Исследования фотоядерных реакций на комптоновских источниках: современное состояние и перспективы

А.А. Кузнецов, Л.З. Джилавян, С. С. Белышев, В.В. Варламов, А.М. Лапик, А.Л. Полонский, А.В. Русаков, В.И. Шведунов МГУ, ИЯИ РАН

Выездное совещание совета РАН по фундаментальной ядерной физике в ИЯФ СО РАН (г. Новосибирск) 20-21 марта 2023 г.

«Детализации научной программы и технический облик комптоновского источника монохроматических гамма-квантов НЦФМ (ИКИ НЦФМ)»

Программа исследований в области ядерной физики на пучке квазимоноэнергетических фотонов, образующихся в процессах обратного комптоновского рассеяния (ОКР) излучения мощного лазера на пучке релятивистских электронов, должна быть ориентирована на использовании преимуществ пучка фотонов нового типа по сравнению с пучками, использованными ранее (КМА, тормозных, других ИКИ) применительно к главной задаче исследований — получению точной, надежной и достоверной информации о сечениях как полных, так и парциальных фотоядерных реакций, разнообразных характеристиках образующихся в таких реакциях частиц и легких ядер.

	Eγ, MeV	ΔΕγ	Iγ, ph/sec
ELI-NP (VEGA) (Румыния, проект)	0.2-19.5	0.5	~108
NewSubaru (Япония, SPRING8) работает	0-76	1.2	~10 ⁵
НІγS (США, работает)	0-100	0.8-10	~10 ⁷
НЦФМ – НИИЯФ (Россия, проект)	0-40	0.5	~10 ⁷

Основные требования к ИКИ:

- 1. Интенсивность
- 2. Спектр энергии гамма-квантов
- 3. Возможность быстро и плавно менять энергию
- 4. Длительность импульса излучения

НИИЯФ МГУ предлагается создать на основе ускорителя электронов на энергию до 500-750 МэВ с инжекцией от 50 МэВного ускорителя, работающего в односгустковом режиме. Линейный ускоритель электронов на энергию 50 МэВ является инжектором линейного ускорителя на 500 — 750 МэВ. Поскольку однократное взаимодействие лазерного излучения с электронным сгустком слабо влияет на величину эмиттанса, ускорительный комплекс может одновременно работать как в режиме генерации рентгеновского, так и гамма-излучения. Энергия гамма-квантов при энергии электронов до 750 МэВ в зависимости от гармоники лазера может достигать 40 МэВ, что позволяет реализовать широкую программу исследований в области ядерной физики.

Задачи

- 1. Изучение структуры гигантского дипольного резонанса. Получение новых непротиворечивых данных о сечениях фотоядерных реакций. 7-40МэВ
- 2. Ядерная астрофизика. Обойденные ядра. 5-15 МэВ
- 3. Фотоделение. 5-40 МэВ
- 4. Исследование кластерных состояний в ядрах. 0-10 МэВ.
- 5. Ядерная резонансная флуоресценция. Изомерные состояния ядер. 0.1-8 МэВ.
- 6. Изучение резонансов иной природы, пигми- и М1 резонансов. 5-40 МэВ.
- 7. Прикладные исследования. Исследование возможности наработки радиоактивных ядер. 10-40 МэВ.

Получение непротиворечивой информации о сечениях парциальных реакций в области ГДР необходимо для развития теории структуры атомного ядра. Ранние эксперименты на пучках квазимонохроматических (КМА, ИКИ) и тормозных гамма-квантов (меченые фотоны, разностные схемы) демонстрируют серьезные расхождения между собой (интегральные характеристики, структура).

Прямая регистрация нейтронов и активационный метод

Из-за проблем, связанных с регистрацией нейтронов, прямые методы надо дополнять активационными измерениями

Оценка необходимой интенсивности пучка для (g,1n)

Выход реакции за 1 сек

$$Y_{\gamma,1n}(E_{\gamma}) = \eta \varepsilon \sigma_{\gamma,1n}(E_{\gamma}) N_{\gamma}(E_{\gamma})$$

 η – noв. концентрация ядер, ε – эфф. регистрации нейтронов, $\sigma_{\gamma,1n}(E_{\gamma})$ – сечение реакции, $N_{\gamma}(E_{\gamma})$ – число γ – квантов

 $^{89}Y(\gamma,1n),10^4$ фотонов в импульсе, 1000Γ ų, < r>=0.5см, 10^3 нейтронов в импульсе, 10^6 нейтронов / сек

Aктивация по самой интенсивной гамма линии $\sim 10^{-2} \gamma$ / сек нарасстоянии 1см от 50% HPGE

Проблема существования (гросс-, промежуточной и тонкой) структуры ГДР является актуальной с начала исследований фотоядерных реакций до настоящего времени. Очень хорошо выраженная структура ГДР в сечениях, полученных в экспериментах с тормозным гамма-излучением, практически отсутствует в сечениях, полученных в экспериментах с квазимоноэнергетическими фотонами. Эти расхождения прямо обусловлены принципиально разными способами получения информации о сечениях реакций.

