Комптоновские источники для экспериментов по нелинейной квантовой электродинамике

Сергей Рыкованов (Сколтех) Александр Федотов (МИФИ) Игорь Костюков (ИПФ РАН) Размещение мощного (мульти-тераваттного / петаваттного) лазера рядом с ускорителем для комптоновского источника:

- Э Значительное увеличение выхода комптоновских фотонов за счет нелинейности
- Фундаментальные эксперименты по нелинейной КЭД

Typical schematics of the ICS source

Nonlinear Compton Scattering can increase photon yield by several orders of magnitude

- All contemporary sources are based on linear Compton Scattering (1 electron scattered on 1 photon)
- \rightarrow "Weak" laser pulses are used a₀<=0.01
- → Nonlinear Compton Scattering (a₀ ~ 1) (theoretically) allows to increase photon yield by several orders of magnitude
- Next we will discuss Nonlinear Compton Scattering and methods to significantly increase the photon yield independent of accelerator system

Nonlinear ICS

no restriction on a₀ electron is "dressed" by the laser pulse

$$\hbar\omega_L + \varepsilon_e = \hbar\omega_X + \varepsilon'_e$$

Energy-momentum conservation

• Generation of harmonics (same as in magnetic undulator)

Non-Linear: $n\hbar\omega_L + \tilde{\varepsilon}_e = \hbar\omega_X + \tilde{\varepsilon}'_e$

• Harmonics can carry well-defined Orbital Angular Momentum (OAM)

Nonlinear ICS

Total photon yield in natural bandwidth:

no restriction on a₀ electron is "dressed" by the laser pulse

$$\hbar\omega_{X} = \frac{4\gamma^{2}\hbar\omega_{L}}{1+\gamma^{2}\theta^{2}+a_{0}^{2}}$$

$$N_{X} = N_{e} \rho \partial \frac{a_{0}^{2}}{1 + a_{0}^{2}}$$

Nonlinear ICS

no restriction on a₀ electron is "dressed" by the laser pulse

$$\hbar\omega_x = \frac{4\gamma^2 \hbar\omega_L}{1 + \gamma^2 \theta^2 + a^2(t)}$$

Total photon yield in natural bandwidth:

$$N_X = N_e \rho \partial \frac{a_0^2}{1 + a_0^2}$$

- Laser pulses ramp on and off smoothly --> time-dependent laser pressure
- Lorentz gamma factor becomes a function of time γ(t)
- Generated frequency:

$$\mathcal{W}_{X}(t) = 4g^{2}(t)\mathcal{W}_{L}$$

MPIPKS (atto07)

Ponderomotive broadening

$$\omega_n(\eta) = \frac{4\gamma^2 n\omega_0}{1 + a(\eta)^2/2}$$

Ponderomotive broadening destroys the monochromaticity of Compton photon source and severely limits its applicability

Proper nonlinear chirping

Skolkovo Institute of Science and Technology

Two oppositely chirped laser pulses

Skolkovo Institute of Science and Technology

Theory of singularities of differentiable projection maps (catastrophe theory)

V. Yu. Kharin, et al. PRL 120.4 (2018): 044802

$$\frac{d^2 I}{d\omega d\Omega} = \kappa \frac{\omega^2}{4\pi^2} \left| \int_{-\infty}^{\infty} d\phi \, \mathbf{n} \times [\mathbf{n} \times \mathbf{u}] \, e^{i\omega(\phi + z - \mathbf{n} \cdot \mathbf{r})} \right|^2$$

Apply catastrophe theory to the stationary phase picture.

Narrow spectral peaks could be found in the vicinity of spectral caustics.

