

Лидарная система для оперативного обнаружения турбулентности в ясном небе с борта воздушного судна

Докладчик Разенков Игорь Александрович

ОУС по Физическим наукам, Академгородок, г. Новосибирск, 15 мая 2024 г.

В соответствии с законом Колмогорова-Обухова структурная функция турбулентных флуктуаций температуры $D_T(r)$ выражается через структурную характеристику температуры C_T^2 : $D_T(r) = C_T^2 r^{2/3}$

Структурные характеристики интенсивности турбулентных флуктуаций показателя преломления воздуха C_n^2 и температуры C_T^2 выражаются друг через друга

Турбулентный лидар предназначен для измерения (оценивания) интенсивности «оптической» турбулентности, под которой понимают структурную характеристику *C*²

Эффект увеличения обратного рассеяния волн (1972)

Виноградов А.Г., Гурвич А.С., Кашкаров С.С., Кравцов Ю.А., Татарский В.И. «Закономерность увеличения обратного рассеяния волн». Свидетельство на открытие № 359. Приоритет открытия: 25 августа 1972 г. в части теоретического обоснования и 12 августа 1976 г. в части экспериментального доказательства закономерности. Государственный реестр открытий СССР // Бюлл. изобретений. 1989. № 21.

Для двукратного распространения принципиально свойство взаимности волн

Эффект увеличения обратного рассеяния волн (1972)

Виноградов А.Г., Гурвич А.С., Кашкаров С.С., Кравцов Ю.А., Татарский В.И. «Закономерность увеличения обратного рассеяния волн». Свидетельство на открытие № 359. Приоритет открытия: 25 августа 1972 г. в части теоретического обоснования и 12 августа 1976 г. в части экспериментального доказательства закономерности. Государственный реестр открытий СССР // Бюлл. изобретений. 1989. № 21.

Для двукратного распространения принципиально свойство взаимности волн

Требование №1 – усреднение обратно рассеянного сигнала по большой выборке

Эффект увеличения обратного рассеяния волн (1972)

Виноградов А.Г., Гурвич А.С., Кашкаров С.С., Кравцов Ю.А., Татарский В.И. «Закономерность увеличения обратного рассеяния волн». Свидетельство на открытие № 359. Приоритет открытия: 25 августа 1972 г. в части теоретического обоснования и 12 августа 1976 г. в части экспериментального доказательства закономерности. Государственный реестр открытий СССР // Бюлл. изобретений. 1989. № 21.

Для двукратного распространения принципиально свойство взаимности волн

Требование №1 – усреднение обратно рассеянного сигнала по большой выборке

«Турбулентность не изменяет полную рассеянную мощность, а только перераспределяет её в пространстве». А.С. Гурвич, 2012 5

институт оптики атмосферы им. В.Е. Зуева со ран Способ регистрации эхосигнала на оси лазерного пучка

Требование №2 - совмещение принимающего канала с передающим.

Простейшим антенным переключателем является светоделительная пластинка.

институт оптики атмосферы им. В.Е. Зуева СО РАН Способ регистрации эхосигнала на оси лазерного пучка

Требование №2 - совмещение принимающего канала с передающим.

Простейшим антенным переключателем является светоделительная пластинка.

Способ регистрации эхосигнала на оси лазерного пучка

Требование №2 - совмещение принимающего канала с передающим. Простейшим антенным переключателем является светоделительная пластинка. Возникает проблема паразитного рассеяния.

институт

ОПТИКИ АТМОСФЕРЫ им. В.Е. Зуева СО РАН

Аэрозольный лидар с лазером с ламповой накачкой Выходная мощность: <P> = 1 Вт Частота следования: F = 10 Гц Энергия импульса: E = 0,1 Дж Аэрозольный лидар с лазером с диодной накачкой <P> = 1 Вт F = 10000 Гц E = 0,0001 Дж

Коаксиальная схема приемо-передатчика

институт

ОПТИКИ АТМОСФЕРЫ

им. В.Е. Зуева СО РАН

Коаксиальная схема приемо-передатчика с расширением пучка через приемный телескоп

Преимущества схемы лидара с микро импульсным лазером:

- 1. Безопасность для глаз
- 2. Термомеханическая стабильность
- 3. Непрерывная работа в течение года и более
- 4. Счёт фотонов
- Динамический диапазон
 5-6 порядков
- 6. Компактная конструкция

Требование №3 – использование микро импульсного лазера с диодной накачкой.

