Исследования фотоядерных реакций на комптоновских источниках: современное состояние и перспективы

А.А. Кузнецов, Л.З. Джилавян, С. С. Белышев, В.В. Варламов, А.М. Лапик, А.Л. Полонский, А.В. Русаков, В.И. Шведунов МГУ, ИЯИ РАН

Выездное совещание совета РАН по фундаментальной ядерной физике в ИЯФ СО РАН (г. Новосибирск) 20-21 марта 2023 г. «Детализации научной программы и технический облик комптоновского источника монохроматических гамма-квантов НЦФМ (ИКИ НЦФМ)»

Программа исследований в области ядерной физики на пучке квазимоноэнергетических фотонов, образующихся в процессах обратного комптоновского рассеяния (ОКР) излучения мощного лазера на пучке релятивистских электронов, должна быть ориентирована на использовании преимуществ пучка фотонов нового типа по сравнению с пучками, использованными ранее (КМА, тормозных, других ИКИ) применительно к главной задаче исследований – получению точной, надежной и достоверной информации о сечениях как полных, так и парциальных фотоядерных реакций, разнообразных характеристиках образующихся в таких реакциях частиц и легких ядер.

	Eγ, MeV	ΔΕγ	Iγ, ph/sec
ELI-NP (VEGA) (Румыния, проект)	0.2-19.5	0.5	~10 ⁸
NewSubaru (Япония, SPRING8) работает	0-76	1.2	~10 ⁵
НІγS (США, работает)	0-100	0.8-10	~107
НЦФМ – НИИЯФ (Россия, проект)	0-40	0.5	~107

Основные требования к ИКИ:

1. Интенсивность

ФКИИ

- 2. Спектр энергии гамма-квантов
- 3. Возможность быстро и плавно менять энергию
- 4. Длительность импульса излучения

НИИЯФ МГУ предложено несколько схем создания основного комплекса КИ. Один из них предлагается создать на основе ускорителя электронов на энергию до 500-750 МэВ с инжекцией от 50 МэВного ускорителя, работающего в односгустковом режиме. Линейный ускоритель электронов на энергию 50 МэВ является инжектором линейного ускорителя на 500 – 750 МэВ. Поскольку однократное взаимодействие лазерного излучения с электронным сгустком слабо влияет на величину эмиттанса, ускорительный комплекс может одновременно работать как в режиме генерации рентгеновского, так и гаммаизлучения. Энергия гамма-квантов при энергии электронов до 750 МэВ в зависимости от гармоники лазера может достигать 40 МэВ, что позволяет реализовать широкую программу исследований в области ядерной физики.

Задачи

- 1. Изучение структуры гигантского дипольного резонанса. Получение новых непротиворечивых данных о сечениях фотоядерных реакций. 7-40МэВ
- 2. Ядерная астрофизика. Обойденные ядра. 5-15 МэВ
- 3. Фотоделение. 5-40 МэВ
- 4. Исследование кластерных состояний в ядрах. 0-10 МэВ.
- 5. Ядерная резонансная флуоресценция. Изомерные состояния ядер. 0.1-8 МэВ.
- 6. Изучение резонансов иной природы, пигми- и М1 резонансов. 5-40 МэВ.
- 7. Прикладные исследования. Исследование возможности наработки радиоактивных ядер.10-40 МэВ.

Получение непротиворечивой информации о сечениях парциальных реакций в области ГДР необходимо для развития теории структуры атомного ядра. Ранние эксперименты на пучках квазимонохроматических (КМА, ИКИ) и тормозных гамма-квантов (меченые фотоны, разностные схемы) демонстрируют серьезные расхождения между собой (интегральные характеристики, структура).

ФКИИ

Прямая регистрация нейтронов и активационный метод

ФКИИ

Из-за проблем, связанных с регистрацией нейтронов, прямые методы надо дополнять активационными измерениями

Изучение структуры гигантского дипольного резонанса. Получение новых непротиворечивых данных о сечениях фотоядерных реакций. Оценка необходимой интенсивности пучка для (g,1n)

Выход реакции за 1 сек

 $Y_{\gamma,1n}(E_{\gamma}) = \eta \varepsilon \sigma_{\gamma,1n}(E_{\gamma}) N_{\gamma}(E_{\gamma})$

η – пов. концентрация ядер, ε – эфф. регистрации нейтронов, σ_{γ,1n}(E_γ) – сечение реакции, N_γ(E_γ) – число γ – квантов ⁸⁹Y(γ,1n), 10⁴ фотонов в импульсе,1000Гц, < r >= 0.5см,10³ нейтронов в импульсе,10⁶ нейтронов / сек Активация по самой интенсивной гамма линии ~ 10⁻² γ / сек нарасстоянии 1см от 50% HPGE

Проблема существования (гросс-, промежуточной и тонкой) структуры ГДР является актуальной с начала исследований фотоядерных реакций до настоящего времени. Очень хорошо выраженная структура ГДР в сечениях, полученных в экспериментах с тормозным гамма-излучением, практически отсутствует в сечениях, полученных в экспериментах с квазимоноэнергетическими фотонами. Эти расхождения прямо обусловлены принципиально разными способами получения информации о сечениях реакций.