Гигантский дипольный резонанс представляет собой коллективные колебания ядра – когерентные вклады многих частично-дырочных (1p-1h) возбуждений, которые могут классифицироваться в зависимости от мультипольности и изовектроной или изоскалярной природы. В рамках макроскопических моделей изовектроный ГДР представляет собой коллективные колебания протонов ядра относительно нейтронов в поле электромагнитной волны налетающих фотонов. В рамках микроскопических и предравновесных моделей описывается большое разнообразие ядерных колебаний другой природы. Коллективные входные 1p-1h состояния определяют гроссструктуру (ширины ~ несколько МэВ) ГДР, связь входных состояний с более сложными состояниями коллективного характера приводит к формированию резонансов (с шириной ~ МэВ) промежуточной структуры ГДР, а взаимодействие входных состояний ядра с неколлективными многочастично-многодырочными возбуждениями - к появлению резонансов с шириной ~ 100 кэВ

Спектр энергии гамма-квантов

2. Ядерная астрофизика. Обойденные ядра.

ερ : 7/2+,9/2+) m Rh92 4.66 c	0+ Rh93		0+	5/2+			3.63 дн	8.47 ч	1.02	16.991 дн	11.14	22.33	27.33	6.5Е6 л	26.46	13.7012 ч	11.72
Rh92	Rh93			32+	0+	(5/2)+	0+	5/2+	0+	5/2+	0+	5/2+	0+	5/2+	0+	5/2+	0+
	Rh93	m												m		m	
	11.9 c	Rh94 70.6 c	Rh95 5.02 м	Rh96 9.90 м	Rh97 30.7 м	Rh98 8.72 м	Rh99 16.1 дн	Rh100 20.8 ч	Rh101 3.3 л	Rh102 207 дн	Rh103	Rh104 42.3 c	Rh105 35.36 ч	Rh106 30.07 c	Rh107 21.7 м	Rh108 16.8 c	Rh109
(>= 6+)	(9/2+)	: ερ (4+)	(9/2)+	6+	9/2+	(2)+	1/2-	1-	1/2-	(1- <mark>,2-)</mark>	1/2-	1+	7/2+	1+	7/2+	1+	7/2+
m		m	m	m	m	m	m	m	m	m	m	m	m	m		m	
Ru91 7.9 c	Ru92 3.65 м	Ru93 59.7 c	Ru94 51.8 м	Ru95 1.643 ч	Ru96 5.54	Ru97 2.9 дн	Ru98 1.87	Ru99 12.76	Ru100 12.60	Ru101 17.06	Ru102 31.55	Ru103 39.26 дн	Ru104 18.62	Ru105 4.44 ч	Ru106 371.8 дн	Ru107 3.75 м	Ru108 4.55 м
(9/2+)	0+	(9/2)+	0+	5/2+	0+	5/2+	0+	5/2+	0+	5/2+	0+	3/2+	0+	3/2+	0+	(5/2)+	0+
m		m	m									m					
Tc90 8.7 c	Тс91 3.14 м	Тс92 4.25 м	Тс93 2.75 ч	Тс94 293 м	Tc95 20.0 ч	Тс96 4.28 дн	Т с 97 4.21Е6 л	Т с98 4.2E6 л	Тс99 2.111Е5 л	Tc100 15.46 c	Тс101 14.22 м	Tc102 5.28 c	Tc103 54.2 c	Тс104 18.3 м	Тс105 7.6 м	Tc106 35.6 c	Tc107
1+	(9/2)+	(8)+	9/2+	7+	9/2+	7+	9/2+	(6)+	9/2+	1+	9/2+	1+	5/2+	(3+)	(3/2-)	(1,2)	(3/2-)
m	m		m	m	m	m	m		m	m	m	m					
Мо89 2.11 м	Мо90 5.56 ч	Мо91 15.49 м	Mo92 14.84	Мо93 4.0E3 л	Mo94 9.25	Mo95 15.92	Mo96 16.68	Mo97 9.55	Mo98 24.13	Мо 99 65.94 ч	Mo100 9.63	Мо101 14.61 м	Мо102 11.3 м	Mo103 67.5 c	Mo104 60 c	Mo105 35.6 c	Mo10 8.73 c
(9/2+) m	0+	9/2+ m	0+	5/2+ m	0+	5/2+	0+	5/2+	0+	1/2+	7.3E18 π ββ 0+	1/2+	0+	(3/2+)	0+	(5/2-)	0+
Nb88 14.55 м	Nb89 2.03 ч	N b90 14.60 ч	Nb91 6.8E2 л	Nb <mark>92</mark> 3.47Е7 л	Nb93 100	Nb94 2.03E4л	Nb95 34.991 дн	Nb96 23,35 ч	Nb97 72.1 м	Nþ98 2.86 c	Nþ99 15.0 c	Nþ100 1.5 c	Nb101 7.1 c	Nþ102 1.3 c	Nb103 1.5 c	Nb104 4.9 c	Nb10 2.95 c
(8+)	(9/2+)	8+	9/2+	(7)+	9/2+	6+	9/2+	6+	9/2+	1+	9/2+	1+	(5/2+)	1+	(5/2+)	: βn (1+)	: [3 (5/2+)
m	m	m	m	m	m	m	m		m	m	m	m		m		m	
Zr87 1.68 ч	Zr88 83.4 дн	Zr89 78.41 ч	Zr90 51.45	Zr91 11.22	Zr92 17.15	Zr93 1.53E6 л	Zr94 17.38	Zr95 64.032 дн	Zr96 2.80	Zr97 16.744 ч	Zr98 30.7 c	Zr99 2.1 c	Zr100 7.1 c	Zr101 2.3 c	Zr102 2.9 c	Zr103 1.3 c	Zr104
(9/2)+	0+	9/2+	0+	5/2+	0+	5/2+	0+	5/2+	2.0E19 π 2β- 0+	1/2+	0+	(1/2+)	0+	(3/2+)	0+	(5/2-)	0+

