

Аннотация

В статье описаны измерения размеров сгустка в электронпозитронном бустере БЭП коллайдера ВЭПП-2000 при энергии 430 МэВ. Были получены кривые вымирания интенсивности сгустка в основном из-за эффекта Тушека и рассеяния частиц на остаточном газе с одновременной регистрацией размеров сгустка. Вертикальный размер пучка в БЭП слишком мал для использования проекционной оптики, поэтому для его измерения использовался двухщелевой интерферометр. Кроме того, затронут вопрос о времени жизни пучка.

Введение

В работе рассмотрены следующие эффекты и их зависимость некоторых из них как друг от друга, так и от тока пучка:

1. Многократное внутрисгустковое рассеяние на малые углы (<u>IBS</u> – intra-beam scattering).

Зависимость размеров сгустка от интенсивности в бустере электронов и позитронов (БЭП)

Intensity Dependence of Bunch Dimensions in Booster of Electrons and Positrons (BEP)¹

М.В. Тимошенко¹, В.М. Борин¹, В.Л. Дорохов¹, О.И. Мешков¹, Яковин² ¹ИЯФ им. Г.И. Будкера СО РАН, 630090, г. Новосибирск, Россия ² ИАиЭ СО РАН, 630090, г. Новосибирск, Россия Email: M.V.Timoshenko@inp.nsk.su

Параметры БЭП при энергии пучка 430 МэВ

Параметр	Обозначение	Величина
Периметр	C_i	2235 см
Радиус поворотного магнита	r_0	128 см
Частота обращения	f_0	13,415 МГц
Бетатронные частоты	$ u_{\chi}$, $ u_{Z}$	3,4 / 2,4
Синхротронная частота (при U _{RF} = 5 кВ)	$ u_s$	0,0039
Коэф. уплотнения орбиты	$lpha_p$	0,059
Энергетический разброс (радиационный)	$\frac{\sigma_E}{E_0}$	3,2 * 10 ⁻⁴
Эмиттанс (радиационный)	ε ₀	1,6 * 10 ⁻⁶ см * рад
Длина пучка	σ_{s_0}	1,67 см
Гармоника ВЧ-резонатора	h	13

Эффективно приводит к увеличению эмиттанса и энергетического разброса пучка.

2. Увеличения размера пучка вследствие импедансного удлинение пучка с ростом тока.

3. Фотостимулированная десорбция остаточного газа со стенок вакуумной камеры под действием СИ – рассеяние частиц пучка на ост. газе – потеря частиц.

4. Тушек-эффект. Приводит к потере частиц из пучка (выбывают из сепаратрисы продольного движения).

! Эксперимент проводился при двух различных коэффициентах $k_{1,2}$ [.] Снимались кривые вымирания тока одного банча с одновременной регистрацией продольного и поперечных размеров пучка и давления газа в вакуумном объеме ускорителя.

ПЗС-камера

Заключение

- Был двущелевой протестирован интерферометр для регистрации вертикального размера пучка.
- Сняты кривые вымирания тока с одновременной регистрацией размеров пучка, экспериментальные данные взяты для аппроксимации времени жизни пучка
- Получена пропорция вкладов эффекта Тушека и рассеяния на остаточном газе в зависимости от тока пучка

160

*σ*_{*s*₀} = **14**, **6** и **12**, **8** мм против **16**, **7** мм проектных

Здесь <...> – усреднение по азимуту кольца. Хотим разделить параметры, зависящие от азимута и от тока пучка (энергетического разброса), чтобы использовать размеры пучка, измеренные лишь в локальной точке.

 δ_m - это ширина сепаратрисы продольного движения, $\widetilde{\sigma_x} \approx \sigma_x$, а σ_s – продольный размер – интегральная характеристика, не зависящая от азимута. С учетом положений в пункте про IBS, время жизни можно представить

$$-\frac{\dot{N}}{N} = C_1 \left\langle \frac{\beta_{\chi} C(\epsilon_m)}{\sqrt{U_{\chi} \beta_{\chi} + D^2} \cdot \sqrt{U_{\chi} \beta_{\chi}} \cdot \sqrt{U_{z} \beta_{z}}} \right\rangle \frac{1}{\sigma_s \cdot \left(\frac{\sigma_E}{E}\right)^2 \cdot \left(\frac{\sigma_E}{E}\right)} -$$

Параметр \in_m сложным образом зависит и от азимута и от энергетического разброса, однако было произведено построение выражения под усреднением с подстановкой проектных оптических функций и параметров БЭП, что показало эмпирическую зависимость $C_2 \cdot \left(\frac{\sigma_E}{E}\right)^{0.184}$, а $\left(\frac{\sigma_E}{E}\right) \sim \sigma_{\chi,Z}$, причем работает это для любого азимута, в т. ч. И в точке наблюдения, значит $\sigma_s \cdot \left(\frac{\sigma_E}{E}\right)^2 \sim V(s_{rad}, N)$

Таким образом можно избавиться от усреднения по азимуту выражения.

¹ The reported study was funded by RSF, project number 22-12-20025

Фотостимулированная десорбция

H. Wiedemann. Particle Accelerator physics. Fourth Edition (Chapter 11 Particle Beam Parameters)

 $\tau_{desorption}^{-1} = -\frac{N}{N} \sim P_{vac}(N)$, где $P_{vac}(N)$ - давление остаточного газа в вакуумном объеме