Гигантский дипольный резонанс представляет собой коллективные колебания ядра – когерентные вклады многих частично-дырочных (1p-1h) возбуждений, которые могут классифицироваться в зависимости от мультипольности и изовектроной или изоскалярной природы. В рамках макроскопических моделей изовектроный ГДР представляет собой коллективные колебания протонов ядра относительно нейтронов в поле электромагнитной волны налетающих фотонов. В рамках микроскопических и предравновесных моделей описывается большое разнообразие ядерных колебаний другой природы. Коллективные входные 1p-1h состояния определяют гроссструктуру (ширины ~ несколько МэВ) ГДР, связь входных состояний с более сложными состояниями коллективного характера приводит к формированию резонансов (с шириной ~ МэВ) промежуточной структуры ГДР, а взаимодействие входных состояний ядра с неколлективными многочастично-многодырочными возбуждениями - к появлению резонансов с шириной ~ 100 кэВ

Спектр энергии гамма-квантов

2. Ядерная астрофизика. Обойденные ядра.

Pd93	Pd94 9.0 c	Pd95	Pd96	Рd97 3.10 м	Рd98 17.7 м	Рd99 21.4 м	Pd100 3.63 дн	Pd101 8,47 ч	Pd102	Рd103	Pd104	Pd105	Pd106 27,33	Pd107 6.5E6 л	Pd108 26.46	Pd109	Pd110
εp : (7/2+,9/2+)	0+		0+	5/2+	0+	(5/2)+	0+	5/2+	0+	5/2+	0+	5/2+	0+	5/2+	0+	5/2+	0+
m		m												m		m	
Rh92 4.66 c	Rh93 11.9 c	Rh94 70.6 c	Rh95 5.02 м	Rh96 9.90 м	Rh97 30.7 м	Rh98 8.72 м	Rh99 16.1 дн	Rh100 20.8 ч	Rh101 3.3 л	Rh <mark>102</mark> 207 дн	Rh103	Rh104 42.3 c	Rh105 35.36 ч	Rh106 30.07 c	Rh107 21.7 м	Rh108 16.8 c	Rh109 80 c
(>= 6+)	(9/2+)	:εp (4+)	(9/2)+	6+	9/2+	(2)+	1/2-	1-	1/2-	(1- <mark>,2-</mark>)	1/2-	1+	7/2+	1+	7/2+	1+	7/2+
m		m	m	m	m	m	m	т	m	m	т	т	m	т		т	
Ru91 7.9 c	Ru92 3.65 м	Ru93 59.7 c	Ru94 51.8 м	Ru95 1.643 ч	Ru96 5.54	Ru97 2.9 дн	Ru98 1.87	Ru99 12.76	Ru100 12.60	Ru101 17.06	Ru102 31.55	Ru103 39.26 дн	Ru104 18.62	Ru105 4.44 ч	Ru106 371.8 дн	Ru107 3.75 м	Ru108 4.55 м
(9/2+)	0+	(9/2)+	0+	5/2+	0+	5/2+	0+	5/2+	0+	5/2+	0+	3/2+	0+	3/2+	0+	(5/2)+	0+
m		m	m	-				T 00	T 00	T (00	T 404	m	T (00			-	
8.7 c	I с91 3.14 м	1 с92 4.25 м	1 С93 2.75 ч	1 С94 293 м	1 С95 20.0 ч	1 С96 4.28 дн	1 с9 / 4.21Е6 л	1 с98 4.2Е6 л	I С99 2.111Е5 л	1 C100 15.4 <mark>6 c</mark>	I С101 14.22 м	5.28 c	ГС103 54.2 с	I С104 18.3 м	ГС105 7.6 м	1 C106 35.6 c	1C107 21.2 c
1+	(9/2)+	(8)+	9/2+	7+	9/2+	7+	9/2+	(6)+	9/2+	1+	9/2+	1+	5/2+	(3+)	(3/2-)	(1,2)	(3/2-)
m	m		m	m	m	m	m		m	m	m	m	14 400	11 400		14 405	11 400
МО89 2.11 м	МО90 5.56 ч	МО91 15.49 м	M092 14.84	М093 4.0ЕЗ л	M094 9.25	MO95 15.92	16.68	9.55 PI	24.13	МО99 65.94 ч	9.63	МОТОТ 14.61 м	Мо102 11.3 м	MO103 67.5 c	M0104 60 c	MO105 35.6 c	MO106 8.73 c
(9/2+)	0+	9/2+	0+	5/2+	0+	5/2+	0+	5⁄2+	0+	1/2+	0+	1/2+	0+	(3/2+)	0+	(5/2 -)	0+
Nb88	Nb89	Nb90	Nb91	Nb92	Nb93	Nb94	Nb95	Nb96	Nb97	Nb98	Nb99	Nb100	Nb101	Nb102	Nb103	Nb104	Nb105
14.00 M	2.03 4	14.00 4	0.022.11	3.47 27 11	100	2.03E4.0	34.991 ДН	23.35 4	72.1 M	2.000	15.0 C	1.5 C	/.10	1.3 C	1.5 C		2.95 C : βn
(8+)	(9/2+)	8+	9/2+	(7)+	9/2+	6+	9/2+	6+	9/2+	1+	9/2+	1+	(5/2+)	1+	(5/2+)	(1+)	(5/2+)
m	m	m	m	m	m	т	m		m	т	m	m		т		m	
Zr87 1.68 ч	Zr88 83.4 дн	Zr89 78.41 ч	Zr90 51.45	Zr91 11.22	Zr92 17.15	Zr93 1.53Е6 л	Zr94 17.38	Zr95 64.032 дн	Zr96 2.80	Zr97 16.744 ч	Zr98 30.7 c	Zr99 2.1 c	Zr100 7.1 c	Zr101 2.3 c	Zr102 2.9 c	Zr103 1.3 c	Zr104 1.2 c
(9/2)+	0+	9/2+	0+	5/2+	0+	5/2+	0+	5/2+	2.0E19 π 2β- 0+	1/2+	0+	(1/2+)	0+	(3/2+)	0+	(5/2 -)	0+
m		m	m	m													