Требование №4 - дополнительный принимающий канал (№2) для учета изменения рассеивающих свойств атмосферы, необходим для нормирования эхосигнала основного принимающего канала (№1)

Дополнительный принимающий канал (№2) располагается рядом. Важно, чтобы турбулентность существенного влияния на него не оказывала.

В турбулентном лидаре одновременно реализуются две схемы приёма — - коаксиальная (основной канал №1) и биаксиальная (дополнительный канал №2)

Идея создания турбулентного лидара принадлежит А.С. Гурвичу (2012)

ЛИДАРНОЕ ЗОНДИРОВАНИЕ ТУРБУЛЕНТНОСТИ НА ОСНОВЕ ЭФФЕКТА УСИЛЕНИЯ ОБРАТНОГО РАССЕЯНИЯ

институт

ОПТИКИ АТМОСФЕРЫ им. В.Е. Зуева СО РАН

© 2012 г. А. С. Гурвич Институт физики атмосферы им. А.М. Обухова РАН

Рис. 4. Схема лидара для зондирования турбулентности: I – лазер, генерирующий узкий пучок зондирующего излучения; 2 – перископ; 3 – главное зеркало принимающего телескопа; 4 – вторичное зеркало; 5 – фотодетектор рассеянного излучения. T, T' и S – направления зондирующего и принимаемого рассеянного излучения. Пунктиром показаны: зеркало перископа и зондирующий пучок в режиме приема излучения, рассеянного под углом d_P/L от направления назад.

Недостатки схемы Гурвича:

- 1. Потеря информации на оси пучка
- 2. Попеременный режим работы
- 3. Использование подвижных частей (перископ)

Пик обратного рассеяния от диффузного экрана на расстоянии 2 км (Эксперимент 2016 г.)

Длина волны 532 нм Размер пучка 50 мм Ширина пика 100 мм...120 мм (10"...12")

Идея создания турбулентного лидара принадлежит А.С. Гурвичу (2012)

ЛИДАРНОЕ ЗОНДИРОВАНИЕ ТУРБУЛЕНТНОСТИ НА ОСНОВЕ ЭФФЕКТА УСИЛЕНИЯ ОБРАТНОГО РАССЕЯНИЯ

НСТИТУТ

ОПТИКИ АТМОСФЕРЫ им. В.Е. Зуева СО РАН

> © 2012 г. А. С. Гурвич Институт физики атмосферы им. А.М. Обухова РАН

Рис. 4. Схема лидара для зондирования турбулентности: I – лазер, генерирующий узкий пучок зондирующего излучения; 2 – перископ; 3 – главное зеркало принимающего телескопа; 4 – вторичное зеркало; 5 – фотодетектор рассеянного излучения. T, T' и S – направления зондирующего и принимаемого рассеянного излучения. Пунктиром показаны: зеркало перископа и зондирующий пучок в режиме приема излучения, рассеянного под углом d_P/L от направления назад.

Макет турбулентного лидара с применением лазера с ламповой накачкой оказался неработоспособным (2012-2014)

Альтернативное решение (2013)

Макет микро импульсного турбулентного лидара (2013-2017). Длина волны 532 нм

Первый раз зарегистрировать увеличение обратного рассеяния получилось в октябре 2013 г.

Турбулентные лидары

Лидар УОР-4 (532 нм) 2017 - 2022

Лидар УОР-5 (355 нм) 2018 — наст. время

Из основного лидарного эхосигнала *P*₁(*x*) и дополнительного *P*₂(*x*) определяется фактор влияния турбулентности на среднюю мощность рассеянного света на приемнике

 $q(x) = P_1(x) / P_2(x) - 1$

Общего решения обратной задачи для турбулентного лидара сегодня не существует.

Для случая статистически однородной турбулентности Воробьевым В.В. была получена формула:

 $q(x) = 2.44 \ G(R) \ \beta_0^2(x) \implies C_n^2(x) = 0.33 \ q(x) \ k^{7/6} \ x^{-11/6} \ G(R)^{-1}$

где $\beta_0^2 = 1,23 C_n^2 k^{7/6} x^{11/6}$ - относительная дисперсия флуктуаций интенсивности; G(R) – усредняющая функция приемной апертуры R

Запись: УОР-4, 05:47 20.09.2020

Турбулентный лидар vs. Сцинциллометр (03-04.08.2021)