ниияф МГУ

 78 Kr 0.153 ⁸⁴Sr 0.132 ⁹²Mo 0.378 ⁹⁴Mo 0.236 ⁹⁶Ru 0.103 ⁹⁸Ru 0.035 102 Pd 0.0142 106 Cd 0.0201 108 Cd 0.0143 113 In 0.0079 ¹¹²Sn 0.0372 ¹¹⁴Sn 0.0252 ¹¹⁵Sn 0.0129 ¹²⁰Te 0.0043 ¹²⁴Xe 0.00571 ¹²⁶Xe 0.00509 ¹³⁰Ba 0.00476 ¹³²Ba 0.00453 ¹³⁸La 0.000409 ¹³⁶Ce 0.00216 ¹³⁸Ce 0.00284 ¹⁴⁴Sm 0.008 152 Gd 0.00066 ¹⁵⁶Dy 0.000221 ¹⁵⁸Dy 0.000378 ¹⁶²Er 0.000351 ¹⁶⁴Er 0.00404 $^{168}\mathrm{Yb}$ 0.000322 174 Hf 0.000249 ¹⁸⁰Ta 2.48e-06 180 W 0.000173 ¹⁸⁴Os 0.000122 ¹⁹⁰Pt 0.00017 ¹⁹⁶Hg 0.00048

0.55

⁷⁴Se

2. Ядерная астрофизика. Обойденные ядра.

$$\lambda_{(\gamma,j)}(T) = \int_0^\infty c n_\gamma(E,T) \sigma_{(\gamma,j)}(E) \, \mathrm{d}E \,\,, \tag{1}$$

where c is the speed of light, and $\sigma_{(\gamma,j)}(E)$ the photodisintegration cross section at energy E.

Fig. 11. Left panel: Graphical display of the integrand function of Eq. (1) for the 198 Pt(γ ,n) 197 Pt reaction. The Planck spectrum n_{γ} at a temperature $T=2\times 10^9$ K is shown, as well as the $\sigma_{(\gamma,n)}(E)$ cross section from energies slightly higher than the GDR down to threshold E_{thr} . Near this energy, the photoneutron cross section is *assumed* to be given by $\sigma_{(\gamma,n)}(E)=\sigma_0\sqrt{(E-E_{\text{thr}})/E_{\text{thr}}}$, σ_0 being determined by the bremstrahlung experiment. The energy window of astrophysical interest has typically a width of less than 1 MeV located around the effective energy $E_{\text{eff}}\approx E_{\text{thr}}+kT/2$, and is thus very close to threshold for conditions relevant to the p-process; Right panel: Approximation of the Planck spectrum at $T=2.5\times 10^9$ K in the approximate 5–10 MeV energy range by a superposition $\Phi=\sum_{i=1}^6 a_i(T=2.5\times 10^9)\Phi_{\text{brems}}(E_{0,i})$ of 6 bremsstrahlung spectra Φ_{brems} with different endpoint energies $E_{0,i}$ (from [31]).

