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Обширная тема, пересечение машинного обучения и физики 
частиц.

Быстроменяющаяся тема: основные результаты получены в 
последние 5 лет.

Более полный обзор генеративных моделей: 

https://github.com/HSE-LAMBDA/DeepGenerativeModels

https://www.youtube.com/playlist?list=PLFbo11UoF5zSsRuNLxVmrNtVY7lnaLit7

https://www.youtube.com/playlist?list=PLEwK9wdS5g0pjDfggLYVUfPCZNnU7Ttdd

https://github.com/HSE-LAMBDA/DeepGenerativeModels
https://www.youtube.com/playlist?list=PLFbo11UoF5zSsRuNLxVmrNtVY7lnaLit7
https://www.youtube.com/playlist?list=PLEwK9wdS5g0pjDfggLYVUfPCZNnU7Ttdd


›

Generative Modeling



This X Does Not Exist!
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https://thisxdoesnotexist.com/

https://thisxdoesnotexist.com/


Generative Models Progress
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The news are well motivated.

https://twitter.com/goodfellow_ian/status/1084973596236144640

▶ Enormous progress in recent years.
▶ Technology is ready for new tasks.

https://twitter.com/goodfellow_ian/status/1084973596236144640


▶ Text generation.

More Tricks for Your Brain
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▶ Text generation.

▶ Voice from text generation.

More Tricks for Your Brain
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▶ Text generation.

▶ Voice from text generation.

▶ Style transfer.

More Tricks for Your Brain
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Generative Models Failures
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https://www.fastcompany.com/90303908/this-ai-dreams-
about-cats-and-theyll-haunt-your-nightmares

▶ Image is created as 
interpolation between 
existing ones.

https://www.fastcompany.com/90303908/this-ai-dreams-about-cats-and-theyll-haunt-your-nightmares


Dealing with Maps: generating map
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https://github.com/ChengBinJin/pix2pix-tensorflow

▶ Image-to-image style transfer.  
▶ Creates map on-the-fly from satellite image.

Input Generated True

https://github.com/ChengBinJin/pix2pix-tensorflow


Dealing with Maps: generating satellite image
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https://github.com/ChengBinJin/pix2pix-tensorflow

▶ Image-to-image style transfer  
▶ Creates map on-the-fly from satellite image and vice versa.

Input Generated True

https://github.com/ChengBinJin/pix2pix-tensorflow


Dealing with Maps: generating satellite image
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▶ Image-to-image style transfer  
▶ Creates map on-the-fly from satellite image and vice versa.
▶ The technology is the same as for “Monet” painting. Just need  

good representation.

=



Dealing with Satellite Images: Super-resolution 
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https://omdena.com/blog/super-resolution/

▶ We can “create” a more 
appropriate map quality.

▶ This later can be used in 
segmentation task.

https://omdena.com/blog/super-resolution/


Weather prediction: nowcast
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▶ Video prediction for 
precipitation.

▶ Generation of future state, 
based on the previous 
one.

https://www.kdd.org/kdd2019/accepted-
papers/view/precipitation-nowcasting-with-satellite-
imagery



Dirty Road Signs Generation
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▶ Road signs from the book are too 
clean.

▶ Need to put mud and shadows on 
the signs. https://arxiv.org/abs/1907.12902

https://www.hse.ru/sci/diss/426009543

https://arxiv.org/abs/1907.12902
https://www.hse.ru/sci/diss/426009543


What Generative Models Do not Produce
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▶ No new information is created.
▶ All interpolations are done in some representation space.  



Chapter outcome
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▶ Generative models in machine learning were developing quickly in the 
last years. 

▶ Current state-of-the-art allows to implement generative models in 
more serious tasks than deceiving non-expert human.



›

Generative Models for Science



Astronomy Example
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▶ Generate weak lensing 
convergence maps.

▶ ”Visually, an expert cannot 
distinguish the generated 
maps from the full simulation 
ones”

Mustafa, M., et al.. Comput. Astrophys. 6, 1 (2019).



Medicine Example
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▶ generates a new 
candidate 
molecule with 
best property;

▶ to be tested by 
engineers and 
have some 
further 
medical tests.



High-Energy Physics
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▶ Event can be 
considered as a 
photo. 

▶ The event is 
than passed 
through the 
pipeline.



Chapter outcome
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▶ Many scientific applications.
▶ High-energy physics has got specific requirements to the properties 

(no brain tricks assumed). 



›

What is Generative Modeling



Random Number Generation
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▶ We have sample with 
numbers: 

3; 5; 4; 4; 4; 4; 5 ; 6 ; 5 ; 4 ; 5; 
4; 5; 6; 5; 6; 5; 5; 6; 6

▶ Want to create a new number 
alike.  

