Study of clustering nuclei

Clusters in nuclei

 $A = A_1 + A_2 -- nuclear mass$ R -- relative distance $\xi = 2A_2/A - mass^{12} asymmetry$

- Each cluster configuration is described by the wave function:

$$\psi_{ijk}\left(\vec{r}_1,\ldots,\vec{r}_{A_0},\vec{R}\right) = \hat{A}\left[\phi_i\left(A_1\right)\phi_j\left(A_2\right)\chi_k\left(\vec{R}\right)\right]$$

-Total wave function of a nuclear state can generally be presented as a superposition of various cluster configurations:

$$\Psi(\vec{r}_1,...,\vec{r}_{A_0}) = \sum_h \sum_{ijk} a^h_{ijk} \psi^h_{ijk}(\vec{r}_1,...,\vec{r}_{A_0},\vec{R}_{touch})$$

Cluster effects in nuclei

There are many indications of importance of cluster degrees of freedom in nuclei in different mass regions, different deformations and excitation energies.

- Reflection-Asymmetric Deformations in actinides and rare-earth nuclei

$$\Psi = \alpha (A) + \beta (A-4)^{4} He + \gamma \dots$$

The potential energy of an α -cluster systems are close to or even lower than the binding energy of the rare-earth nuclei and actinides.

Thus, an α -cluster systems play an important role in the structure of these nuclei.

- Other cluster states

With excitation energy increase, due to the additional binding of certain clusters, other cluster systems can become important.

Cluster effects in nuclei

- Extremely elongated nuclear states (Super- and Hyperdeformation)

- α -decay, cluster radioactivity, spontaneous fission

Reflection Asymmetric Deformation in Heavy Nuclei

- Low negative parity rotational bands
- Strong dipole (*E1*) and octupole (*E3*) transitions connect negative parity states with members of the ground state band.

Conclusion:

Some nuclei (actinides and rare-earth nuclei) might have **reflection asymmetric shapes**

Octupole deformation

or

Clustering

Estimates of dipole moments and B(E1) values for clustering and octupole deformations

Nucleus	D (e fm)		$B(E1; 0^+ \rightarrow 1^-) (e^2 \text{ fm}^2)$	
 	a-clustering	octupole ^{a)}	a-clustering ^{b)}	octupole ^{a)}
¹⁸ / ₈ O ₁₀	+ 0.90	+0 002	58×10^{-2}	4.5 × 10 ⁻⁶
¹⁵⁰ ₆₀ Nd ₉₀	+ 3 29	+0154	77×10^{-1}	1.7×10^{-2}
²²⁰ ₈₈ Ra ₁₃₂	+ 3 64	+0332	95×10^{-1}	7.9×10^{-2}

Role of α–cluster

The value of α -particle preformation factor obtained from the experiment as:

$$S^{exp}_{\alpha} = T^{\alpha}_{1/2} / T^{exp}_{1/2}$$

 $T^{\alpha}_{1/2}$ -half-life of α -particle dinuclear system.

Energies of $E(1^{-})$ states as a function of neutron number.

Degrees of Freedom of Dinuclear System

The dinuclear system (A,Z) consists of a configuration of two touching nuclei (clusters) (A_1,Z_1) and (A_2,Z_2) with $A = A_1 + A_2$ and $Z = Z_1 + Z_2$, which keep their individuality.

DNS has totally 15 collective degrees of freedom which govern its dynamics.

• Relative motion of the clusters • Relative motion of the clusters • Rotation of the clusters • Intrinsic excitations of the clusters • Nucleon transfer between the clusters Mass asymmetry $\xi = \frac{2A_2}{A_1+A_2}$. Charge asymmetry $\xi_Z = \frac{2Z_2}{Z_1+Z_2}$

$$\eta_Z = \frac{Z_H - Z_L}{Z_H + Z_L},$$

 $Z_{H,L}$

Hamiltonian of the model

The kinetic energy operator of the DNS then becomes

$$\begin{split} \hat{T} &= -\frac{\hbar^2}{2B(\xi_0)} \frac{1}{\mu^{3/2}(\xi)} \frac{\partial}{\partial \xi} \mu^{3/2}(\xi) \frac{\partial}{\partial \xi} - \frac{\hbar^2}{2\mu(\xi)} \frac{1}{R^2} \frac{\partial}{\partial R} R^2 \frac{\partial}{\partial R} \\ &+ \frac{\hbar^2}{2\mu(\xi)R^2} \hat{l}_0^2 + \frac{\hbar^2}{2} \sum_{n=1}^2 \sum_{k=1}^3 \frac{\hat{l}_{(n)k}^2}{I_k^{(n)}(\beta_n, \gamma_n)} \qquad \left(\equiv \hat{T}_{rot}\right) \\ &- \frac{\hbar^2}{2} \sum_{n=1}^2 \frac{1}{D_n(\xi_0)} \left(\frac{1}{\beta_n^4} \frac{\partial}{\partial \beta_n} \beta_n^4 \frac{\partial}{\partial \beta_n} + \frac{1}{\beta_n^2} \frac{1}{\sin 3\gamma_n} \frac{\partial}{\partial \gamma_n} \sin 3\gamma_n \frac{\partial}{\partial \gamma_n} \right) \\ &\left(\equiv \hat{T}_{intr}\right) \end{split}$$

The potential energy of the DNS is

 $V(\xi) = E_1(\xi, \beta_1, \gamma_1) + E_2(\xi, \beta_2, \gamma_2) + V_N(R, \xi, \beta_{\{1,2\}}, \gamma_{\{1,2\}}, \Omega_{\{1,2\}}) + V_C(R, \xi, \beta_{\{1,2\}}, \gamma_{\{1,2\}}, \Omega_{\{1,2\}})$

Ground-State Well (²⁴⁰Pu)

(Exp. data are taken from: http://www.nndc.bnl.gov/ensdf/)

PRC92, 034302 (2015)

Ground-State Well (²⁴⁰**Pu**) –continued

(Exp. data are taken from: http://www.nndc.bnl.gov/ensdf/)

PRC92, 034302 (2015)

Electromagnetic Transition in ²⁴⁰Pu

Experimental B(E1)/B(E2) ratios (R_{exp}) are compared to the calculation of our model for the low-spin members of the $K\pi = 0+2$ rotational band in ²⁴⁰Pu.

