Летняя научная школа "Супер с-тау фабрика". 25-29 Июля 2022 НЦФМ, МГУ (Саров)

Сигнальные и фоновые события в эксперименте SHiP@ECN3

Eduard Ursov^{1,2}, Evgenii Kurbatov^{3,4}, Fedor Ratnikov^{3,4}, Vasilisa Guliaeva^{1,2}, Anna Anokhina^{1,2}, Andrey Golutvin^{5,6}

- 1. M.V. Lomonosov MSU
- 2. SINP MSU
- 3. HSE University
- 4. Yandex School of Data Analysis
- 5. Imperial College London
- 6. NUST MISIS

Search for Hidden Particles (SHiP) 2019

- Эксперимент с фиксированной мишенью. Энергия налетающего пучка протонов 400 ГэВ
- Эксперимент нацелен на проверку ряда разработанных моделей скрытого сектора и поиск соответствующих им частиц темной материи
- Ожидаемое количество столкновений налетающих протонов с мишенью за 5 лет работы 2×10²⁰, 4×10¹³ протонов за 1 секунду работы эксперимента.

SHiP@ECN3 2022

- В 2022-м году было предложено поместить эксперимент в помещение ECN3 на SPS, где сейчас выполняется каонная программа эксперимента NA62.
- Поперечные размеры SHiP необходимо уменьшить на несколько метров.
- Чтобы оставить уровень сигнала без изменения, необходимо укоротить общую длину эксперимента на 10 метров.
- Для моделирования событий используется Монте-Карло симулятор Fairship (<u>https://github.com/ShipSoft/FairShip</u>) на основе Geant4 и Pythia. Вычисления проводились на batch-системе CERN High Throughput Computing (HPC).

Сигнальные события – тяжелые нейтральные лептоны (HNL)

- В качестве сигнальных событий исследуется события с участием 3 «стерильных» нейтрино (heavy neutral lepton - HNL), введенных в Минимальной Нейтринной Стандартной Модели (vMSM)
- Данная модель позволяет решить сразу несколько проблем стандартной модели:
 - 1. $m_{N_1} = O(10 \ keV)$ теплая темная материя
 - 2. $m_{N_2,N_3} = O(1 \text{ GeV})$ барионная асимметрия и массы нейтрино
- Каналы рождения N_2 и N_3 , исследуемые в SHiP:

Распад HNL

- Исследуется два канала распада:
 - $HNL \rightarrow \mu \pi$
 - $HNL \rightarrow \mu\mu\nu$
- Оценивается геометрический фактор: $A = \frac{N_{rec}}{N_{sim}}$

Фоновые события

- Рассматривается три 3 основных источника фона:
- a) Неупругое рассеяние нейтрино на детекторах
- ы) Неупругое рассеяние мюонов на детекторах и стенках помещения
- с) Комбинаторное мюонное рассеяние

Фоновые события. Нейтрино

- Нейтринный фон состоит из вторичных частиц, рождающихся в результате неупругих рассеяний нейтрино в объемах детекторов или в стенках помещения. Среди вторичных частиц есть частицы, которые могут попасть в распадный объем, а после в трековые станции. Сигнал от таких частиц может быть принят за сигнал от частиц скрытого сектора.
- Фоном являются пары μπ, рождающиеся в результате неупругого рассеяния нейтрино в детекторе SND или любом другом детекторе, расположенном на его месте.

GENIE simulation

• Датасет состоит из 5 кинематических характеристик рожденных пар мюон+пион.

Классификация

- Используется библиотека lightgbm. Используется модель Gradient Boosting Decision Trees.
- Bootstrap-подход: f1 = [0.907, 0.928] с 95% CL

Фоновые события. Мюоны

- Основным источником фонов является большой поток мюонов, рождающихся в мишени
- За 1 секунду работы эксперимента рождается ~ 10¹¹ мюонов.
- В моделировании используется заранее сгенерированный с помощью Pythia6 датасет с мюонами. Всего 4.96×10⁸ мюонов, которые взвешены для получения потока, равного ~ 10¹¹ мюонов.
- Размер датасета ~ 100 Гб.
- Необходимо оценить, насколько изменится поток мюонов при простом укорачивании мюонной защиты.

Baseline, scaled и combi конфигурации

- Самый простой способ укоротить мюонную защиту – отмасштабировать по оси z, чтобы уменьшить длину с 35м до 30м. Scaled конфигурация.
- Еще один способ оставить первые три магнита без изменений, чтобы сохранить интеграл поля, и укоротить оставшиеся три магнита. Combi конфигурация.

ZX for Long configuration

ZX for Combi configuration

10

Сравнение мюонного фона для baseline и short конфигураций

- 1. Поток в T3-T4 при baseline конфигурации возрастает по сравнению с T1-T2. Причина: мягкие мюоны отклоняются на границах последнего магнита мюонной защиты и на магните в спектрометре.
- 2. Поток в T1-T2 при scaled увеличивается в ~ 6 раз. Большая часть мюонов высокоэнергичная. Причина: жесткие мюоны попадают в зазоры мюонной защиты и не дополучают достаточно интеграла поля.
- Combi промежуточная конфигурация между baseline и scaled. Удается устранить проблемы с жесткими мюонами. Поток увеличился всего в ~ 3 раза.