0 1 2 3 4 5 6 7 8 9

6



How we did it? 
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▶ Assume there is a probability 
density ptrue(x).

▶ Try to estimate ptrue(x) using 
data and obtain pdata(x).

▶ Sample from pdata(x).

0 1 2 3 4 5 6 7 8 9

6



Random Number Generation
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▶ We have different sample 
with numbers: 

3; 5; 4; 4; 4; 4; 5 ; 6 ; 8 ; 4 ; 5; 
4; 5; 6; 5; 6; 5; 5; 6; 5

▶ Want to create a new number 
alike.  

0 1 2 3 4 5 6 7 8 9



Random Number Generation
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▶ We have different sample 
with numbers: 

3; 5; 4; 4; 4; 4; 5 ; 6 ; 8 ; 4 ; 5; 
4; 5; 6; 5; 6; 5; 5; 6; 5

▶ Want to create a new number 
alike.  

0 1 2 3 4 5 6 7 8 9



Random Number Generation
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▶ We have different sample 
with numbers: 

3; 5; 4; 4; 4; 4; 5 ; 6 ; 8 ; 4 ; 5; 
4; 5; 6; 5; 6; 5; 5; 6; 5

▶ Want to create a new number 
alike.  

0 1 2 3 4 5 6 7 8 9

6

7



Random Number Generation
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0 1 2 3 4 5 6 7 8 9

6

7

▶ Assume there is a probability 
density ptrue(x).

▶ Choose interpolation model.
▶ Try to estimate ptrue(x) using 

data and obtain pdata(x).
▶ Sample from pdata(x).



Case Study: Anomaly Detection
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http://introtodeeplearning.com/
Summer School Super 

c-tau factory 2022

http://introtodeeplearning.com/


More Complicated Case: Figures
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▶ Figure consists of pixels.
▶ One can use this 

representation.
▶ Each pixel is encoded by 3 

colours.
▶ Multi-modal distribution.
▶ Multidimensional problem.

Summer School Super 
c-tau factory 2022



▶ Handwritten digits dataset. 
▶ Only black and white pixels.
▶ Number of pixels 28X28.
▶ Number of possible states:

2x2x2x….x2 = 2n.
▶ Number of parameters:

2n -1.
▶ For Independent pixels: 

n.

Number of Parameters
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Generative model: Final Touch
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▶ Assume there is a probability 
density ptrue(x).

▶ Choose interpolation model.
▶ Reduce number of 

dimensions.
▶ Try to estimate ptrue(x) using 

data and obtain pdata(x).
▶ Sample from pdata(x). Am

az
on

https://www.amazon.com/TRUTH-THAT-LIES-BETWEEN-novel-ebook/dp/B07ZQS86V2


Generative model: Problem Statement
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▶ Estimation: find the 𝑓 in ℱ that best matches observed data. 
▶ Evaluate Likelihood: compute 𝑓(𝑧) for a given 𝑧.
▶ Sampling: drawing from 𝑓.

Three major tasks, given a generative model 𝑓 from a class of models ℱ :

S. Nowozin et al. f-GAN: Training Generative Neural 
Samplers using Variational Divergence Minimization

https://arxiv.org/abs/1606.00709


Generative model vs Discriminative model
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Discriminative models Generative models

https://ai.stanford.edu/~ang/papers/nips01-
discriminativegenerative.pdf

https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf


Chapter outcome
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▶ Generative modeling is a distinct task in machine learning. 
▶ Mathematically, it aims to reconstruct the probability density, from 

which the given dataset was sampled.



›

“Early” Generative Models



“Non-parametric” Approaches
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▶ Histograms can be used. 
▶ Need to choose optimal bin 

size. 
▶ Smaller bins for approximate 

constant estimate.
▶ Larger bins for less 

fluctuations.
▶ Can be chosen using 

empirical risk. 

Su
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https://sites.google.com/site/sunleislinearspace/histogram-density-estimation


Kernel-density estimation
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▶ Assign every event a weight.
▶ Smooth between events.
▶ Kernel Density Estimation: 

𝑝̂! 𝑥 = "
!# *$%"

!
𝐾(&'&!# ),

𝐾 – some kernel, h – bandwidth.