I_i^{π}	$I_{f,E1}^{\pi}$	$I_{f,E2}^{\pi}$	R_{exp}	R_{DNS}
			$(10^{-6} \text{ fm}^{-2})$	$(10^{-6} \text{ fm}^{-2})$
0^+_2	1_{1}^{-}	2^+_1	13.7(3)	19.17
2^{+}_{2}	1_{1}^{-}	0_{1}^{+}	99(15)	99.95
2^{+}_{2}	1_{1}^{-}	2^{+}_{1}	26(2)	39.15
2^{+}_{2}	1^{-}_{1}	4_{1}^{+}	5.9(3)	8.57
2^{+}_{2}	3^{-}_{1}	0^{+}_{1}	149(22)	165.60
2^{+}_{2}	3^{-}_{1}	2^+_1	39(2)	64.9
2^{\mp}_{2}	3^{-}_{1}	4^{+}_{1}	8.9(5)	14.2
4^{\mp}_{2}	3^{-}_{1}	$6^{\tilde{+}}_1$	4.4(11)	6.9
4^{\mp}_{2}	$5\overline{1}$	6^{\mp}_1	4.7(13)	10.59

(Exp. Data are from *M. Spieker et al.*, *PRC88*, 041303(*R*), (2013))

Proposed Experiments to study the role of the clustering in heavy nuclei

-- A natural tool to study the nature of nuclear reflection-asymmetry is provided by inelastic photon scattering (γ, γ') experiments searching for all *E1* strength in the energy region $E_x = (0 - S_n)$ MeV and also study possibly γ -decay behavior.

-- If enhanced E1 strength is generated due to the mass asymmetry **caused by** α - or other cluster states, states of such a structure could strongly influence the outcome of (γ , α), (γ , cluster) reactions.

Candidates: ¹⁵⁰Nd, ¹⁴⁶Sm, ¹⁵⁰Gd, ¹⁴⁴⁻¹⁴⁸Ba Measurements:

E1-strength (**D**₀), γ -decay behavior (Γ_{γ}) (γ, α), (γ , cluster) ($\Gamma_{\alpha}, \Gamma_{cl}$)

Fig 2 Schematic representation of the distribution of E1 strength expected in ¹⁵⁰ Nd

Strongly Deformed States of Nuclei

The potential energy of the DNS

$$V(\xi) = E_1(\xi) + E_2(\xi) + V_N(R,\xi) + V_C(R,\xi)$$

Mass quadrupole moments of the DNS

$$Q_2(\xi, R) = 2m_0 \frac{A_1A_2}{A_1 + A_2}R^2 + Q_2(A_1) + Q_2(A_2)$$

Hyperdeformation and scission configurations

 $^{236}U \rightarrow ^{102}Zr + ^{134}Te$

Spontaneous Fission

 $\hbar\omega_o$ – the energy of the first excited state in η_Z

	$\hbar\omega_0$	S_{SF}	$T_{1/2}$	$T_{1/2}^{\exp}$
^{232}U	2,09	$9{,}19\times10^{-43}$	$7{,}43\times10^{20}$	$3{,}73\times10^{21}$
$^{234}\mathrm{U}$	2,05	$4{,}34\times10^{-44}$	$1{,}61\times10^{22}$	$4{,}73\times10^{23}$
^{236}U	2,02	$6{,}45\times10^{-45}$	$1{,}10\times10^{23}$	$6{,}38\times10^{23}$
$^{238}\mathrm{U}$	1,98	$3{,}62\times10^{-38}$	$2{,}00\times10^{16}$	$8{,}20\times10^{15}$
²³⁶ Pu	2,01	$1{,}68\times10^{-39}$	$4{,}24\times10^{17}$	$1{,}10\times10^{17}$
²³⁸ Pu	1,92	$7{,}39\times10^{-41}$	$1{,}01\times10^{19}$	$1{,}26\times10^{18}$
^{242}Cm	1,85	$3{,}06\times10^{-36}$	$2{,}53\times10^{14}$	$2{,}32\times10^{14}$
^{248}Cf	1,84	$3{,}97\times10^{-34}$	$1{,}96\times10^{12}$	$1{,}29\times10^{12}$

Even-odd nuclei

 $^{257}{\rm Fm}:$ 1.31×10^2 y - $^{256}{\rm Fm}:$ 1.02×10^4 s $^{259}{\rm Fm}:$ 1.5 s - $^{258}{\rm Fm}:$ 0.37 ms

Proposed Experiments to study the role of the clustering in heavy nuclei

--- If cluster mechanism is responsible for spontaneous fission, the population of superdeformed or hyperdeformed cluster states with strongly influence the outcome of (γ , SF) channel.

Candidates: ²⁴⁰U, ²⁴⁰Pu Measurements: E1-strength, γ -decay behavior (Γ_{γ}) (γ , SF), (Γ_{α} , Γ_{cl})