Optimal linear chirp in the spectral domain

Увеличение выхода фотонов

- Весьма нехитрыми (линейными) манипуляциями со спектром лазерных импульсов мультитераваттных и петаваттных систем можно на несколько порядков увеличить выход комптоновских фотонов по сравнению с линейным режимом
 - Минус: малая скважность (repetition rate)
 - Плюс: большая яркость в одном выстреле

НЕЛИНЕЙНОЕ КОМПТОНОВСКОЕ РАССЕЯНИЕ: ОСНОВНЫЕ ПАРАМЕТРЫ

$$e^- + n\hbar\omega \rightarrow e^- + \gamma$$

$$\gamma + n\hbar\omega \rightarrow e^- + e^+$$

излучение фотонов (комптоновское рассеяние)

фоторождение пар

 $a_0 > 1$ (n > > 1) – нелинейный режим комптоновского рассеяния

$$\chi_{e,ph} = \frac{1}{a_S} \sqrt{\left(\varepsilon_{e,ph} \mathbf{E} + \mathbf{p}_{e,ph} \times \mathbf{B}\right)^2 - \left(\mathbf{p}_{e,ph} \cdot \mathbf{E}\right)^2}$$

χ>1 – квантовый режим (эффект отдачи и зависимость от спина)

НЕЛИНЕЙНОЕ КОМПТОНОВСКОЕ РАССЕЯНИЕ: ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

SLAC E144 ЭКСПЕРИМЕНТ

ЛАЗЕРНО-ПЛАЗМЕННАЯ СХЕМА

PHYSICAL REVIEW X 8, 031004 (2018)

Experimental Signatures of the Quantum Nature of Radiation Reaction in the Field of an Ultraintense Laser

AS

LUXE ΠΡΟΕΚΤ

Eur. Phys. J. Spec. Top. (2021) 230:2445–2560 https://doi.org/10.1140/epjs/s11734-021-00249-z

THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS

Conceptual design report for the LUXE experiment

H. Abramowicz¹, U. Acosta^{2,3}, M. Altarelli⁴, R. Aßmann⁵, Z. Bai^{6,7}, T. Behnke⁵, Y. Benhammou¹, T. Blackburn⁸, S. Boogert⁹, O. Borysov⁵, M. Borysova^{5,10}, R. Brinkmann⁵, M. Bruschi¹¹, F. Burkart⁵, K. B^{**}, ⁵, N. C. and ¹², O. D. and ¹⁵, ¹⁶, ¹⁷, ¹⁷,

Abstract This Conceptual Design Report describes LUXE (Laser Und XFEL Experiment), an experimental campaign that aims to combine the high-quality and high-energy electron beam of the European XFEL with a powerful laser to explore the uncharted terrain of quantum electrodynamics characterised by both high energy and high intensity. We will reach this hitherto inaccessible regime of quantum physics by analysing high-energy electron-photon and photon-photon interactions in the extreme environment provided by an intense laser focus. The physics background and its relevance are presented

SHINE ПРОЕКТ (КИТАЙ)

XFEL + 100 ПВт лазер (SEL – Station of Extreme Light)

Выводы и предложения

Один из проектов КИ предусматривает 3 лазерные станции. Одну из станций можно оснастить мощной лазерной системой (мульти-ТВт или суб-ПВт) для исследования нелинейного режима комптоновского рассеяния.

1-й этап: исследование методов значительного увеличения выхода фотонов 2-й этап: исследование эффектов реакции излучения, исследование границ применимости приближений плоской волны и постоянного скрещенного поля

3-й этап: сильно-полевая КЭД, генерация электрон-позитронных пар, (200 ТВт система)

Приложения сильно-нелинейного режима комптоновского источника: генерация короткого импульса гамма-квантов с высокой яркостью и широким спектром для исследования быстропротекающих процессов в oneshot режиме.

комптоновский источник в нцфм

Один из проектов КИ предусматривает 3 лазерные станции. Одну из станций можно оснастить мощной лазерной системой (мульти-ТВт или суб-ПВт для исследования нелинейного режима комптоновского рассеяния.

1-й этап: исследование эффектов реакции излучения, исследование границ применимости приближений плоской волны и постоянного скрещенного поля

2-й этап: сильно-полевая КЭД, генерация электрон-позитронных пар, (200 ТВт система)

Приложения сильно-нелинейного режима комптоновского источника: генерация короткого импульса гамма-квантов с высокой яркостью и широким спектром для исследования быстропротекающих процессов в one-shot режиме.

Использование технологии CafCA позволяет генерировать сверхкороткие оптические импульсы. Это может быть интересно для исследования «неизлучающих» режимов взаимодействие электронов с лазерным полем, а также режимов, где не работает приближение плоской волны.

СубПВТ ЛАЗЕРНАЯ СИСТЕМА PEARL

W = 24 Дж, T = 43 фс, P ~ 0.56 ПВт, λ = 0.911 мкм Laser Phys. Lett. 4, 421 (2007).