Солнечный радиометр Kipp&Zonen CM3

ОПТИКИ АТМОСФЕРЫ им. В.Е. Зуева СО РАН

институт

Датчик *C_n²* (сцинциллометр) Трасса 500 м

Лидар УОР-4 параметр *С*² дистанция 1 км высота 70 м

Лидар УОР-4 параметр *C*² дистанция 12 км высота 800 м

Турбулентный лидар vs. Содар (16.10.2020)

Эхосигнал дополнительного канала ("аэрозоль")

13

Эхосигнал дополнительного канала ("аэрозоль")

n3

<u>ТЯН – турбулентность в свободной атмосфере вне зон конвективной деятельности на высотах 6-12 км</u>

Одним из основных видов атмосферной турбулентности является турбулентность в ясном небе (ТЯН). От других видов турбулентности ТЯН отличается тем, что не сопровождается значительной облачностью

Для ТЯН характерна резкая локализация в окружающем спокойном потоке

Визуально ТЯН трудно обнаружить, поскольку явные признаки отсутствуют

ТЯН возникает в результате гидродинамической неустойчивости потока (неустойчивость Кельвина-Гельмгольца), когда число Ричардсона 0<*Ri*<1/4

На сегодняшний день проблема дистанционного обнаружения турбулентности в ясном небе для раннего предупреждения экипажа воздушного судна об опасности является актуальной и требует своего решения

Если от момента появления сигнала тревоги до вхождения в зону турбулентности есть 1 мин, тогда для типичной скорости 850 км/ч коммерческих воздушных судов, расстояние до ТЯН составит 14 км

Boeing B-52 Stratofortress столкнулся с ТЯН и потерял вертикальный стабилизатор. Экипажу удалось благополучно приземлиться в Арканзасе.

ТЯН и неустойчивость Кельвина-Гельмгольца (0<*Ri*<1/4)

Волна Кельвина-Гельмгольца в свободной атмосфере

институт

ОПТИКИ АТМОСФЕРЫ им. В.Е. Зуева СО РАН

Оптимальный лидарный приёмопередатчик (трансивер)

Оптимальный размер приёмо-передающей апертуры бортового лидара

 $q(x) = 3,0 \ G(R) \ C_n^2 \ k^{7/6} \ x^{11/6}$, где G(R) – усредняющая функция приемной апертуры R

С увеличением приемной апертуры *R* эхосигналы увеличиваются, но из-за усредняющей функции *G(R)* эффективность лидара (*q*-фактор) снижается

институт

ОПТИКИ АТМОСФЕРЫ им. В.Е. Зуева СО РАН

Высотная модель C_n^2

Хафнагеля-Волли

Требование №5 радиус приёмных апертур лидара не должен превышать 55 мм

Оптимальный радиус апертур: 35-40 мм min 25 мм max 55 мм

<u>Модель распределения параметра $C_n^2(x)$:</u>

- 1). Статистически однородная турбулентность (модель 1, $C_n^2(x)$ =const)
- 2). Турбулентная зона на расстоянии 10 км от лидара (модель 2, *C*²_n(*x*)≠const)

Модельные эхосигналы:

Обнаружение турбулентной зоны представляется возможным, т.к. следует ожидать кратного увеличения эхосигнала.

ИНСТИТУТ ОПТИКИ АТМОСФЕРЫ им. В.Е. Зуева СО РАН

Эксперимент с лидаром УОР-5 на борту Ту-134 (сент. 2022)

УОР-5 на борту Ту-134

🔲 Полёт 10 сентября 2022 г.

институт оптики атмосферы им. В.Е. Зуева СО РАН Эксперимент с лидаром УОР-5 на борту Ту-134 (сент. 2022)

Эхосигналы 1 и 2 канала и параметр C_n^2 на высотах 3 км и 400 м Разрешение пространственное 15 м, временное 10 сек, число выстрелов 80000 фильтрация с окном 500 м (полужирные кривые)

Эксперимент с лидаром УОР-5 на борту Ту-134 (сент. 2022)

С 2001 года Японское агентство аэрокосмических исследований (JAXA) совместно с Mitsubishi Electric начала создавать доплеровскую систему (1550 нм) для дистанционного обнаружения ТЯН с борта самолета (проект SafeAvio)

нститут

им. В.Е. Зуева СО РАН

Система формирует два луча, которые направлены вперед и относительно оси самолета в вертикальной плоскости разведены на +/-10°. Такое расположение лучей позволяет выделить вертикальную компоненту скорости ветра

Начиная с 2001-го года ЈАХА последовательно создавала и обновляла свои лидары, повышая дальность зондирования с 2-х (2002) до 17-ти км (2017). Параллельно с совершенствованием системы они сумели снизить вес лидара со 150 кг (2011) и 84 кг (2018).

