Измерение сечения $e^+e^- \to \pi^+\pi^$ с детектором КМД-з на коллайдере ВЭПП-2000 и его последствия для проблемы аномального магнитного момента мюона

Иван Борисович Логашенко (ИЯФ СО РАН)

Научная сессия Объединенного ученого совета по физическим наукам СО РАН

29 ноября 2023

The basics

Gyromagnetic ratio *g* connects magnetic moment μ and spin s

For point-like particle g = 2

Anomalous magnetic moment *a* arises in higher-orders

 $\vec{\mu}_S = g \frac{e}{2m} \vec{S}$ a = (g - 2)/2

 $a_e \approx a_\mu \approx \frac{\alpha}{2\pi} \approx 10^{-3}$ (QED dominated)

Idea of experiment: by comparing measured value of **a** with the theory prediction we probe extra contributions beyond theory expectations $a_{\mu}(strong)/a_{\mu}(QED) \approx 6 \times 10^{-5}$ $a_{\mu}(weak)/a_{\mu}(QED) \approx 10^{-6}$

Why muon? For massive fields there is natural scaling, which enhances contribution to a_{μ} by $(m_{\mu}/m_e)^2 \sim 43000$ $\Delta a \sim \left(\frac{m_l}{m_x}\right)^2$ m_l

Generations of a_{μ} measurements

Muon G-2 2023 result

Experiment vs SM prediction

Strong interactions Electromagnetic Weak interactions SM prediction for interactions 0.000 000 069 37 (43) 0.000 000 001 54 (1) 0.001 165 847 19 (0.1) $a_{\mu} = 0.001 \ 165 \ 918 \ 10 \ (43)$

The uncertainty is dominated by contribution of strong interactions

 a_{μ}

Contribution of exclusive hadronic cross sections to a_{μ} Hadronic contribution can be calculated via dispersion relation, using measured cross section of hadron production in e^+e^- annihilation:

$$a_{\mu}^{had}(LO) = \frac{1}{4\pi^3} \int \sigma^0 (e^+e^- \to X) K_{\mu}(s) ds$$

In exclusive approach, we calculate a_{μ} integral for each final state and sum them:

$$a_{\mu}^{had}(LO) = \sum_{X=\pi^{0}\gamma, \pi^{+}\pi^{-}, \dots} \frac{1}{4\pi^{3}} \int \sigma^{0}(e^{+}e^{-} \to X) K_{\mu}(s) ds$$

 $e^+e^- \rightarrow \pi^+\pi^-$ gives by far the largest contribution to the integral – about 74% (and the largest contribution to uncertainty)

 $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ required to be measured with <1% precision (\rightarrow 0.1%)

There are several measurements of $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ with sub-percent systematic accuracy

Measurements of $e^+e^- \rightarrow \pi^+\pi^-$

VEPP-2000 collider

"Round beam" optics

Energy monitoring by Compton backscattering ($\sigma_{\sqrt{s}} pprox 0.1~{
m MeV}$)

VEPP-2000

CMD-3 Detector

*Cryogenic Magnetic Detector

- Magnetic field 1.0-1.3 T
- Drift chamber
 - $\succ \sigma_{R\varphi} \sim 100 \,\mu, \sigma_z \sim 2 3 \,\mathrm{mm}$
- EM calorimeter (LXE, Csl, BGO), 13.5 X₀
 - $\succ \sigma_E/E \sim 3\% 10\%$
 - $\succ \sigma_{\Theta} \sim 5 \text{ mrad}$
- TOF
- Muon counters

Measurement of pion formfactor by CMD-3 and muon (g-2)

Measurement of $e^+e^- \rightarrow \pi^+\pi^$ at CMD-3

Statistical precision of CMD-3 data

Three methods of separation of $e^+e^-, \mu^+\mu^-, \pi^+\pi^-$

Example of $e^+e^- \rightarrow \pi^+\pi^-$ event Similar events: $e^+e^- \rightarrow \mu^+\mu^-$, $e^+e^- \rightarrow e^+e^-$

Unique feature of CMD-3: three independent methods to measure $N_{\pi\pi}/N_{ee}$!