2. Ядерная астрофизика. Обойденные ядра.

Fig. 32. Values of the normalized overproduction factor $\langle F_i \rangle (M)/F_0(M)$ calculated for three different 25 M_{\odot} explosion models: (a) the nominal case defined above (open squares), (b) same as (a), but with $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ rates divided by a factor of 2.5 (asterisks), and (c) same as (b), but with a final explosion kinetic energy increased by a factor of 1.5 (black squares) (from [24]).

При сечениях порядка 1мБ, статистика составит около 10³ нейтронов/сек. Для измерения одной точки по сечению требуются минуты.

Особенности возможных экспериментов на пучке монохроматического гамма-излучения

Планируя ядерно-физические эксперименты на монохроматическом гамма-пучке комптоновского источника, необходимо принимать во внимание следующие особенности.

1. Для методик прямого измерения необходимо разрешение по энергии не более 0.5%. В проекте НИИЯФ без кольца количество гамма квантов в пределах полосы 0.5% при частоте 1000 Гц в единицу времени составит около 4.5× 10^7 с-1. Это позволяет проводить измерения одной точки по энергии в течении нескольких минут. Для измерения сечения на одном ядре прямыми методами (порядка 300 точек с учетом перестроения энергии) это займет сутки.

Особенности возможных экспериментов на пучке монохроматического гамма-излучения

2. Необходимо дополнительно к прямым методам использовать методику наведенной активности для некоторого числа точек.

FIG. 5. ICARUS excitation function for $^{94}\text{Mo}(\gamma, n)$ of this work compared with the previous measurements [18,43].

FIG. 6. Excitation function for 90 Zr(γ , n) of this work compared with the previous measurements [44,45].

A. Banu, E. G. Meekins, J. A. Silano, H. J. Karwowski, and S. Goriely. Photoneutron reaction cross section measurements on 94Mo and 90Zr relevant to the p-process nucleosynthesis. Phys. Rev. C 99, 025802 - Published 11 February 2019

Особенности возможных экспериментов на пучке монохроматического гамма-излучения

- 2. Активационные исследования фотоядерных реакций на g- пучках от обратного комптоновского рассеяния при $E_{\rm g}\lesssim 40~{\rm MpB}$ имеют фундаментальную ценность для выяснения множественности образования фотонейтронов. В некоторых случаях для активационной методики требуется большая интенсивность гамма-пучка. Однако, при использовании накопителя нужно предусмотреть возможность плавного и быстрого изменения энергии. При использовании линейного ускорителя без кольца энергия рассеянных фотонов может плавно варьироваться за счет изменения энергии электронного пучка и дискретно переключаться за счет использования гармоник лазерного излучения. Существует однозначная связь энергии рассеянных фотонов и угла рассеяния, что позволяет получать монохроматический пучок рассеянных фотонов за счет коллимации излучения
- 3. Для дальнейшего развития адекватного модельного описания возбуждения и релаксации изовекторного электрического дипольного гигантского резонанса в атомных ядрах существенно изучение распределений по энергии и углам для парциальных сечений образования быстрых нейтронов в (g, n)- реакциях. Короткая длительность импульса излучения для линейного ускорителя несколько пикосекунд дает возможность реализации времяпролетной методики с высоким разрешением на короткой базе.

Спасибо за внимание!

НИИЯФ МГУ предложено несколько схем создания основного комплекса КИ. Один из них предлагается создать на основе ускорителя электронов на энергию до 500-750 МэВ с инжекцией от 50 МэВного ускорителя, работающего в односгустковом режиме. Концептуальная схема КИ гамма-излучения приведена на рис.1. Согласно этой схеме, линейный ускоритель электронов на энергию 50 МэВ является инжектором линейного ускорителя на 500 – 750 МэВ. Поскольку однократное взаимодействие лазерного излучения с электронным сгустком слабо влияет на величину эмиттанса, ускорительный комплекс может одновременно работать как в режиме генерации рентгеновского, так и гамма-излучения. Энергия гамма-квантов при энергии электронов до 750 МэВ в зависимости от гармоники лазера может достигать 40 МэВ, что позволяет реализовать широкую программу исследований в области ядерной физики. В НИИЯФ МГУ совместно с ИЯИ РАН разработана физическая программа исследований как в области ядерной физики до 40 МэВ, так и на рентгеновском источнике в области химии, биологии, физики, наук о материалах. Разработаны проекты рабочих станций для этих исследований.