Press Release July 18, 2018 – Сертификация в RTCA (США)

В настоящее время JAXA на основе созданного ветрового доплеровского лидара (проект SafeAvio) разрабатывает и демонстрирует технологию снижения влияния порывов ветра (проект STABLE), моделируя управление закрылками и рулями высоты

Бортовой УФ турбулентный лидар УОР-6 (2021-2024)

Обтекатель СибНИА им. С.А. Чаплыгина

Лидар создан при финансовой поддержке Министерства науки и высшего образования РФ (проект № 075-15-2021-934)

Технические характеристики

Параметр	Величина
Длина волны лазера (Cobolt)	355 нм
Энергия импульса	18 мкДж
Частота импульсов	7 кГц
Длительность импульса	5 нс
Выходная мощность лазера	125 мВт
Качество лазерного пучка	TEM ₀₀ , M ² <1,3
Диаметр пучка на выходе из лидара	50 мм
Расходимость пучка на выходе из	20 мкрад
лидара	
Количество телескопов (Мерсен)	2
Расстояние между осями телескопов	85 мм
Диаметр телескопа	50 мм
Увеличение телескопа	10×
Поле зрения приемников	100 мкрад
Полоса пропускания светофильтра	0,15 нм
Квант. эффективность ФЭУ (Н10682-	33%
210P)	
Способ регистрации	счет фотонов
Пространственное разрешение	15 м
Временное разрешение	10 сек
Дальность зондирования	10 км
Диапазон измерения C _n ²	$10^{-17} - 10^{-13} \text{ m}^{-2/3}$
Режим работы лидара	непрерывный
Интервал рабочей температуры	+10°C+35°C
Потребляемая мощность	100 Вт
Габаритные размеры Д×Ш×В	1017×427×446 мм ³
Масса приемо-передатчика	50 кг 27

Бортовой УФ турбулентный лидар УОР-6 (2021-2024)

Полезные модели (8):

Устройство для регистрации усиления обратного рассеяния в атмосфере RU 153460 U1 (2014); RU 163016 U1 (2015); RU 160836 U1 (2015); RU 165087 U1 (2016);

Компактный аэрозольный лидар для регистрации усиления обратного рассеяния в атмосфере RU 177661 U1 (2017);

Аэрозольный турбулентный лидар RU 208 927 U1 (2021);

Аэрозольный поляризационный турбулентный лидар RU 208 527 U1 (2021);

Двухчастотный лидар для регистрации усиления обратного рассеяния в атмосфере RU 218953 U1 (2023)

Изобретения (5):

Комбинированный аэрозольно-турбулентный лидар RU 2 738 588 C1 (2020)

Способ и лидарная система для оперативного контроля интенсивности турбулентности на глиссаде RU 2 769 090 C1 (2021);

Способ определения вертикального профиля интенсивности оптической турбулентности в атмосфере RU 2789631 C1 (2022)

Способ повышения достоверности результатов работы турбулентного лидара RU 2790930 C1 (2022)

Способ и лидарная система для оперативного обнаружения турбулентности в ясном небе с борта воздушного судна RU 2798694 C1 (2023)

- 1. Эффект увеличения обратного рассеяния (УОР) достаточно сильно проявляется при распространении оптических волн в атмосфере и может быть использован для создания лазерных средств дистанционного зондирования турбулентности
- Разработан подход к созданию аппаратуры зондирования турбулентности до дистанции 10-15 км на высотах 9-11 км. В основном все технические вопросы по созданию бортового лидара решены
- 3. Предварительные эксперименты на борту самолета-лаборатории Ту-134 «Оптик» продемонстрировали работоспособность турбулентного лидара УОР-5
- 4. В настоящее время создан турбулентный лидар УОР-6. Планируется его установка на борт Ту-134 и работа в рутинном режиме, например, при аэрофосъёмке
- 5. В планах создание новой версии бортового турбулентного лидара УОР-7 с дальностью зондирования 15 км и более

БЛАГОДАРЮ ЗА ВНИМАНИЕ! и ВСЕМ ЖЕЛАЮ СПОКОЙНОГО НЕБА!