Выводы

В данной работе исследовались перспективы поиска частиц скрытого сектора в эксперименте SHiP@ECN3. Получены следующие результаты:

- 1. Разработан классификатор на основе Boosted Decision Trees для отбора событий HNL на фоне нейтринных. Классификатор показал высокое качество отбора.
- 2. Получены оценки потоков фоновых мюонов при различных конфигурациях мюонной защиты. Проанализированы причины проникновения мюонов различных энергий через мюонную защиту. При укорачивании мюонной защиты можно добиться увеличения потока всего в ~ 3 раза.

Спасибо за внимание!

Backup

Задачи

- 1. Разработать классификатор на основе машинного обучения для отбора сигнальных событий на фоне нейтринных.
- 2. Получить оценки уровня фона мюонов при укорачивании мюонной защиты.

Для моделирования событий используется Монте-Карло симулятор Fairship (<u>https://github.com/ShipSoft/FairShip</u>) на основе Geant4 и Pythia. Вычисления проводились на batch-системе CERN High Throughput Computing (HPC) и kubernetes Yandex лаборатории Lambda.

Результаты. $HNL \rightarrow \mu \pi$

- Увеличение длины распадного объема (59.96 m vs. 50.67 m) в сторону к мишени приводит к увеличению геометрического фактора всего на ~5%;
- Уменьшение длины распадного объема на ~25м не приводит к существенному уменьшению геометрического фактора;
- 3. Перемещение распадного объема на ~25м ближе к мишени увеличивает геометрический фактор на ~20%.
- 4. При детектировании HNL от В-мезонов *А* оказался примерно в 1.5 раза меньше по сравнению с HNL от D-мезонов.

16

Изменение геометрии распадного объема

- Два варианта укорачивания эксперимента SHiP:
 - Укорачивание распадного объема
 - Приближение распадного объема к мишени

Классификация. Алгоритм Boosted Decision Trees

Оптимизация мюонной защиты. Второй подход

 Во втором подходе попытаемся уменьшить количество глубоко неупругих рассеяний мюонов на стенках распадного объема, поскольку их количество возросло на несколько порядков при укорачивании мюонной защиты:

Geometry	$N_{ m DIS}$	$N_{ m DIS, fid}$	$N_{ m f.r.}$	$N_{ m p.r.}$	$N_{ m p.r.+veto}$	$N_{ m f.r.+veto}$]
Baseline	$1.2\cdot 10^8$	$1.7\cdot 10^5$	27	540	0	0	
Scaled	$5.4\cdot 10^{10}$	$4.8\cdot 10^7$	$6 \cdot 10^3$	$1.1\cdot 10^6$	$1.6\cdot 10^5$	$1.6\cdot 10^3$	10

$$N_{\mu \text{DIS, Tr1}}^{\text{per spill}} = \sum \omega_{\mu}^{i} \cdot N_{A}(\rho l)_{i} \cdot \sigma_{\text{DIS}}(E_{i}) \simeq N_{\mu}^{\text{per spill}} \cdot N_{A} \langle \rho l \rangle \cdot \langle \sigma_{\text{DIS}} \rangle$$

Loss функция в 6D оптимизации (оптимизируем только длины компонентов мюонной защиты с учетом неопределенности в размерах помещения):
 f = 1 + \sum W.

$$f = 1 + \sum_{i} W_{i}, \ _{L_{i}}$$
 – длина пробега в стенке распадного объема $W_{i} = L_{i}/P_{i}.$

 Ожидаемый поток увеличился примерно на порядок, однако количество DIS событий существенно уменьшилось!

Оптимизация мюонной защиты. Первый подход

- Для реоптимизации использовался байесовский алгоритм (библиотеки skopt и BOtorch).
- Loss функция (с "впадиной" на длине 30м):

 $f(\text{Flux}) = (1.01 - e^{-\frac{(L-1250)^2}{1250^2}})(1 + \text{Flux})$

- Поток уменьшился в ~ 3 раза.
- Необходимо использование более физичной loss функции, в которой учитывались бы все фоновые события.

ZX for optimized configuration

20

Монте-Карло симулятор Fairship

- Прохождение частиц через вещество – Geant4
- Геометрия эксперимента FairRoot
- Высокоэнергичные процессы Pythia6(8)
- Нейтринные события GENIE

Spatial distribution of the reconstructed HNL vertices. Color represents log(weight). Fiducial cut is off

Color distribution strongly depends on gamma factor!

Muon flux at Tracking Stations

 Muon flux at Tracking Stations (T1-T4) is a crucial parameter and strongly depends on the muon shield configuration.

Soft muons in baseline

- To study muon propagation several sensitive planes between the magnets of the muon shield were placed.
- The curves shown are drawn by connecting points through which • the muons passed in the planes.
- Those muons reach T3-T4 but • not T1-T2.
- Soft muons are deflected by the 6th magnet and then by the spectrometer magnet between T² and T³.
- This is how the soft muons reach ٠ T3-T4 increasing the rates. This is the result of fine-tuning.

Combined muon shield geometry

- 1. Short (scaled) configuration:
 - scaling the whole shield
- 2. The next idea is a **combined configuration**:
 - 3 baseline upstream magnets + 3 scaled downstream magnets
 - Instead of scaling the whole muon shield we:
 - Choose baseline configuration for 3 upstream magnets to provide necessary deflection of hard muons.
 - Scale down 3 downstream magnets to keep the total length of the muon shield 30m (2022 config).

ZX for Short (scaled) configuration

Y - X distributions at T1-T4. Combi vs. scaled \bigvee_{SHiP}

Combi shield

Short (scaled) shield

We succeeded in suppressing the spots of backgrounds.