СаfCA метод: T = 11 фс, P ~ 1.5 ПВт, Opt. Express 29, 28297 (2021).

Skoltech

V.Yu. Kharin, D. Seipt, S.G. Rykovanov, Phys. Rev. Lett., 120, 044802 (2018)

FIG. 1. The ray surfaces [stationary phase condition (4)] (a),

Generation of harmonics

- Linear (a0<<1) Compton scattering is a source of narrow bandwidth gamma-rays
- One can significantly increase photon yield by increasing a₀ for rectangular pulses
- Temporally shaped laser pulses lead to ponderomotive broadening in the spectrum
- Linear polarization leads to harmonics on axis, circular no harmonics on axis (backscatter)
- Nonlinear chirping can compensate broadening, but hard to do experimentally
- Linear chirping is "easy" to implement

Polarization gating technique

Polarization gating technique in surface harmonics

S.G. Rykovanov, et al, New Journal of Physics 10, 025025 (2008)

HELMHOLTZ

Helmholtz-Institut Jena

Mark Yeung, J Bierbach, E Eckner, **S Rykovanov**, S Kuschel, A Sävert, M Förster, **C Rödel**, GG Paulus, S Cousens, M Coughlan, B Dromey, M Zepf, Phys. Rev. Lett. 115, 193903 (2015)

PG technique in Compton Scattering

- Circular no harmonics (at beginning and the end of the pulse)
- Linear harmonics (near the middle of the pulse depending on the delay)
- Polarization gating harmonics are only generated near the middle of two pulses where the polarization is linear instantaneous intensity

Polarization gating technique

S.G. Rykovanov, et al, New Journal of Physics 10, 025025 (2008)

Laser pulse with time-varying ellipticity – a simple method to avoid ponderomotive broadening in harmonics spectrum

- For high intensities harmonics start to overlap into complete disarray
- On-axis harmonics are not emitted for circular polarization

Gamma comb

Choosing optimal delay between the circular pulses leads to a nice comb in gamma region (observed in angular distribution as well). Properties of this comb are governed by strength and length of the incident pulse.

GEMEINSCHAFT

36

Photon yield

• Plane wave with gaussian temporal envelope $(a_0 = 3, \tau =$

Due to collimation angle even harmonics are also present

- Laser pulse $(a_0 = 2, \tau = 30\pi)$,
- realistic electron beam (10⁸ electrons, $\gamma = 529$, $\epsilon_n \approx 0.15$ mm mrad, $\sigma_r \approx 1.4 \ \mu m$, $\sigma_\theta \approx 0.19$ mrad, $\delta E \approx 1\%$),

•
$$\theta_{col} = 0.2/\gamma$$

The effect could be observed experimentally

M. Valialshchikov, V. Yu. Kharin, S.G. Rykovanov, accepted to Phys. Rev. Lett. https://arxiv.org/abs/2011.12931 37

Notable Compton gamma-ray sources

Facility	Gamma-ray photon energy [MeV]	Intensity (ph/s)	Collimated spectrum width [%]	Repetition rate [MHz]	Technology
HIGS (Duke university, in operation)	1-100	Full intensity: $10^8 - 4*10^9$ Collimated intensity: $\sim 6*10^6 - 2.5*10^8$	5	5.6	Storage ring: 0.24- 1.2 GeV FEL: 1060-190 нм (1.17-6.53 eV)
HIGS-2 (planned?)	2-12	Full intensity: $10^{11} - 10^{12}$ Collimated intensity estimate: $5*10^8 - 5*10^9$	<0.5	5.6	Same as above + IR Laser with Fabri- Perrot cavity
newSubaru (Hyogo University, Japan, in operation)	1.7-76	Full intensity: ~4*10 ⁷ Collimated intensity: ~10 ⁵	1-2	500 198 bunches, each with rep.rate 2.53	Storage ring: 0.974- 1.5 GeV Laser: Nd:YVO ₄ (1064 nm + 532 nm) CO ₂ (10.59 nm)
ELI-NP (under construction)	0.2-19.5	Collimated intensity: 8*10 ⁸	<0.5	10-4	Linear accelerator 180-750 MeV Laser: Yb:Yag 515 нм, 2.3 eV
Project in LBNL (conceptual design?)	~1-10	Full intensity (10 Hz): $\sim 10^9$ - 10^{10} Collimated: $\sim 10^8$ - 10^9	2-10	10 ⁻⁵ (current tech.) >10 ⁻³ (tech. in development)	Laser wakefield acceleration

Notable Compton gamma-ray sources: possible extreme push in intensity?