ниияф мгу

⁷⁴ Se	0.55
⁷⁸ Kr	0.153
⁸⁴ Sr	0.132
⁹² Mo	0.378
⁹⁴ Mo	0.236
⁹⁶ Ru	0.103
⁹⁸ Ru	0.035
102 Pd	0.0142
106 Cd	0.0201
108 Cd	0.0143
¹¹³ In	0.0079
112 Sn	0.0372
114 Sn	0.0252
¹¹⁵ Sn	0.0129
¹²⁰ Te	0.0043
¹²⁴ Xe	0.00571
¹²⁶ Xe	0.00509
130 Ba	0.00476
¹³² Ba	0.00453
¹³⁸ La	0.000409
¹³⁶ Ce	0.00216
¹³⁸ Ce	0.00284
144 Sm	0.008
152 Gd	0.00066
¹⁵⁶ Dy	0.000221
¹⁵⁸ Dy	0.000378
162 Er	0.000351
164 Er	0.00404
¹⁶⁸ Yb	0.000322
174 Hf	0.000249
¹⁸⁰ Ta	2.48e-06
^{180}W	0.000173
¹⁸⁴ Os	0.000122
¹⁹⁰ Pt	0.00017
¹⁹⁶ Hg	0.00048

2. Ядерная астрофизика. Обойденные ядра.

$$\lambda_{(\gamma,j)}(T) = \int_0^\infty c n_\gamma(E,T) \sigma_{(\gamma,j)}(E) \,\mathrm{d}E \,\,, \tag{1}$$

where c is the speed of light, and $\sigma_{(\gamma,i)}(E)$ the photodisintegration cross section at energy E.

