon_K = 88.4\%$ при $\varepsilon_{\pi \to K} = 2.5\%$

DIRC – BaBar (PEP-II – SLAC)

1999 <mark>— 2008</mark> г.

Detection of Internally Reflected Cherenkov light

- Радиатор синтетический кварц n=1.5
- 10752 ФЭУ (9125FLB17) с øФК=29 мм
- $N_{\phi \ni} = 20 \div 60$
- π/K -разделение
 - 4*о* при *P* = 1.2 ГэВ/*c*
 - 2.6*о* при *P* = 3 ГэВ/*c*

Быстрые фотодетекторы (КФЭУ, ФЭУ с МКП ...) для коррекции $n(\lambda)$ по времени прихода фотона π/K -разделение на прототипе 4σ при P = 4 ГэВ/с SuperB, PANDA, EIC и др.

LD

TOP – Belle-II (SuperKEKb)

- Синтетический кварц
 n(405 нм) = 1.44,
 260×45×2 см 16 шт.
- 512 ФЭУ с МКП (Hamamatsu), *TTS* ≤ 50 пс, 16 пикселей 5.5×5.5 мм

•
$$\varepsilon_K = 90\%$$
 при $\varepsilon_{\pi o K} \leq 5\%$ для $P = 0.5 \div 2$ ГэВ/с

39

ДЧК на основе аэрогеля

- $-\pi/K$ -разделение при $P = 4 \div 10^{\Gamma_{\Im}B}/_{c} \rightarrow n = 1.03 \div 1.05$
- Больше разница черенковских углов
- Меньше дисперсия показателя преломления
- Применение аэрогеля в ДЧК ограничено Рэлеевским рассеянием:

Hermes RICH (HERA – DESY)

Y.Miyachi, NIM A502(2003)202

RICH1 LHCb (LHC – CERN)

 π/K – разделение 1 ÷ 150 ГэВ/с Аэрогель n = 1.03, блоки 20х20х5 см³ ← (рекордные размеры) $C_4F_{10} n = 1.0014$ $CF_4 n = 1.0005$

ЛНШ НЦФМ "СЦТФ", 25-29 Июль 2022г.

RICH в AMS-02 (MKC)

Измерение Z по $N_{\phi i} \sim Z^2$

- Аэрогел n = 1.05, 115x115x30 мм³, $S_{\rm oбщ} \sim 1$ м²
- Хорошее совпадение измеренных параметров и расчетов

F.Giovacchini et al., NIM A970 (2020) 163657

CLAS-12 RICH (J-Lab)

28.07.2022

44

Kaon

photon detectors

Kaon

photon detectors

Фокусирующий Аэрогелевый РИЧ = ФАРИЧ

Пер	овый 4-с.	лойный аэрогель 2004 г.
		and the second sec
5	n=1.030	6.0mm
	n=1.027	6.3mm
	n=1.024	6.7mm
NUE.	n=1.022	7.0mm

ДЧК с прямой фокусировкой

- Показатель преломления в слоях подобран, так чтобы черенковские кольца перекрывались в области фотодетектора
- Позволяет увеличить $N_{\rm deg}$ за счет толщины блока без ухудшения $\Delta heta_{\rm C}$

T.Iijima et al., NIM A548 (2005) 383 A.Yu.Barnyakov et al., NIM A553 (2005) 70 π/K -разделение лучше 4σ до 4 ГэВ/с

• 248 аэрогелевых блока в 2 слоя 2+2 см

$$n_1 = 1.045; n_2 = 1.055; S_{cист} = 3.5 \text{ m}^2$$

• 420 HAPD; 144 пикселя 5х5 мм²

	$\boldsymbol{\varepsilon}_K$	$oldsymbol{arepsilon}_{\pi o K}$	${\cal E}_{\pi}$	$oldsymbol{arepsilon}_{K ightarrow \pi}$
Данные	93.5±0.6%	10.9±0.9%	87.5±0.9%	5.6±0.3%
МК	96.7±0.2%	7.9±0.4%	91.3±0.3%	3.4±0.4%

Y.-T. Lai et al 2020 JINST **15** C07039

28.07.2022

Идентификация по переходному излучению

Переходное излучение

- 1946 г. В.Л. Гинзбург и И.М. Франк (теория)
- 1973 г. Г.М. Гарибян показал, что в спектре ПИ присутствует рентгеновские фотоны
 - $E_{\text{РПИ}} \approx \gamma^n$, $n \ge 1$
 - $-dE \sim \gamma$
 - $\theta \approx \frac{1}{\gamma}$
 - $n_{\phi} \approx \alpha \gamma$, $\alpha = \frac{1}{137}$
 - Зона формирования ПИ :

 ω_p – плазменная частота среды,

 ω – частота фотона.