Facility	Gamma-ray photon energy [MeV]	Intensity (ph/s)	Collimated spectrum width [%]	Repetition rate [MHz]	Technology
HIGS (Duke university, in operation)	1-100	Full intensity: $10^8 - 4*10^9$ Collimated intensity: $\sim 6*10^6 - 2.5*10^8$	5	5.6	Storage ring: 0.24- 1.2 GeV FEL: 1060-190 нм (1.17-6.53 eV)
HIGS-2 (planned?)	2-12	Full intensity: $10^{11} - 10^{12}$ Collimated intensity estimate: $5*10^8 - 5*10^9$	<0.5	5.6	Same as above + IR Laser with Fabri- Perrot cavity
newSubaru (Hyogo University, Japan, in operation)	1.7-76	Full intensity: ~4*10 ⁷ Collimated intensity: ~10 ⁵	1-2	500 198 bunches, each with rep.rate 2.53	Storage ring: 0.974- 1.5 GeV Laser: Nd:YVO ₄ (1064 nm + 532 nm) CO ₂ (10.59 nm)
ELI-NP (under construction)	0.2-19.5	Collimated intensity: 10 ¹¹ 10 ¹²	<0.5	10-4	Linear accelerator 180-750 MeV Laser: Yb:Yag 515 нм, 2.3 eV
Project in LBNL (conceptual design?)	~1-10	Collimated intensity: 10 ¹⁰ 10 ¹¹	2-10	10 ⁻⁵ (current tech.) >10 ⁻³ (tech. in development)	Laser wakefield acceleration

Conclusion

- Nuclear Photonics is new and perspective multi-disciplinary science area
- Nuclear Photonics describes methods of generation of intense monochromatic gamma-ray sources and their interaction with matter
- Billions of dollars invested world-wide in Nuclear Photonics (US, EU, China, Japan and others), several new facilities under construction
- Plasma based gamma-ray sources are very compact and can potentially compete with HIgS facility + they have intrinsic short duration (~10 fs)
- Sources based on Linear Compton Scattering can offer ~10⁸ photons/sec having 1-5% bandwidth and 1-100 MeV photon energies
- Nonlinear Compton Scattering can potentially increase the photon yield up to ~10¹² photons/sec for the same photon beam parameters
- One can generate gamma beams carrying spin and orbital angular momentum
- What are the applications of the gamma comb?
- On-going discussion: What are new applications?

Review article in press: DOI: <u>10.3367/UFNe.2021.03.038960</u>

Duke University (HIgS facility)

Уникальная установка основанная на обратном эффекте Комптона, работает как Центр Коллективного Пользования с ~2000 года

0.18–1.2 GeV e-

HIGS flux performance table for high-flux, quasi-CW operation, DFELL/TUNL, November, 2017 (Version 2.4).

HIGS Flux Performance Projection		Total Flux [g/s] CW Operation Two-Bunch ^(*)	Collimated Flux $(\Delta E_{\gamma} / E_{\gamma} = 5\%)$ FWHM) ^{(#), (@)}	FEL λ [nm]	Comment Linear Pol. with OK-4 Circular Pol with OK-5
No-loss Mode: $E_{\gamma} < \sim 16 \text{ MeV}$					
$E_{\gamma} = 1 - 2 \text{ MeV}$	(E _e = 237 – 336 MeV)	$1 \ge 10^8 - 4 \ge 10^8$	$6 \ge 10^6 - 2.4 \ge 10^7$	1064	Linear and Circular ^{(a), (b)}
$E_{\gamma} = 2 - 2.9 \text{ MeV}$	(E _e = 336 – 405 MeV)	$4 \ge 10^8 - 1 \ge 10^9$	$2.4 \ge 10^7 - 6 \ge 10^7$	1064	Linear and Circular ^{(a), (b)}
$E_{\gamma} = 2 - 3 \text{ MeV}$	(E _e = 288 – 353 MeV)	$2 \ge 10^8 - 6 \ge 10^8$	$1.2 \ge 10^7 - 3.6 \ge 10^7$	780	Linear and Circular ^{(a), (b)}
$E_{\gamma} = 3 - 5.4 \text{ MeV}$	$(E_e = 353 - 474 \text{ MeV})$	$6 \ge 10^8 - 2 \ge 10^9$	$3.6 \ge 10^7 - 1.2 \ge 10^8$	780	Linear ^{(a), (b)}
$E_{\gamma} = 3 - 6.3 \text{ MeV}$	(E _e = 353 – 512 MeV)	$6 \ge 10^8 - 3 \ge 10^9$	$3.6 \ge 10^7 - 1.8 \ge 10^8$	780	Circular ^{(a), (b)}