Fig. 11. Left panel: Graphical display of the integrand function of Eq. (1) for the ¹⁹⁸Pt(γ ,n)¹⁹⁷Pt reaction. The Planck spectrum n_{γ} at a temperature $T = 2 \times 10^9$ K is shown, as well as the $\sigma_{(\gamma,n)}(E)$ cross section from energies slightly higher than the GDR down to threshold E_{thr} . Near this energy, the photoneutron cross section is *assumed* to be given by $\sigma_{(\gamma,n)}(E) = \sigma_0 \sqrt{(E - E_{thr})/E_{thr}}$, σ_0 being determined by the bremstrahlung experiment. The energy window of astrophysical interest has typically a width of less than 1 MeV located around the effective energy $E_{eff} \approx E_{thr} + kT/2$, and is thus very close to threshold for conditions relevant to the p-process; Right panel: Approximation of the Planck spectrum at $T = 2.5 \times 10^9$ K in the approximate 5–10 MeV energy range by a superposition $\Phi = \sum_{i=1}^{6} a_i(T = 2.5 \times 10^9) \Phi_{\text{brems}}(E_{0,i})$ of 6 bremsstrahlung spectra Φ_{brems} with different endpoint energies $E_{0,i}$ (from [31]).

ФРИНИЯ

2. Ядерная астрофизика. Обойденные ядра.

Fig. 32. Values of the normalized overproduction factor $\langle F_i \rangle (M) / F_0(M)$ calculated for three different 25 M_{\odot} explosion models: (a) the nominal case defined above (open squares), (b) same as (a), but with ${}^{12}C(\alpha,\gamma){}^{16}O$ rates divided by a factor of 2.5 (asterisks), and (c) same as (b), but with a final explosion kinetic energy increased by a factor of 1.5 (black squares) (from [24]).

При сечениях порядка 1мБ, статистика составит около 10³ нейтронов/сек. Для измерения одной точки по сечению требуются минуты.

ФКИИ

Особенности возможных экспериментов на пучке монохроматического гамма-излучения

Планируя ядерно-физические эксперименты на монохроматическом гаммапучке комптоновского источника, необходимо принимать во внимание следующие особенности.

1. Для методик прямого измерения необходимо разрешение по энергии не более 0.5%. В проекте НИИЯФ без кольца количество гамма квантов в пределах полосы 0.5% при частоте 1000 Гц в единицу времени составит около 4.5×10^7 с-1. Это позволяет проводить измерения одной точки по энергии в течении нескольких минут. Для измерения сечения на одном ядре прямыми методами (порядка 300 точек с учетом перестроения энергии) это займет сутки.

Особенности возможных экспериментов на пучке монохроматического гамма-излучения

2. Необходимо дополнительно к прямым методам использовать методику наведенной активности для некоторого числа точек.

FIG. 6. Excitation function for 90 Zr(γ , *n*) of this work compared with the previous measurements [44,45].

A. Banu, E. G. Meekins, J. A. Silano, H. J. Karwowski, and S. Goriely. Photoneutron reaction cross section measurements on 94Mo and 90Zr relevant to the p-process nucleosynthesis. Phys. Rev. C 99, 025802 - Published 11 February 2019

Особенности возможных экспериментов на пучке монохроматического гамма-излучения

2. Активационные исследования фотоядерных реакций на g- пучках от обратного комптоновского рассеяния при $E_{\rm g} \lesssim 40$ МэВ имеют фундаментальную ценность для выяснения множественности образования фотонейтронов. В некоторых случаях для активационной методики требуется большая интенсивность гамма-пучка. Однако, при использовании накопителя нужно предусмотреть возможность плавного и быстрого изменения энергии. При использовании линейного ускорителя без кольца энергия рассеянных фотонов может плавно варьироваться за счет изменения энергии электронного пучка и дискретно переключаться за счет использования гармоник лазерного излучения. Существует однозначная связь энергии рассеянных фотонов и угла рассеяния, что позволяет получать монохроматический пучок рассеянных фотонов за счет коллимации излучения

3. Для дальнейшего развития адекватного модельного описания возбуждения и релаксации изовекторного электрического дипольного гигантского резонанса в атомных ядрах существенно изучение распределений по энергии и углам для парциальных сечений образования быстрых нейтронов в (g, *n*)- реакциях. Короткая длительность импульса излучения – для линейного ускорителя – несколько пикосекунд дает возможность реализации времяпролетной методики с высоким разрешением на короткой базе.

ФКИИ

Спасибо за внимание!

НИИЯФ МГУ предложено несколько схем создания основного комплекса КИ. Один из них предлагается создать на основе ускорителя электронов на энергию до 500-750 МэВ с инжекцией от 50 МэВного ускорителя, работающего в односгустковом режиме. Концептуальная схема КИ гамма-излучения приведена на рис.1. Согласно этой схеме, линейный ускоритель электронов на энергию 50 МэВ является инжектором линейного ускорителя на 500 – 750 МэВ. Поскольку однократное взаимодействие лазерного излучения с электронным сгустком слабо влияет на величину эмиттанса, ускорительный комплекс может одновременно работать как в режиме генерации рентгеновского, так и гамма-излучения. Энергия гамма-квантов при энергии электронов до 750 МэВ в зависимости от гармоники лазера может достигать 40 МэВ, что позволяет реализовать широкую программу исследований в области ядерной физики. В НИИЯФ МГУ совместно с ИЯИ РАН разработана физическая программа исследований как в области ядерной физики до 40 МэВ, так и на рентгеновском источнике в области химии, биологии, физики, наук о материалах. Разработаны проекты рабочих станций для этих исследований.