ВАЖНО:

Много слоев (10⁴)

t~10÷100 μм

Переходное излучение (2)

- Суммарная толщина радиатора из $10^4\,{\rm слоев}$ ${\sim}0.05\div2$ м
- РПИ с энергией ~10 кэВ можно регистрировать газовыми детекторами
- ПИ регистрируются вместе с кластерами ионизации первичной частицы
 - Можно измерять Q или считать кластеры N_{cl}
 - Кластеры от РПИ задержаны по времени
- Качество разделения обычно приводится в терминах фактора подавления

$$R_{1/2} = \frac{\varepsilon_1}{\varepsilon_2}$$
, при $\varepsilon_2 = 90\%$

TRD-ALICE (LHC-CERN)

- 5 см многослойный сэндвич полипропиленового волокна
- Детектор 3 см ДК:
 - Газ Xe/CO₂ (85/15)
 - измеряется Q и форма сиганла
- 5 слоев (радиатор+ДК)

Переходное излучение (3) ткт атьах (LHC-CERN) Transition Radiation Tracker

Модуль TRT-ATLAS

<u>Подавление электронов с $P \ge 2 \ \Gamma \ni B/c$ </u>

- 73 слоя в баррели и 160 в торцах
 - Полипропилен-полиэтиленовые волокна Ø19 мкм слоем с t=3 мм ho=0.06 $^{\rm r}/_{\rm cm^3}$
 - Детектор полиамидные дрейфовые трубки
 - Ø4 мм, анод Ø31 µм, 144 см
 - Γаз 70% Xe, 27% CO₂, 3% O₂; K_y~2.5x10⁴

Опции систем идентификации для проекта «Супер Ц-Тау фабрика»

Супер С-Тау фабрика

- e⁺e⁻ collider for precise experiments with tau-lepton and charmed hadrons and search for "new physics"
 - Energy of beam 1.5÷3.5 GeV
 - $_{\odot}$ Luminosity ${\cal L}~=10^{35}~cm^{-2}s^{-1}$ @ 2 GeV
 - Longitudinal electron beam polarization
- > Universal particle detector
 - Axial magnetic field up to 1.5 T
 - Track system with excellent spatial and momentum resolution
 - Calorimeter with excellent energy resolution and timing properties
 - Particle identification system
 - $\circ~\pi/K$ separation 0.6÷3 GeV/c
 - $\circ~\mu/\pi$ separation up to 1.5 GeV/c

Супер С-Тау фабрика: dE/dx

Parametric simulation of DC with $\sigma_{dE/dx}=7\%$.

Parametric simulation of DC with cluster counting mode He/iC₄H₁₀ (90%/10%) \rightarrow 12 $\frac{cl}{cm}$.

IT+DC is able to detect the particles with momenta $P_t \ge 80 \text{ MeV/c}$ PID up to 200 MeV/c is possible only in tracking system due to magnetic field of the Detector Clusters counting mode allows us to improve power of particle separation in DC by ≥ 2 times Specialized readout electronics is needed:

- Sampling-ADC to digitize 300÷500 ns time interval or fast-TDC with ToT approach?!

Супер С-Тау фабрика: ${}^{dE}/{}_{dx}$ -разделение

Супер С-Тау фабрика: ФАРИЧ

FARICH method • Increase N_{pe} w/o σ_{Θ_c} increase; • μ/π -sep.~ 5 σ at 1 GeV/c was obtained in beam tests; P = 1 GeV/c Experiment 1400 MC simualtion Shell + Stiller 12000 -----O Focusing DIRC (SuperB) -----FT-45 + 0.0 10000 ----65 70 7 ring radius, mm mentum, GeV/c Status & perspectives:

No any showstopers have been found yet, but there are several challenges:

- Mass-production of the multilayer focusing aerogel.
- 1.5 million of SiPMs and their radiation hardness.
- Big data flow in DAQ system.

FARICH system parameters:

- Focusing aerogel with n_{max}=1.05(1.07?), 4 layers, total thickness 35 mm
- Aerogel area: 14 m²
- Photon detectors (3×3 mm²):
 Barrel SiPMs (16 m²)
- Endcap MCP PMT (5 m²) LAPPD?
 1÷2·10⁶ channels (it depends on pitch)
- Load 0.5÷1.0 MHz/channel
- Cooling system (\leq -30°C) is needed
- R&D for read out electronics is required.