Рис.1. Концептуальная схема КИ гамма-излучения. Назначение помещений: 1 — ускоритель 50 МэВ, 2 - рабочие станции, 3 - ускоритель 500 - 750 МэВ, 4 — клистроны, 5 - лазер, 6 - экспериментальный зал, 7 - вспомогательное оборудование, 8 — склад, 9 — коридоры. Обозначения: Д1 - Д3- откатные двери радиационнозащищенные, Д4 - распашные двери радиационнозащищенные, Д5 - Д8 — распашные двери, Л1, Л2 - грузовые лифты П1- П5 - поглотители пучка, К1 - К3 - камеры взаимодействия.

18 000

Прототип КИ E_{ρ} = 50 МэВ НИИЯФ МГУ

На базе НИИЯФ МГУ разработан проект и идут работы по созданию прототипа **КИ** рентгеновского излучения использованием ускорителя электронов с перестраиваемой энергией до $E_e = 50 \text{ МэВ}$ (рис.5), работающего в односгустковом режиме. На прототипе будут отработаны основные узлы **КИ НЦФМ.**

Рис. 5. Состав КИ рентгеновского излучения на основе линейного ускорителя. 1 — СВЧ пушка с фотокатодом, 2 — соленоид, 3 — окно ввода лазерного излучения, 4 — лазер фотокатода, 5 — станция диагностики пучка, 6 — вакуумный затвор, 7 — ускоряющая структура, 8 — триплет квадрупольных линз, 9 — камера взаимодействия, 10 — точка взаимодействия, 11 — основной лазер, 12, 13 — рентгеновское излучение, 14 — поворотный магнит, 15 — поглотитель пучка, 16 — квадрупольная линза, 17 — рабочая станции, 30 - импульсный клистрон, 31 — модулятор

Максимальная энергия ускоренного пучка 50 ± 2 МэВ Диапазон регулирования энергии 35 - 50 МэВ Разброс по энергии $0.25 \pm 0.1\%$ Нормализованный эмиттанс 1 ± 0.5 мм мрад Среднеквадратичный радиус пучка в точке взаимодействия 30 ± 10 мкм Заряд сгустка 100 - 0 + 100 пКл Длительность сгустка 10 ± 4 пс Максимальная частота следования сгустков 1000 Гц

Таблица.1 Выходные параметры рентгеновского излучения КИ для двух энергий электронов на выходе линейного ускорителя с E_e = 50 MэB и E_e = 500 МэВ.

Параметр	50 MэB	500 МэВ		
Число рентгеновских				
фотонов в импульсе	$1,64 \times 10^7$	3.78×10^7		
Средний рентгеновский				
поток, фот/с	$1,64 \times 10^{10}$	3,78×10 ¹⁰		
Пиковая спектральная				
яркость,				
с-₁мм-₂мрад-₂0,1%	3.8×10^{18}	$0,62\times10^{21}$		
Средняя спектральная				
яркость,				
с-₁мм-₂мрад-₂0,1%	3.8×10^{10}	$0,62 \times 10^{13}$		
Минимальная				
спектральная ширина без				
монохроматизации	350 эВ	180 кэВ		
Минимальная угловая				
ширина без коллимации	1,8 мрад	0,5 мрад		

- 1. Возможность достижения высокой степени поляризации излучения.
- 2. Короткая длительность импульса излучения для линейного ускорителя несколько пикосекунд. Возможность реализации времяпролетной методики с высоким разрешением на короткой базе.
- 3. Малая угловая расходимость излучения, менее 100 мкрад, для ширины спектра 0.5%. На расстоянии 10 м диаметр пучка с такой монохроматичностью составит около 1.5 мм, что определяет размеры области взаимодействия с мишенью.
- 4. Количество гамма квантов в пределах полосы 0.5% при частоте 1000 Γ ц в единицу времени составит около $4.5\times10^{\circ}7$ с-1. При сечении реакции ~1 мб, выход ~100 частиц/импульс. Это позволяет использовать методику наведенной активности

