

TOF based on MRPC for the NICA experiments

V. Babkin on behalf of the TOF group of the MPD & BM@N experiments

Abstract: The identification of hadrons in experiments on the study of hot and dense baryonic matter is an important and complex task. Particles identification in the MPD & BM@N is performed by a time-of-flight system based on multi-gap RPC.

Outlines

- Requirements to the MPD TOF system
- Design of the TOF barrel and MRPC
- Readout electronics
- Integration to the MPD & service
- Mass production & testing
- ➤ MRPC TOF at BM@N
- Conclusions

Two stages of the MPD experiment

The basic requirements to the TOF system are:

- large phase space coverage $|\eta| < 2$;
- large area coverage ~50 m²
- time resolution of < **100 ps**;
- high granularity to keep the maximum occupancy <15%;
- high geometrical efficiency;
- identification of pions and kaons with up to p_t < 1.5 GeV/c;
- identification of (anti)protons with up to $p_t < 3 \text{ GeV/c}$;

The best choice for this requirements is a Multigap Resistive Plate Chamber (**MRPC**).

26.05.2018

Real PID simulation (MPDROOT)

1.2 1.4 1.6 1.8 2.2 2 Momentum, GeV/c doi:10.1016/j.nima.2005.11.251

Front-end electronics

NICA

- ✓ Stabilization of the voltage (+2.5V);
- ✓ Differential input (Zdiff = 55 Ohm);
- ✓ Inputs capacitors for two-end strip readout;
- ✓ CXP (InfiniBand) 100 Ω output connector;
- ✓ Series "or" output for 24 channels;
- ✓ Time jitter (RMS) for one channel \approx 7 ps;
- ✓ "On board" slow control:
- voltage control & monitoring;
- preamplifier thresholds control;
- board temperature monitoring ± 0.5 °C;
- gas volume temperature monitor.

Powering preamplifier board and connection scheme.

-			-					The Shreen F	iouaic <u>c</u> hain	
	V+, mV	V-, mV	Vdelta, mV	Vpower, mV	DAC, mV	Tboard, °C	Tgas, °C			
1	1946	1741	1624	3248	2775	45	44	2 Modules found	Connected to N	IPV8016 s
2	1693	1637	1544	3287	0	41	36	Slot 0 8860		
3	1687	1737	1735	3293	0	43	43	Slot 1	Channel 0	
4	1940	1649	1627	3220	0	48	46	8868	Channel 7	
5	1914	1588	1615	3265	0	46	38		Channel 3	
6	1993	1985	1741	3235	0	50	44		Channel 4	
7	1754	1906	1731	3204	0	40	47		Channel 5	
8	1777	1836	1860	3272	0	38	48		Channel 6	
9	1915	1909	1655	3222	0	37	37		Channel 7	
10	1864	1969	1703	3295	0	45	49			
11	1855	1578	1841	3268	0	50	46	Module Information	ation	
12	1610	1751	1908	3206	0	49	49	Serial Number	: 886	10
13	1976	1686	1611	3286	0	39	48	Firmware Nam	ie: MPI	/8016
14	1693	1898	1787	3250	0	44	47	Firmware Rele	ase: n/a	
15	1788	1847	1517	3252	0	49	44	Device Class:	-1	
16	1503	1645	1761	3207	0	46	36			
17	1711	1785	1990	3268	0	42	35			
18	1746	1559	1676	3256	0	38	47			
19	1788	1579	1829	3256	0	40	36			
20	1514	1566	1641	3296	0	19	16	Module Summary	Module Cont	roi M

5101.0		Vset (V)	Vmeasure (V)	Vnominal (V)		Iset (mA)	Imeasure (mA)	Inominal (mA)	Status
8860	Channel 0	6,00	6,00	17,60	т	2 000,000	1 736,816 mA	5 050,049	On
SIOT 1 8868	Channel 1	6,00	6,00	17,60	T	2 000,000	1 741,699 mA	5 050,049	On
	Channel 2	6,00	6,00	17,60	Т	2 000,000	1 735,107 mA	5 050,049	On
	Channel 3	nannel 3 6,00		17,60	T	2 000,000	1 737,549 mA	5 050,049	On
	Channel 4	6,00	6,00	17,60	Т	2 000,000	1 737,061 mA	5 050,049	On
	Channel 5	6,00	6,00	17,60	T	2 000,000	1 732,422 mA	5 050,049	On
	Channel 6	6,00	0,00	17,60	Т	2 000,000	0,000 mA	5 050,049	Off
	Channel 7	6,00	0,00	17,60	T	2 000,000	0,000 mA	5 050,049	Off
Firmware Name: MPV8016 Firmware Release: n/a Channel Number: 8 Device Class: -1			+ 5 volt (v): + 24 volt (v): - 24 volt (v):	0.0 0.0 n/a			Votzge Limit (%): 0 Current Limit (%): 0 Votzge Ramp Speed (%): 0 Current Limit (%): 0		
								apres (raji v	

Slow control GUI clients (left side for FEE, right LV source)

Readout electronics (DAQ)

72-channels VME time-to-digital converter TDC72VHL

6U VXS VME64x crate with controller, trigger modules and TDC72VHL

- ✓ VME64x interface with VXS;
- ✓ TDC type: timestamping HPTDC chip;
- ✓ Input: differential 100 Ω (LVDS);
- ✓ Resolution: 23.4 ps bin size ($\sigma_t \approx 18$ ps measured);
- ✓ Power consumption: +5V/0.13A; +3.3V/5.6A;