FARICH: Beam test results & simulation (2021)

Супер С-Тау фабрика: fDIRC

• Inspired by design from BaBar, SuperB, Belle II, and PANDA

• For PANDA $\sigma_{\Theta_c} \approx 2.1 \text{ mrad/track}$ is achieved for π/K with 3σ @4 GeV/c

• For SCTF $\sigma_{\Theta_c} \approx 0.7 \text{ mrad/track}$ is required for μ/π with 3σ @1.5 GeV/c

Main parameters:

- Synthetic fused silica:
 Barrel: 2×16 plates 110×32×1.5 cm
 Endcap: 2×4 sectors 1÷2 cm thick
- Focusing optics: innovative rad-hard 3-layer spherical lens
- MCP-PMT or SiPM with $\sigma_t \leq 100$ ps **Barrel**:
 - ► □2÷3 mm pixel

► 2.56÷1.14·10⁵ readout channels **Endcap**:

- 16×0.5 mm pixel
- 2.88·10⁴ readout channels

 2×16 plates $110 \times 32 \times 1.5$ cm³ and 2×16 expansion volumes $32 \times 20 \times 10$ cm³

Супер C-Tay фабрика: fDIRC

Few comments to DIRC option

- Sufficient change of yoke geometry and calorimeter is needed.
- DIRC is very compact system in barrel part, therefore it is possible to increase DC or decrease the EMC volume.
- Good enough μ/π -separation is provided up to 700 MeV/c \rightarrow we need to use something else to separate μ and π up to 1.2 GeV/c.

Plans:

- Mitigate multi-scattering effects \rightarrow tracking system behind the PID system with $\sigma_x \sim 100 \mu$ m?!
- Quartz chromaticity corrections with time measurements.

M. Schmidt et al 2020 JINST 15 C02032

Schematic location of the DIRCs.

^μ/_π-разделение на основе моделирования результатов испытаний на пучке

Супер С-Тау фабрика: АШИФ с КФЭУ

A.Yu. Barnyakov et al., EPJ Web Conf. 212 (2019) 01012. 28.07.2022

ASHIPH with SiPM

- π/K -separation from 500 to 2000 MeV/c
- μ/π -separation from 400 to 900 MeV/c

Preliminary design:

- 6000 l of aerogel in three layers: n=1.03 (8 cm) and n=1.015(8+8 cm)
- 1400 counter with sizes \sim 18×30×8 cm
- Amount of material $\sim 15\%{
 m X}_0$
- Light collection WLS(BBQ) and 28000 SiPMs 3×3 mm²

Супер С-Тау фабрика: ТоF+ТоР

It is possible to use TOP information in addition to TOF.

- The record time resolution (\sim 5 ps) was obtained with quartz radiator coupled to MCP PMT.
- The best accuracy of TOF measurement achieved in currently operating colliding beam experiment is about 80 ps (BESIII).
- The time resolution of about 30 ps is considered for future upgrade of the CMS detector.
- The time resolution of about 15 ps is the aim of TORCH project a time-of-flight detector.
- Recent progress in time-of-flight technique allows us to consider the TOF system with intrinsic time resolution better than 30 ps. Time resolution mainly is determined by:
 - refractive index dispersion
 - time of light collection
 - photon detector & electronics jitter

Time of Propagation (ToP) can improve the Time of Flight (ToF).

Супер С-Тау фабрика: ТоF+ТоР концепция Маіл рагашеters

Супер С-Тау фабрика: RICH+ToF

Супер С-Тау фабрика: сравнение PID опций

Заключение

- Рассмотрены 4 метода идентификации частиц, применяемые в экспериментах на встречных пучках: ${^{dE}}/{_{dx}}$, ToF, ЧИ, РПИ
- Современные прецизионные эксперименты, такие как Супер
 С-Тау фабрика предъявляют серьезные требования к системам идентификации
 - $\pi/_{K}$ разделение во всем рабочем диапазоне импульсов (до 3 ГэВ/с)
 - ^µ/_π разделение до 1.5 ГэВ/с
- Такие требования можно удовлетворить, комбинируя информацию о частице с нескольких систем
- Сейчас хороший момент, чтобы подключиться к разработке системы идентификации для проекта Супер С-Тау фабрика!!!

Рекомендуемая литература

- 1. Добрецов Ю.П. «Методы идентификации частиц в экспериментальной физике высоких энергий». Конспект лекций. М.: МИФИ, 2000. 68 с.
- 2. Peter Križan «Advances in particle-identification concepts», 2009 JINST 4 P11017
- J. Va'vra «Particle identification methods in high-energy physics», NIM A454 (2000) 262-278
- 4. Boris Dolgoshein «Transition radiation detectors», NIM A326 (1993) 434-469