Sc
i-k

it

https://scikit-learn.org/stable/modules/density.html


KDE Summary
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▶ Efficient in low dimensional estimation. 
▶ Controllable convergence rate for bias or variance but the overall rate 

is similar. 
▶ To speed up the convergence, once can attempt to find manifolds in 

the 𝑑-dimension.
▶ Fairly hard to sample and keep the model in memory.

see for example Yen Chi Chen, Learning Theory, Lec 8.

http://faculty.washington.edu/yenchic/18W_425/


Chapter Summary
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▶ Generative modeling is a distinct task of machine learning.
▶ Several pre-deep learning algorithms can produce reasonable results in the 

low dimensional data.



›

HEP Simulation



Simulation
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Several model-motivated 
transitions.

Sequence:
• collision;
• decay;
• matter interaction;
• digitisation;
• reconstruction.

Each event takes 1 minute to 
generate (real world data is 
“generated” at several MHz).

Simulate “simulation” using effective 
parameterization.
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The calorimeter consists of many 
cells that reads out the energy 
deposit of a single particle.

A single particle deposits energy to 
several cells. An event is a sum of all 
particles and some noise. 

We are normally using some 
reconstructed parameters of the 
event.

LHCb Calorimeter Technical Design Report

What is the event.
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http://inspirehep.net/record/540892?ln=en


Since we know all processes in 
the subdetector, we can fully 
simulate an event using precise 
physics-motivated rules. 

For calorimeters this means 
taking into account the structure 
of response that consists of 
many secondary particles. 

This is done using Geant toolkit. 

Pro: physics behind the 
simulation is controlled 
Cons: slow, needs fine tuning.

Ideas for Simulation
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Build a library of calorimeter responses to impact 
particle in corresponding 5D phase space using 
detailed simulation («frozen showers»).

5D = 3D momentum + 2D coordinate for every 
particle type.

The whole phase space is split into bins, the exact 
observable is obtained interpolating between the 
bins.

One can also construct full interpolation (without 
using bins).

Pros: easy to interpret, quality is controlled by 
the number of samples. 

Cons: curse of dimensionality, memory 
consumption, full interpolation takes huge 
efforts. 

Ideas for Tabular Methods
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Upcoming Needs
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Chapter Outcome
▶ Detailed Simulation of high-energy physics experiments is based on physics 

modeling. 
▶ Speed up can be obtained by storing  detector responses. 
▶ The responses can be parameterized.
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›

Machine Learning to Help



How can a neural network generate data?

Neural network
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How can a neural network generate data?

Random noize
e.g. multivariate normal

Neural network

Cat image attribution: https://pixabay.com/users/chiemsee2016-1892688/

Generated data
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https://pixabay.com/users/chiemsee2016-1892688/


How can a neural network generate data?

Random noize
e.g. multivariate normal

Neural network

Cat image attribution: https://pixabay.com/users/chiemsee2016-1892688/

Generated data

▶ This makes the generated object being a differentiable function of the network 
parameters
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https://pixabay.com/users/chiemsee2016-1892688/


▶ Generated object is a differentiable function of the network parameters
▶ Need a differentiable measure of similarity between the sets of 

generated objects and real ones
– Can optimize with gradient descent

▶ How to find such a measure?

How to train such a generator?
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▶ Measure of similarity: how well can another neural network (discriminator) tell 
the generated objects apart from the real ones

Adversarial approach

Random noize

Generator network
Generated data

“Real” data

Discriminator network

Separate real 
objects from 
generated

Goodfellow et al., Generative Adversarial 
Networks, arXiv:1406.2661 [stat.ML]
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Generator
▶ 𝐺( is a generator. It should sample from a random noise:

𝑧) ∼ 𝑁 0; 1 ;

𝑥) = G( 𝑧) .

▶ Our aim is 𝐺( as a neural network.
▶ We thus have a sample: 

𝑥) ~𝑞( 𝑥

▶ 𝐺( can be defined in many ways. For example, physics generator.

Borisyak M et al. Adaptive divergence for rapid adversarial 
optimization. PeerJ Computer Science 6:e274 (2020)
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https://peerj.com/articles/cs-274/


Discriminator
▶ Add a classifying neural network, discriminator 𝑫𝝓, to distinguish 

between the real and generated samples.
▶ Optimize:

Real samples Generated samples
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G+D recap
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GAN results

I. Goodfellow,et al. Generative Adversarial Networks, NIPS 2014

https://arxiv.org/abs/1406.2661


Mode Collapse
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Luke Metz et al Unrolled Generative Adversarial Networks ICLR 2017

▶ GANs choose to generate a small 
number of modes due to a defect in 
the training procedure, rather than 
due to the divergence they aim to 
minimize.