Standalone mode:

✓ Ethernet data transfer;

Fixation of detectors inside the box

Power systems of the MPD TOF

Minimum number of differential "±" channels: 56 (280) Voltage range (one polarity): 8000 V Total current through the whole system (~150 μ A) Precision of the current monitoring: ~10 nA Multichannel structure Multichannel structure Remote control Remote control Mpod 4x8 ch 2xHV+ Mpod + MPV 8016I 28 ch 28 ch x 7 V 4x Mpod -28 ch 2xHV HV distribution scheme 560 boards = 112 LVch (280 A) 0 6 0 iseg

WIENER Mpod system and iSeg EHS 4080p(n) module

LV system requirements: 560 (1120) NINO preamplifier-discriminator boards Minimum number of LV channels (1 ch per 5 amp): 112 Supply voltage: 2.5V&3.3 V (<0.5 A/board, 2.5 A/LVch) Maximum power consumption 2 kW

GB-1101

GB-1201

GB-1301

SF₆

GB-1401

N₂/CO₂ WB-1401

C₂H₂F₄

i-C₄H₁₀

55-6TF-4 GF-13

WB-1301

Gas system

GSS Gas Supply System										
Drawing	title:	GMS Gas Mixing System								
Scale:	1:1	Sheet:	1Z6	Last me	odified:	12/03/20	018	DATA	07/08/2017	
Drawn by: MAREK PERYT; marekperyt@if.pw.edu.pl								.pl		
File Name: SC_V_GAS_SYSTEM_MPD_180312.VSDX								DX		
Version:	1.1	Drawing n	umber:	0001	Format:	A-4		Logo: (NIC.	NICA-MPD JNR V&BLHEP	

Gas system (analyzer, purifier, distributor)

LHEP

Mass-production of the TOF modules

Workshop staff: 3 physicists, 5 technicians, 2 electronics engineers Productivity: ~ 1 detectors per day (1 module/2 weeks).

Ultrasonic wave glass cleaning

Painting of the HV conductive layer

MRPC assembling

Optical quality control

Cables and connectors soldering

Detectors installation to the TOF box

Cosmic stand for testing of the TOF modules

1 stand = 6 modules = 60 detectors (120 preamps + 40 TDC)

Baryonic Matter at Nuclotron (BM@N)

First BM@N & SRC physics run took place on March-April 2018

Physics:

- ✓ multi strange hyperon and hypernuclei production
- ✓ hadron femtoscopy
- ✓ in-medium effects for strange
 - & vector mesons in dense barionic matter
- ✓ electromagnetic probes (with Ecal)

Large aperture analyzing magnet SP-41

Target and detectors to form T0, L1 centrality trigger and beam monitors

Central tracker (SSD, GEM) inside analyzing magnet to reconstruct AA interactions

ToF system based on MRPC and T0 detectors to identify low momentum hadrons

Outer tracker (DCH, CSC) behind magnet to link central tracks to ToF detectors

ZDC calorimeter to measure centrality of AA collisions and be used in a trigger

Electromagnetic calorimeter (ECal) for γ, e+eidentification (optional)

Expression of interest from scientists:

INP, SINP MSU, IHEP + S-Ptr Univ. (RF); GSI, Frankfurt U., Gissen U. (Germany): + CBM-MPD IT-Consortium

+ SRC group (Israel, USA, Germany...)

- Central tracker inside analyzing magnet \rightarrow 6 GEM detectors 163 x 45 cm² and 3 forward Si strip detectors for tracking

• Full ToF-400, ToF-700, T0 + Trigger barrel and Si detectors, full ZDC, part of ECAL, CSC and DCH chambers as outer tracker Program:

- Measure inelastic reactions Ar (Kr) + target \rightarrow X on targets Al, Cu, Sn, Pb
- \rightarrow Hyperon production measured in central tracker (Si + GEM)
- \rightarrow Charged particles and nuclear fragments identified with ToF-400,700
- \rightarrow Gamma and multi-gamma states identified in ECAL
- \rightarrow 130 M events in Ar beam, 50 M events in Kr beam

+ analyze data from previous technical runs with Deuteron and Carbon beams of 3.5 - 4.6 GeV/n performed in December 2016 and March 2017

LHEF ЛФВЭ	*	BM@N	FOF-400 systemNICA
#	Detectors	20	TOE400
# m	Strips (300*10 nm²)	960	
#	FEE	1920	
A	rea total	~2,42 m ²	
#	LV channels	20 (4 FEE card on 1ch, 5V 2A)	3600 last GEM station position
#	HV channels	20 (20"+" and 20"- ") 1ch on 1MRPC	4000 ToF400 position 6000 DC position 8000 ToF700 position

Time and spatial resolution of the TOF-400 MRPCs

Hadrons identification with TOF-400 (Run of March 2017)

C(3.5 GeV/c) + Al, 1 M Events

Conclusions

- ➤ Technical design of the MPD TOF system is complete.
- > All materials purchased. Mass production will be started this summer.
- Development of the readout electronics is complete now. Mass production began last year. At the moment we already have 30% of preamplifier boards and +100% purchased.
- Service systems are in development and purchase state.
- Setup for testing of the MPD TOF modules with cosmic rays should be commissioned this year.
- ➢ BM@N TOF-400 system is commissioned and works well.

Thank you for the attention!

Extra slides

TOF modules integration into the MPD

TOF modules integration into the MPD

New "Artmash" (Minsk) guides with rollers