- Energy deposition distribution
- Momentum distribution
- Angular distribution

Agree to 0.2%!

Measurement of polar angle

Θ angle is measured by drift chamber via charge division

Two detector systems with strips readout, LXe calorimeter and Z-chamber, are used for precise calibration and monitoring of DC We need to precisely know the fiducial volume (Θ_0 cut).

$$|F_{\pi}|^{2} = \left(\frac{N_{\pi\pi}}{N_{ee}} - \Delta_{bg}\right) \cdot \frac{\sigma_{ee}^{0} \cdot (1 + \delta_{ee}) \cdot \varepsilon_{ee}}{\sigma_{\pi\pi}^{0} \cdot (1 + \delta_{\pi\pi}) \cdot \varepsilon_{\pi\pi}}$$

Factor 10 smaller compared to CMD-2, SND2k!

Charge asymmetry in $e^+e^- \rightarrow \pi^+\pi^-$ Charge asymmetry in $e^+ e^- \rightarrow \pi^+ \pi^-$ is due to interference between ISR/FSR and between one- and two-photon exchange

$$A = \left(N_{\Theta < \pi/2}^{\pi} - N_{\Theta > \pi/2}^{\pi} \right) / N$$

0.006

0.004

⁸_≟0.002

-0.002 -0.004 -0.006

The theoretical model by Lee, Ignatov, PLB 833 (2022) 137283 (GVDM) describes well the CMD-3 data

Recent calculation in dispersive formalism Colangelo et al., JHEP 08 (2022) 295 confirms the effect.

 $e^+e^- \rightarrow \mu^+\mu^-$ events are identified as a by-product of analysis, which allows to measure $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ and compare it to QED prediction

Powerful cross-check of $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ measurement! All ingredients are tested: event separation, detection efficiencies, radiative corrections.

Measurement

 $e^+e^- \rightarrow \mu^+\mu^-$

 $\sigma(e^+e^- \rightarrow \mu^+\mu^-)_{CMD3}/\sigma(e^+e^- \rightarrow \mu^+\mu^-)_{QED}$

Comparison of data taking seasons

Results based on 2013, 2018 and 2020 data only agree to ~0.1%! The detector performance and run conditions were significantly different for these runs.

Comparison to other measurements

At first glance, they looks close to each other...

CMD-3 is systematically above previous measurements by ~2-5%

Comparison to other measurements

Experiment vs SM prediction

Результат

- На детекторе КМД-3 измерено сечение σ(e⁺e⁻ → π⁺π⁻) в области энергий от 0.32 до 1.2 ГэВ в системе центра масс
 - Лучшая статистическая точность в мире
 - Наиболее детальный анализ систематических ошибок, уникальные методы перекрестных проверок
 - «Побочные» измерения: зарядовая асимметрия в $e^+e^- \to \pi^+\pi^-$, сечение $\sigma(e^+e^- \to \mu^+\mu^-)$, параметры векторных мезонов,...
 - >10 лет работы
- Результат КМД-3 привел к пересмотру устоявшегося мнения о наличии противоречия между измеренной величиной аномального магнитного момента мюона и предсказанием Стандартной модели
- Результат КМД-3 вызвал большой резонанс в сообществе физики элементарных частиц
 - Проведены рабочие совещания, посвященные результату и детальной проверке анализа данных
 - Ведутся новые независимые измерения/обработки данных, которые должны подтвердить/опровергнуть результат КМД-3
- На ВЭПП-2000 мы планируем провести новый цикл измерений с целью повысить точность в 2-3 раза

Публикации (направлены в PRL/PRD):

- 1. F.V.Ignatov et al. (CMD-3 Collaboration) Measurement of the pion formfactor with CMD-3 detector and its implication to the hadronic contribution to muon (g-2) // arXiv:2309.12910 [hep-ex]
- 2. F.V.Ignatov et al. (CMD-3 Collaboration) Measurement of the e[^]+ e[^]→π[^]+ π[^]− cross section from threshold to 1.2 GeV with the CMD-3 detector // arXiv:2302.08834 [hep-ex]