$$\hbar\omega_{X} = \frac{4\gamma^{2}\hbar\omega_{L}}{1+\gamma^{2}\theta^{2}+a_{0}^{2}}$$

Collision of an intense laser pulse with an ultra-relativistic (γ >>1) electron beam

S.G. Rykovanov, et al, JPHYSB 47, 234013 (2014)

- Doppler upshift of laser frequency $W_X = 4g^2 W_L$
- Tunable source
- Extremely short bursts of hard radiation
- Quasi-monochromatic
- Applications: medicine, nuclear physics, materials
- Nuclear Resonant Fluorescence : nuclear spectroscopy

Main quality: Spectral brightness = y-ray yield per bandwidth

Example:

g = 1000 (~0.5 GeV e⁻) $\hbar \omega_I = 1.55 eV$ (~1 um laser) Max. photon energy: 4 MeV $C \gg 0.5\%$

q = 40 (~20 MeV e⁻) $\hbar\omega_{\tau}$ = 1.55eV (~1 um laser)

Max. photon energy: 10 keV $C \gg 0.02\%$

Notable Compton gamma-ray sources

Facility	Gamma-ray photon energy [MeV]	Intensity (ph/s)	Collimated spectrum width [%]	Repetition rate [MHz]	Technology
HIGS (Duke university, in operation)	1-100	Full intensity: $10^8 - 4*10^9$ Collimated intensity: $\sim 6*10^6 - 2.5*10^8$	5	5.6	Storage ring: 0.24- 1.2 GeV FEL: 1060-190 нм (1.17-6.53 eV)
HIGS-2 (planned?)	2-12	Full intensity: $10^{11} - 10^{12}$ Collimated intensity estimate: $5*10^8 - 5*10^9$	<0.5	5.6	Same as above + IR Laser with Fabri- Perrot cavity
newSubaru (Hyogo University, Japan, in operation)	1.7-76	Full intensity: $\sim 4*10^7$ Collimated intensity: $\sim 10^5$	1-2	500 198 bunches, each with rep.rate 2.53	Storage ring: 0.974 - 1.5 GeV Laser: Nd:YVO ₄ (1064 nm + 532 nm) CO ₂ (10.59 nm)
ELI-NP (under construction)	0.2-19.5	Collimated intensity: 8*10 ⁸	<0.5	10-4	Linear accelerator 180-750 MeV Laser: Yb:Yag 515 нм, 2.3 eV
Project in LBNL (conceptual design?)	~1-10	Full intensity (10 Hz): $\sim 10^9 - 10^{10}$ Collimated: $\sim 10^8 - 10^9$	2-10	10^{-5} (current tech.) >10^-3 (tech. in development)	Laser wakefield acceleration

Brief recap on electron motion in a plane EM wave

 $a_0 = 1$

Brief recap on electron motion in a plane EM wave

$$\frac{d\vec{p}}{dt} = -e\vec{E} - e\frac{\vec{v}}{c} \times \vec{B}$$

$$E_x = E_0 \cos\left(\omega_L t - k_L z\right)$$

$$u_x = -a_0 \sin(\omega_L t - k_L z)$$

$$u_z = \frac{1}{2}u_x^2 = \frac{a_0^2}{2}\sin^2(\omega_L t - k_l z)$$

a₀ = 1

Angular spectrum

Laser pulse longitudinal shape leads to spectrum broadening

Skolkovo Institute of Science and Technology