Эффективная генерация излучения из толстой пучково-плазменной системы при наличии косой модуляции плотности плазмы

Глинский В. В. (Научный руководитель: Тимофеев И. В.)

26 апреля 2022 г.

Введение (установка ГОЛ-ПЭТ)

 A.V. Arzhannikov et al. Plasma Phys. Control. Fusion, 2020, PPCF-102698
 Мощность излучения из плазмы с периодической поперечной неоднородностью увеличивается на порядок и достигает 10 МВт

Механизм плазменной антенны

Рассматривается тонкая замагниченная плазма с чисто продольной модуляцией $n = n_0 + \Delta n \cdot \cos(\mathbf{q} \cdot \mathbf{r})$ при наличии электронного пучка.

Механизм плазменной антенны

Будут исследованы 2 предельных случая:

- 1. тонкая плазма (2l << L)
- 2. толстая плазма (2l >> L)

Рассматривается холодная плазма с плотностью $n = n_0 + \Delta n \cdot \cos(\mathbf{q} \cdot \mathbf{r})$, помещенная в магнитное поле B_0 , в которую инжектируется холодный пучок со скоростью v_b и плотностью n_b .

Для удобства используются безразмерные величины: расстояния и время измеряются в единицах c/ω_p и ω_p^{-1} , волновые числа и частоты в ω_p/c и ω_p , плотности тока в en_0c , а электрические и магнитные поля в $m_e c \omega_p/e$.

Механизм плазменной антенны

Эффективность выходящего излучения

Для параметров $n_b = 0.01, v_b = 0.9, \Omega = 0.4, k_b = 1.18$ получаются следующие зависимости эффективности излучения \mathcal{P} от q_{\perp}, q_{\parallel} :

Тонкая плазма $2l=L=40, \ \delta n = 0.025$ Толстая плазма $L=40, \ \delta n = 0.05$

Эффективность выходящего излучения Тонкая плазма Толстая плазма

1. $\mathcal{P} \sim l$

2. Максимальные значения *P* при резонансе

- 1. \mathcal{P} не зависит от l
- 2. Максимальные значения \mathcal{P} при резонансе

Параметры моделирований

- В начальный момент времени электроны и ионы плазмы расположены в одних и тех же точках на узлах квадратной сетки, а электронов пучка нет
- Шаг сетки по x и по y равен 0.04 c/ω_p , а шаг по времени равен 0.02 ω_p^{-1}
- Порядка 35 · 10⁷ частиц
- ▶ Изначально ионы холодные, а электроны имеют $f_e \sim exp(-p^2/(2\Delta p_e^2)), T_e = \Delta p_e^2/(2m_e) = 80$ эВ
- Инжектируемый слева пучок имеет $v_b/c = 0.9, \, T_b = 64$ кэВ и $n_b/n_0 = 0.01$
- Внешнее однородное В направлено по z и характеризуется
 $\Omega = eB_z/(m_e c\omega_p) = 0.4$

Моды в плазме

Эффективные режимы генерации ω_p излучения

- (a) Положение резонансов в q пространстве
- (b) Зависимость эффективности выходящего излучения ${\mathcal P}$ от времени

Выводы

- 1. Ранее развитая теория плазменной антенны обобщена на случай произвольного угла вектора модуляции плотности плазмы по отношению к магнитному полю.
- Показано, что в условиях резонанса между длинноволновым сателлитом раскачиваемой пучком волны и собственными модами замагниченной плазмы максимальная эффективность ω_p-излучения достигается в плазме, поперечный размер которой оказывается больше длины релаксации пучка (2l ≫ L).
- 3. РІС расчёты показали, что уже в режиме $2l \sim L$ мощность выходящего из плазмы излучения составляет 1% 3% мощности инжектируемого пучка.
- 4. Результаты приняты к публикации: Glinskiy V. V., Timofeev I. V., Annenkov V. V. 2022 Efficient generation of ω_p -radiation in a beam-driven thick plasma with oblique density modulation. *Journal of Plasma Physics*

Выход собственных мод

Моделирование с экспериментальным градиентом

плотности

