

Повышение эффективности транспортировки лазерной энергии на значительные расстояния

Кусков Василий Вадимович

Актуальность

Транспортировка лазерной энергии на значительное расстояние.

Проблема- искажения волнового фронта

возникновение искажений внутри передающей системы из-за деформации оптических элементов, разъюстировки и т.п.

снижение эффективности передачи энергии

возникновение искажений **при распространении в атмосфере** из-за турбулентных неоднородностей показателя преломления

снижение эффективности передачи энергии

круглая передающая и кольцевая приёмная(б)

Т50- передающий телескоп; Т15- приёмный телескоп; Л-линза; З-зеркало; ДП - дихроическая пластина; Св- светоделительная пластина, Датчик В.Ф.- датчик волнового фронта; Ддиафрагма; Детект.-детектор излучения

Результаты экспериментов на адаптивном атмосферном стенде апертурного зондирования

8

Эффективность коррекции в зависимости от дальности фокусировки зондирующего пучка и угла поля зрения приёмника рассеянного излучения.

Схема эксперимента. Большая передающая апертура

Эффективность коррекции в зависимости от дальности фокусировки

9

Величина различных аберраций ВФ основного пучка в представлении полиномов Цернике (а), нормированная на начальный уровень мощность сигнала обратного рассеяния (б); Угол поля зрения приёмника 67 мкрад.

300, 500 и 700 метров в процессе адаптации. Каждая кривая построена в результате усреднения по пяти реализациям итерационного процесса, полученным при различных атмосферных условиях

Компенсация аберраций ВФ «широкого» коллимированного пучка

12

Аберрации ВФ основного пучка (а), мощность сигнала обратного рассеяния (б), фотографии основного (в) и зондирующего (г) пучков на экране до (слева) и после (посредине) внесения искажений и после коррекции (справа).

 $R = \frac{\sum_{i=1}^{N} |I_0(\mathbf{r}_i) - I_a(\mathbf{r}_i)|}{\sum_{i=1}^{N} |I_0(\mathbf{r}_i) - I_c(\mathbf{r}_i)|}$

 $I_0(\mathbf{r}_i)$ - интенсивность в неискаженном пучке, $I_a(\mathbf{r}_i)$ - интенсивность в искаженном пучке, $I_c(\mathbf{r}_i)$ -интенсивность в пучке после компенсации искажений. Суммирование по всем точкам \mathbf{r}_i для которых выполнялось условие $|I_0(\mathbf{r}_i) - I_a(\mathbf{r}_i)| / |I_0(\mathbf{r}_i) - I_c(\mathbf{r}_i)| > 0,25$

Коррекция случайных искажений «узкого» коллимированного лазерного 13

Аберрации ВФ основного пучка (а), мощность сигнала обратного рассеяния (б), фотографии основного (в) и зондирующего (г) пучков на экране до (слева) и после (посредине) внесения искажений и после коррекции (справа).

$$T = \frac{P_{cS}}{P_{aS}}$$

P_{cS}, *P_{aS}* - мощности приходящиеся на площадку *S* в компенсированном и искаженном пучке соответственно. Размер *S* определяется исходными размерами пучка на экране.

Аберрации ВФ основного пучка (а), мощность сигнала обратного рассеяния (б), фотографии основного (в) и зондирующего (г) пучков на экране до (слева) и после (посредине) внесения искажений и после коррекции (справа).

T = 27,4

Аберрации ВФ основного пучка (а), мощность сигнала обратного рассеяния (б), фотографии основного (в) и зондирующего (г) пучков на экране до (слева) и после (посредине) внесения искажений и после коррекции (справа).

T = 37,5

Принцип построения экспериментальной установки

Эксперименты по адаптивной компенсации рассогласования по обратно **18** рассеянному излучению.

Компенсация рассогласования оптических осей сфокусированного лазерного пучка и приёмного телескопа

Исходное (a), после внесения рассогласования (б) и после компенсации рассогласования (в) положение видеоизображения пятна подсвета; угол рассогласования по горизонтальной и вертикальной осям в зависимости от номера итерации (г,д).

Распространение вихревых лазерных пучков в искусственной конвективной турбулентной среде

19

Стенд по исследованию распространения вихревых оптических лазерных пучков в конвективной турбулентной среде

Схема лабораторного стенда для исследования распространения вихревых лазерных пучков в конвективной турбулентной среде.

Вихревые лазерные пучки

Дифракционная решетка задавалась выражением: $h(x, y) = sgn(cos(2\pi\alpha + 2\pi\delta(x, y)) - cos(\pi q(x, y))),$ $sgn - сигнум функция, \alpha - шаг дифракционной решетки$ $q(x, y) = \frac{arcsin(A(x,y))}{\pi}, \delta(x, y) = \frac{\varphi(x,y)}{2\pi}, A(x, y)$ - распределение амплитуды и фазы $\varphi(x, y)$ пучка. Для вихревого пучка $\varphi(x, y) = \pm l \operatorname{arctg2}(y/x), гдe l$ -топологический заряд

20

гауссова пучка (справа)

Распределения интенсивности вихревых пучков на экране для различных значений топологического заряда *l* при различных размерах (слева) и после приведения к радиусу

Поперечные размеры вихревых лазерных пучков

Среднеквадратическое отклонение энергетического центра тяжести вихревых пучков при различных значениях топологического заряда: (а) – с различающимися начальными поперечными размерами; (б) – с одинаковыми начальными поперечными размерами в зависимости от высоты над нагреваемой поверхностью.

Цикл научных работ

1) Banakh V.A., Gordeev E.V., **Kuskov V.V.**, Rostov A.P. and Shesternin A.N. Controlling the Initial Wavefront of a Spatially Partially Coherent Beam by the Aperture Sensing Technique Based on Backscatter Signals in the Atmosphere: I. Experimental Setup. Atmospheric and Oceanic Optics. -2021. - V. 34. No. 06. - P. 625-631. - (Published: 11.01. 2022).

2) Banakh V.A., Gordeev E.V., **Kuskov V.V.**, Rostov A.P. and Shesternin A.N. Controlling the Initial Wavefront of a Spatially Partially Coherent Beam by the Aperture Sensing Technique Based on Backscatter Signals in the Atmosphere: II. Experiment. // Atmospheric and Oceanic Optics, 2021. – V. 34. No. 06. – P. 632–642. - (Published: 11.01. 2022).

3) **Kuskov V.V.,** Banakh V.A. Partially Coherent Beam Focusing Based on Atmospheric Backscatter Signals // Atmospheric and Oceanic Optics. – 2022. – V. 35. No. 03. – P. 226–231. - (Published: 17.07. 2022)

4) Кусков В.В., Банах В.А., Гордеев Е.В., Шестернин А.Н. Использование обратного атмосферного рассеяния для компенсации ухода пучка от заданного направления. // Оптика атмосферы и океана. – 2022. – Т. 35. № 10. – С. 836–842.

5) Falits A.V., **Kuskov V.V.**, Banakh V.A. Propagation of vortex optical beams through artificial convective turbulence // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2023. – Vol. 302 Art. Numb. 108568.

Спасибо за внимание!