I. Goodfellow NIPS 2016 Tutorial: Generative 
Adversarial Network

https://arxiv.org/abs/1611.02163
https://arxiv.org/pdf/1701.00160.pdf


Generative zoo
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Generative zoo choice
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Generative adversarial 
Networks (GAN)

Pros:

- good likely objects 
generation quality;

- fast sampling.

Cons:

- hard to control tails;

- mode collapse.

Variational Autoencoders (VAE)

Pros: 

- explorable representation 
space;

- average sampling.

Cons:

- blurred image;

Flow models (normalizing 
flows)

Pros: 

- easy to evaluate likelihood;

- explicit modeling;

Cons:

- very slow sampling.



Generative modeling for HEP

• Conditional
dependence on 
detector 
parameters and 
incident particle 
information.

Need to be
• Tunable.
• Robust.
• Fast for sampling.

V. Chekalina et al. EPJ Web Conf. 214 (2019) 02034
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https://arxiv.org/abs/1812.01319


Generative Models for Fast Simulation  

▶ Many neural based generative description attempted in recent years

Chapman et al., EPJ Web of Conferences 245, 02035 
(2020) A. Maevskiy et al. Eur.Phys.J.C 81 (2021) 7, 599

ATLAS: VAE and GAN for Calorimeter MPD: GAN for TPC
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https://www.epj-conferences.org/articles/epjconf/abs/2020/21/epjconf_chep2020_02035/epjconf_chep2020_02035.html
https://arxiv.org/abs/2012.04595


Generative Models
Direct simulation of calorimeter 
responses

▶ NB: KDE can also be considered as a generative model.

V. Chekalina et al.  EPJ WoC: 214, 02034 (2019) A. Maevskiy et al., ML4PHYS@Neurips 2019

Simulation of reconstruction output
for RICH and Muon
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V.%20Chekalina%20et%20al.%20EPJ%20Web%20of%20Conferences%20214,%2002034%20(2019)
https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_40.pdf


DIRC Example
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https://github.com/yandexdataschool/mlhep2019/blob/m
aster/notebooks/day-6/06_DIRC_GAN_solution.ipynbDerkach et al,Nucl.Instrum.Meth.A 952 (2020) 161804

https://github.com/yandexdataschool/mlhep2019/blob/master/notebooks/day-6/06_DIRC_GAN_solution.ipynb


Why it works/should work?
▶ Treatment of physics data as pictures. 
▶ Expressivity of NN solutions. 
▶ Decomposition of data.
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Challenges: Training Samples

• Use real data sample, but we need to reduce noise from it.
• Model information introduced in the training procedure using maximum 

likelihood fit. A. Maevskiy et al., Neurips 2019 Workshop
Summer School Super 
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https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_40.pdf


Challenges: uncertainty

N. Kazeev et al., ACAT-2021 

Uncertainty is a key for the use of 
generative modeling in natural 
sciences.
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https://indico.cern.ch/event/855454/contributions/4598662/


Challenges: Implementations
More challenges: 
• Distilling the generators. 

Aim: beyond 100ms/event.

• Testing the generator quality 
in the limit of small data 
samples.

Aim: on-the-fly algorithms.

• Implementing pipeline in the 
online environment 
(200xNVidia RTX A5000 from 
LHCb).

Aim: Efficient architecture 
and Scheduling given resources. Sukhorosov BSc Diploma
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Generative Models Characteristics
▶ Fast Sampling:

– much faster than detailed MC;
– models can get complicated;

– current RICH-LHCb simulation speed ~70 ms.
▶ Very Fast training:

– retrain can be done very fast;
– train process still should be periodically controlled;

– current RICH-LHCb model trains ~2 days using GPU. 
▶ Good Precision:

– complicated models can be quite precise;
– precision is controlled by train sample statistics;

– need to understand influence on the final systematics.

Sample

TrainPrecision
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Simulation Picture

Sample

TrainPrecision

Sample

TrainPrecision

Sample

TrainPrecision

Detailed simulation Parametric simulation Machine learning simulation

Each approach has vices and virtues.

A possibility to have easily retrainable model can give several benefits in case of using machine learning. 

(*) are my opinion
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More Developments
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▶ Generative models at microscopic detailed simulation. 
▶ Generative models for fast integration (for example, lattice 

calculations).
▶ Generative models for detector optimization studies. 
▶ Likelihood-free inference for New physics scenarios. 
▶ Generative based data compression.



Final Outcome
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▶ Generative modeling had a great boost in physics uses with arrival of 
advanced machine learning techniques. 

▶ With more precise machine learning results we expect more 
implementation scenarios. 

▶ Look for results at:
– https://cs.hse.ru/lambda/

https://cs.hse.ru/lambda/