Рис.1. Концептуальная схема КИ гамма-излучения. Назначение помещений: 1 – ускоритель 50 МэВ, 2 - рабочие станции, 3 - ускоритель 500 - 750 МэВ, 4 – клистроны, 5 - лазер, 6 - экспериментальный зал, 7 - вспомогательное оборудование, 8 – склад, 9 – коридоры. Обозначения: Д1 - Д3- откатные двери радиационнозащищенные, Д4 - распашные двери радиационнозащищенные, Д5 - Д8 – распашные двери, Л1, Л2 - грузовые лифты П1- П5 - поглотители пучка, К1 - К3 - камеры взаимодействия.

Прототип КИ $E_e = 50$ МэВ НИИЯФ МГУ

На базе НИИЯФ МГУ разработан проект и идут работы по созданию прототипа **КИ** рентгеновского излучения использованием ускорителя электронов с перестраиваемой энергией до $E_e = 50$ МэВ (рис.5), работающего в односгустковом режиме. На прототипе будут отработаны основные узлы **КИ НЦФМ**.

Рис.5. Состав КИ рентгеновского излучения на основе линейного ускорителя. 1 – СВЧ пушка с фотокатодом, 2 – соленоид, 3 – окно ввода лазерного излучения, 4 – лазер фотокатода, 5 – станция диагностики пучка, 6 – вакуумный затвор, 7 – ускоряющая структура, 8 – триплет квадрупольных линз, 9 – камера взаимодействия, 10 – точка взаимодействия, 11 – основной лазер, 12, 13 –рентгеновское излучение, 14 – поворотный магнит, 15 – поглотитель пучка, 16 – квадрупольная линза, 17 – рабочая станции, 30 - импульсный клистрон, 31 – модулятор

Максимальная энергия ускоренного пучка 50 ± 2 МэВ Диапазон регулирования энергии 35 - 50 МэВ Разброс по энергии $0,25 \pm 0,1\%$ Нормализованный эмиттанс $1 \pm 0,5$ мм мрад Среднеквадратичный радиус пучка в точке взаимодействия 30 ± 10 мкм Заряд сгустка 100 - 0 + 100 пКл Длительность сгустка 10 ± 4 пс Максимальная частота следования сгустков 1000 Гц

Таблица.1 Выходные параметры рентгеновского излучения КИ для двух энергий электронов на выходе линейного ускорителя с $E_e = 50 \text{ М}$ эВ и $E_e = 500 \text{ М}$ эВ.

Параметр	50 МэВ	500 МэВ
Число рентгеновских		
фотонов в импульсе	1,64×10 ⁷	3,78×10 ⁷
Средний рентгеновский		
поток, фот/с	$1,64 \times 10^{10}$	$3,78 \times 10^{10}$
Пиковая спектральная		
яркость,		
с₋¹мм₋²мрад₋²0,1%	$3,8 \times 10^{18}$	$0,62 \times 10^{21}$
Средняя спектральная		
яркость,		
с₋¹мм₋²мрад₋²0,1%	$3,8 \times 10^{10}$	0,62×10 ¹³
Минимальная		
спектральная ширина без		
монохроматизации	350 эВ	180 кэВ
Минимальная угловая		
ширина без коллимации	1,8 мрад	0,5 мрад

ниияф мгу 1. Возможность достижения высокой степени поляризации излучения.

2. Короткая длительность импульса излучения – для линейного ускорителя – несколько пикосекунд. Возможность реализации времяпролетной методики с высоким разрешением на короткой базе.

3. Малая угловая расходимость излучения, менее 100 мкрад, для ширины спектра 0.5%. На расстоянии 10 м диаметр пучка с такой монохроматичностью составит около 1.5 мм, что определяет размеры области взаимодействия с мишенью.

4. Количество гамма квантов в пределах полосы 0.5% при частоте 1000 Гц в единицу времени составит около 4.5× 10^7 с-1. При сечении реакции ~1мб, выход ~100 частиц/импульс. Это позволяет использовать методику наведенной активности

